Skip to main content
Log in

Soliton solutions and their degenerations in the (2+1)-dimensional Hirota–Satsuma–Ito equations with time-dependent linear phase speed

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper focuses on the exact soliton solutions of the (2+1)-dimensional generalized Hirota–Satsuma–Ito equations with time-dependent linear phase speed. Based on the Painlevé integrability test of this equation, the condition of the integrability is determined. Then the general N-soliton solutions are constructed by Hirota bilinear method. Not only the expressions of exact solutions and their degenerations, but also the spatial structures are presented for different choices of the parameters, including the line soliton, periodic soliton, lump soliton and their interaction forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Wazwaz, A.M.: Multiple-soliton solutions for the generalized (1+1)-dimensional and the generalized (2+1)-dimensional Ito equations. Appl. Math. Comput. 202(2), 840–849 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Zhou, Y., Manukure, S., Ma, W.X.: Lump and lump-soliton solutions to the Hirota-Satsuma-Ito equation. Commun. Nonlinear Sci. Numer. Simul. 68, 56–62 (2019)

    MathSciNet  MATH  Google Scholar 

  3. Zhou, Y., Manukure, S.: Complexiton solutions to the Hirota-Satsuma-Ito equation. Math. Methods Appl. Sci. 42(7), 2344–2351 (2019)

    MathSciNet  MATH  Google Scholar 

  4. Zhang, D.: State transformations between the breather Wave and different nonlinear waves for the (2+1)-dimensional Hirota-Satsuma-Ito equation. Adv. Appl. Math. 10(4), 1403–1409 (2021)

    MathSciNet  Google Scholar 

  5. Liu, Y., Wen, X.Y., Wang, D.S.: The N-soliton solution and localized wave interaction solutions of the (2+1)-dimensional generalized Hirota-Satsuma-Ito equation. Comput. Math. Appl. 77(4), 947–966 (2019)

    MathSciNet  MATH  Google Scholar 

  6. Liu, Y., Wen, X.Y., Wang, D.S.: Novel interaction phenomena of localized waves in the generalized (3+1)-dimensional KP equation. Comput. Math. Appl. 78(1), 1–19 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Long, F., Alsallami, S.A.M., Rezaei, S., Nonlaopon, K., Khalil, E.M.: New interaction solutions to the (2+1)-dimensional Hirota-Satsuma-Ito equation. Results Phys. 37, 105475 (2022)

    Google Scholar 

  8. Zhu, S., Song, J.: Residual symmetries, \(n\)th Bäklund transformation and interaction solutions for (2+1)-dimensional generalized Broer-Kaup equations. Appl. Math. Lett. 83, 33–39 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Wang, D.S., Liu, J.: Integrability aspects of some two-component KdV systems Residual symmetries. Appl. Math. Lett. 79, 211–219 (2018)

    MathSciNet  MATH  Google Scholar 

  10. Luo, L.: Bäcklund transformation of variable-coefficient Boiti-Leon-Manna-Pempinelli equation. Appl. Math. Lett. 94, 94–98 (2019)

    MathSciNet  MATH  Google Scholar 

  11. Guo, B., Ling, L., Liu, Q.P.: Nonlinear Schröinger equation: Generalized Darboux transformation and rogue wave solutions. Phys. Rev. E 85, 026607 (2012)

    Google Scholar 

  12. Li, Q., Wang, D.S., Wen, X.Y., Zhuang, J.: An integrable lattice hierarchy based on Suris system: \(N\)-fold Darboux transformation and conservation laws. Nonlinear Dyn. 91, 625–639 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Chen, J., Ma, Z., Hu, Y.: Nonlocal symmetry, Darboux transformation and soliton-cnoidal wave interaction solution for the shallow water wave equation. J. Math. Anal. Appl. 460(2), 987–1003 (2018)

    MathSciNet  MATH  Google Scholar 

  14. Ablowitz, M.J., Clarkson, P.A.: Soliton, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    MATH  Google Scholar 

  15. Geng, X., Wu, J.: Riemann-Hilbert approach and N-soliton solutions for a generalized Sasa-Satsuma equation. Wave Motion 60, 62–72 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Yang, B., Yang, J.: Transformations between nonlocal and local integrable equations. Stud. Appl. Math. 140(2), 178–201 (2018)

    MathSciNet  MATH  Google Scholar 

  17. Yang, J.: Physically significant nonlocal nonlinear Schröinger equation and its soliton solutions. Phys. Rev. E 98, 042202 (2018)

    MathSciNet  Google Scholar 

  18. Jimbo, M., Mita, T.: Solitons and infinite dimensional lie algebras. Publ. RIMS, Kyoto Univ. 19, 943–1001 (1983)

    MathSciNet  MATH  Google Scholar 

  19. Ren, B.: Interaction solutions for mKP equation with nonlocal symmetry reductions and CTE method. Phys. Scr. 90, 065206 (2015)

    Google Scholar 

  20. Ma, W.X.: Conservation laws by symmetries and adjoint symmetries. Discrete Contin. Dyn. Syst. 11, 707–721 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, New York (2004)

    MATH  Google Scholar 

  22. Ito, M.: An extension of nonlinear evolution equations of the KdV (mKdV) type to higher orders. J. Phys. Soc. Jpn. 49, 771–778 (1980)

    MATH  Google Scholar 

  23. Helfrich, K.R., Melville, W.K.: Long nonlinear internal waves. Annu. Rev. Fluid Mech. 38, 395–425 (2006)

    MathSciNet  MATH  Google Scholar 

  24. Hietarinta, J.: Introduction to the Hirota Bilinear Method, Integrability of Nonlinear Systems. Lecture Notes in Physics. Berlin, Heidelberg: Springer, 95-103 (1997)

  25. Zhang, Y., Ma, W.X., Yang, J.Y.: A study on lump solutions to a (2+1)-dimensional completely generalized Hirota-Satasuma-Ito equation. Discrete Contin. Dyn. Syst. Ser. S. 13(10), 2941–2948 (2020)

    MathSciNet  MATH  Google Scholar 

  26. Wang, M., Tian, B., Liu, S.H., Shan, W.R., Jiang, Y.: Soliton, multiple-lump and hybrid solutions of a (2+1)-dimensional generalized Hirota-Satsuma-Ito equation for the water waves. Eur. Phys. J. Plus. 136, 635 (2021)

    Google Scholar 

  27. Zhao, Z., He, L.: M-lump and hybrid solutions of a generalized (2+1)-dimensional Hirota-Satsuma-Ito equation. Appl. Math. Lett. 111, 106612 (2021)

    MathSciNet  MATH  Google Scholar 

  28. Liu, J.G., Osman, M.S., Zhu, W.H., Zhou, L., Ai, G.P.: Different complex wave structures described by the Hirota equation with variable coefficients in inhomogeneous optical fibers. Appl. Phys. B-Lasers O. 125, 175 (2019)

    Google Scholar 

  29. Liu, J.G., Osman, M.S., Wazwaz, A.M.: A variety of nonautonomous complex wave solutions for the (2+1)-dimensional nonlinear Schrödinger equation with variable coefficients in nonlinear optical fibers. Optik 180, 917–923 (2019)

    Google Scholar 

  30. Liu, J.G., Zhu, W.H., Zhou, L.: Breather wave solutions for the Kadomtsev-Petviashvili equation with variable coefficients in a fluid based on the variable-coefficient three-wave approach. Math. Method Appl. Sci. 43(1), 458–465 (2020)

    MathSciNet  MATH  Google Scholar 

  31. Han, P.F., Bao, T.: Novel hybrid-type solutions for the (3+1)-dimensional generalized Bogoyavlensky-Konopelchenko equation with time-dependent coefficients. Nonlinear Dyn. 107, 1163–1177 (2022)

    Google Scholar 

  32. Liu, J.G., Zhu, W.H., Zhou, L., Xiong, Y.K.: Multi-waves, breather wave and lump-stripe interaction solutions in a (2+1)-dimensional variable-coefficient korteweg-de vries equation. Nonlinear Dyn. 97, 2127–2134 (2019)

    MATH  Google Scholar 

  33. Chen, F.P., Chen, W.Q., Wang, L., Ye, Z.J.: Nonautonomous characteristics of lump solutions for a (2+1)-dimensional korteweg-de vries equation with variable coefficients. Appl. Math. Lett. 96, 33–39 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Karmina, K.A., Resat, Y.: M-lump solutions and interactions phenomena for the (2+1)-dimensional KdV equation with constant and time-dependent coefficients. Chinese J. Phys. 77, 2189–2200 (2022)

    MathSciNet  Google Scholar 

  35. Liu, J.G., Xiong, W.P.: Multi-wave, breather wave and lump solutions of the Boiti-Leon-Manna-Pempinelli equation with variable coefficients. Results Phys. 19, 103532 (2020)

    Google Scholar 

  36. Wazwaz, A.M.: Painlevé analysis for new (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equations with constant and time-dependent coefficients. Int. J. Numer. Method H. 30(9), 4259–4266 (2020)

  37. Xie, X.Y., Yan, Z.H.: Soliton collisions for the Kundu-Eckhaus equation with variable coefficients in an optical fiber. Appl. Math. Lett. 80, 48–53 (2018)

    MathSciNet  MATH  Google Scholar 

  38. Osman, M.S.: One-soliton shaping and inelastic collision between double solitons in the fifth-order variable-coefficient Sawada-Kotera equation. Nonlinear Dyn. 96, 1491–1496 (2019)

    MATH  Google Scholar 

  39. Wazwaz, A.M.: Two new integrable Kadomtsev-Petviashvili equations with time-dependent coefficients: multiple real and complex soliton solutions. Wave Random Complex 30, 776–786 (2020)

    MathSciNet  MATH  Google Scholar 

  40. Wazwaz, A.M.: Two new Painlevé-integrable (2+1) and (3+1)-dimensional KdV equations with constant and time-dependent coefficients. Nuclear Phys. B 954, 115009 (2020)

    MathSciNet  MATH  Google Scholar 

  41. Wazwaz, A.M.: New integrable (2+1)- and (3+1)-dimensional sinh-Gordon equations with constant and time-dependent coefficients. Phys. Lett. A 384, 126529 (2020)

    MathSciNet  MATH  Google Scholar 

  42. Kumar, S., Mohan, B.: A study of multi-soliton solutions, breather, lumps, and their interactions for Kadomtsev-Petviashvili equation with variable time coeffcient using Hirota method. Phys. Scr. 96, 125255 (2021)

    Google Scholar 

  43. Shen, Y., Tian, B., Liu, S., Zhou, T.Y.: Studies on certain bilinear form, \(N\)-soliton, higher-order breather, periodic-wave and hybrid solutions to a (3+1)-dimensional shallow water wave equation with time-dependent coefficients. Nonlinear Dyn. 108, 2447–2460 (2022)

    Google Scholar 

  44. Ablowitz, M.J., Ramani, A., Segur, H.: Nonlinear evolution equations and ordinary differential equations of Painlevé type. Lettere Al Nuovo Cimento. 23(9), 333–338 (1978)

    MathSciNet  Google Scholar 

  45. Jimbo, M., Kruskal, M.D., Miwa, T.: Painlevé test for the self-dual Yang-Mills equation. Phys. Lett. A 92(2), 59–60 (1982)

    MathSciNet  Google Scholar 

  46. Weiss, J., Tabor, M., Carnevale, G.: The Painlevé property for partial differential equations. J. Math. Phys. 24, 522 (1983)

    MathSciNet  MATH  Google Scholar 

  47. Lou, S.Y.: Extended Painlevé expansion, nonstandard truncation and special reductions of nonlinear evolution equations. Z. Naturfo. 53 a, 251–258 (1983)

    Google Scholar 

  48. Estévez, P.G., Leble, S.: A wave equation in 2+1: Painlevé analysis and solutions. Inverse Probl. 11, 925–937 (1995)

    MATH  Google Scholar 

  49. Li, Y.S.: Soliton and Interable System. Shanghai Scientific and Technological Education Publishing House, Shanghai (1994)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 11905013), the Beijing Natural Science Foundation (No. 1222005), Qin Xin Talents Cultivation Program of Beijing Information Science and Technology University (QXTCP C202118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaqing Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The authors declare that they have adhered to the ethical standards of research execution.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Liu, Y. & Zhuang, J. Soliton solutions and their degenerations in the (2+1)-dimensional Hirota–Satsuma–Ito equations with time-dependent linear phase speed. Nonlinear Dyn 111, 10367–10380 (2023). https://doi.org/10.1007/s11071-023-08348-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08348-3

Keywords

Navigation