Skip to main content
Log in

Two-dimensional anisotropic vortex–bright soliton and its dynamics in dipolar Bose–Einstein condensates in optical lattice

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We study construction and dynamics of two-dimensional (2D) anisotropic vortex–bright (VB) soliton in spinor dipolar Bose–Einstein condensates confined in a 2D optical lattice (OL), with two localized components linearly mixed by the spin–orbit coupling and long-range dipole–dipole interaction (DDI). It is found that the OL and DDI can support stable anisotropic VB soliton in the present setting for arbitrarily small value of norm N. We then present a new method via examining the mean square error of norm share of bright component to implement stability analysis. It is revealed that one can control the stability of anisotropic VB soliton only by adjusting OL depth for a fixed DDI. In addition, the dynamics of the anisotropic VB soliton was studied by applying the kick to them. The mobility of the single kicked VB soliton is Rabbi-like oscillation. However, for the collision dynamics of two kicked anisotropic VB solitons, their properties mainly depend on their initial distance and OL, and they can realize the transition from the bright component to the vortex component. Our work may provide a convenient way to prepare and manipulate anisotropic VB soliton in high-dimensional space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Fetter, A.L.: Rotating trapped Bose-Einstein condensates. Rev. Mod. Phys. 81, 647 (2009)

    Article  Google Scholar 

  2. Fetter, A.L., Svidzinsky, A.A.: Vortices in a trapped dilute Bose-Einstein condensate. J. Phys. Condens. Mat. 13, R135 (2001)

    Article  Google Scholar 

  3. Proment, D., Onorato, M., Barenghi, C.F.: Vortex knots in a Bose-Einstein condensate. Phys. Rev. E 85, 036306 (2012)

    Article  Google Scholar 

  4. Middelkamp, S., Torres, P.J., Kevrekidis, P.G., Frantzeskakis, D.J., Carretero-González, R., Schmelcher, P., Freilich, D.V., Hall, D.S.: Guiding-center dynamics of vortex dipoles in Bose-Einstein condensates. Phys. Rev. A 84, 011605 (2011)

    Article  Google Scholar 

  5. Kevrekidis, P.G., Carretero-González, R., Frantzeskakis, D.J., Kevrekidis, I.G.: Vortices in Bose-Einstein condensates: some recent developments. Mod. Phys. Lett. B 18, 1481 (2004)

    Article  MATH  Google Scholar 

  6. Kivshar, Y.S., Luther-Davies, B.: Dark optical solitons: physics and applications. Phys. Rep. 298, 81 (1998)

    Article  Google Scholar 

  7. Skryabin, D.V.: Instabilities of vortices in a binary mixture of trapped Bose-Einstein condensates: role of collective excitations with positive and negative energies. Phys. Rev. A 63, 013602 (2000)

    Article  Google Scholar 

  8. Kevrekidis, P.G., Wang, W., Carretero-González, R., Frantzeskakis, D.J., Xie, S.: Vortex precession dynamics in general radially symmetric potential traps in two-dimensional atomic Bose-Einstein condensates. Phys. Rev. A 96, 043612 (2017)

    Article  Google Scholar 

  9. Groszek, A.J., Paganin, D.M., Helmerson, K., Simula, T.P.: Motion of vortices in inhomogeneous Bose-Einstein condensates. Phys. Rev. A 97, 023617 (2018)

    Article  Google Scholar 

  10. Borovkova, O.V., Kartashov, Y.V., Malomed, B.A., Torner, L.: Algebraic bright and vortex solitons in defocusing media. Opt. Lett. 36, 3088 (2011)

    Article  Google Scholar 

  11. Zhang, Y., Yang, C., Yu, W., Mirzazadeh, M., Zhou, Q., Liu, W.: Interactions of vector anti-dark solitons for the coupled nonlinear Schrödinger equation in inhomogeneous fibers. Nonlinear Dyn. 94(2), 1351–1360 (2018)

    Article  Google Scholar 

  12. Lobanov, V.E., Borovkova, O.V., Kartashov, Y.V., Malomed, B., Torner, L.: Stable bright and vortex solitons in photonic crystal fibers with inhomogeneous defocusing nonlinearity. Opt. Lett. 37, 1799 (2012)

    Article  Google Scholar 

  13. Chen, R.P., Dai, C.Q.: Vortex solitons of the (3+1)-dimensional spatially modulated cubic-quintic nonlinear Schrödinger equation with the transverse modulation. Nonlinear Dyn. 90, 1563–1570 (2017)

    Article  Google Scholar 

  14. Wang, M., Tian, B., Shan, W.R., Lü, X., Xue, Y.S.: Solitons and their collisions in the spinor Bose-Einstein condensates. Nonlinear Dyn. 69(3), 1137–1148 (2012)

    Article  MATH  Google Scholar 

  15. Dai, C.Q., Fan, Y., Zhou, G.Q., Zheng, J., Cheng, L.: Vector spatiotemporal localized structures in (3+1)-dimensional strongly nonlocal nonlinear media. Nonlinear Dyn. 86, 999–1005 (2016)

    Article  MathSciNet  Google Scholar 

  16. Wang, Q., Zhang, L., Ke, L.: Parameters controlling of vortex solitons in nonlocal nonlinear medium with graually characteristic length. Chaos Soliton Fract. 161, 112319 (2022)

    Article  MATH  Google Scholar 

  17. Chen, Y.X., Xiao, X.: Vector soliton pairs for a coupled nonautonomous NLS model with partially nonlocal coupled nonlinearities under the external potentials. Nonlinear Dyn. 109, 2003–2012 (2022)

    Article  Google Scholar 

  18. Yang, J., Zhu, Y., Qin, W., Wang, S.H., Dai, C.Q., Li, J.T.: Higher-dimensional soliton structures of a variable-coefficient Gross-Pitaevskii equation with the partially nonlocal nonlinearity under a harmonic potential. Nonlinear Dyn. 108, 2551–2562 (2022)

    Article  Google Scholar 

  19. Matthews, M.R., Anderson, B.P., Haljan, P.C., Hall, D.S., Wieman, C.E., Cornell, E.A.: Vortices in a Bose-Einstein condensate. Phys. Rev. Lett. 83, 2498 (1999)

    Article  Google Scholar 

  20. Becker, C., Stellmer, S., Soltan-Panahi, P., Dörscher, S., Baumert, M., Richter, E.-M., Kronjäger, J., Bongs, K., Sengstock, K.: Oscillations and interactions of dark and dark-bright solitons in Bose-Einstein condensates. Nat. Phys. 4, 496 (2008)

    Article  Google Scholar 

  21. Lannig, S., Schmied, C.-M., Prüfer, M., Kunkel, P., Strohmaier, R., Strobel, H., Gasenzer, T., Kevrekidis, P.G., Oberthaler, M.K.: Collisions of three-component vector solitons in Bose-Einstein condensates. Phys. Rev. Lett. 125, 170401 (2020)

    Article  Google Scholar 

  22. Wang, Q., Hu, J.G., Su, X.H., Wen, L.H.: Dynamics of rotating spin-orbit-coupled Bose-Einstein condensates in a quasicrystalline optical lattice. Results Phys. 20, 103755 (2021)

    Article  Google Scholar 

  23. Chatterjee, B.: Exploring vortex formation in rotating Bose-Einstein condensates beyond mean-field regime. arXiv:2204.01978v1 (2022)

  24. Madison, K.W., Chevy, F., Wohlleben, W., Dalibard, J.: Vortex formation in a stirred Bose-Einstein condensate. Phys. Rev. Lett. 84, 806 (2000)

    Article  Google Scholar 

  25. Kiehn, H., Singh, V.P., Mathey, L.: Superfluidity of a laser-stirred Bose-Einstein condensate. Phys. Rev. A 105, 043317 (2022)

    Article  Google Scholar 

  26. Yang, T., Xiong, B., Benedict, K.A.: Dynamical excitations in the collision of two-dimensional Bose-Einstein condensates. Phys. Rev. A 87, 023603 (2013)

    Article  Google Scholar 

  27. Xiong, B., Yang, T., Benedict, K.A.: Distortion of interference fringes and the resulting vortex production of merging Bose-Einstein condensates. Phys. Rev. A 88, 043602 (2013)

    Article  Google Scholar 

  28. Kevrekidis, P.G., Wang, W., Carretero-González, R., Frantzeskakis, D.J.: Adiabatic invariant approach to transverse instability: landau dynamics of soliton filaments. Phys. Rev. Lett. 118, 244101 (2017)

    Article  Google Scholar 

  29. Freilich, D.V., Bianchi, D.M., Kaufman, A.M., Langin, T.K., Hall, D.S.: Real-time dynamics of single vortex lines and vortex dipoles in a Bose-Einstein condensate. Science 329, 1182 (2010)

    Article  Google Scholar 

  30. Kartashov, Y.V., Malomed, B.A., Torner, L.: Solitons in nonlinear lattices. Rev. Mod. Phys. 83, 247 (2011)

    Article  Google Scholar 

  31. Malomed, B.A., Mihalache, D., Wise, F., Torner, L.: Spatiotemporal optical solitons. J. Opt. B 7, R53 (2005)

    Article  Google Scholar 

  32. Brtka, M., Gammal, A., Malomed, B.A.: Hidden vorticity in binary Bose-Einstein condensates. Phys. Rev. A 82, 053610 (2010)

    Article  Google Scholar 

  33. Dalfovo, F., Stringari, S.: Bosons in anisotropic traps: ground state and vortices. Phys. Rev. A 53, 2477 (1996)

    Article  Google Scholar 

  34. Carr, L.D., Clark, C.W.: Vortices in attractive Bose-Einstein condensates in two dimensions. Phys. Rev. Lett. 97, 010403 (2006)

    Article  Google Scholar 

  35. Mihalache, D., Mazilu, D., Malomed, A.B., Lederer, F.: Vortex stability in nearly-two-dimensional Bose-Einstein condensates with attraction. Phys. Rev. A 73, 043615 (2006)

    Article  Google Scholar 

  36. Carr, L.D., Clark, C.W.: Vortices and ring solitons in Bose-Einstein condensates. Phys. Rev. A 74, 043613 (2006)

    Article  Google Scholar 

  37. Herring, G., Carr, L.D., Carretero-González, R., Kevrekidis, P.G., Frantzeskakis, D.J.: Radially symmetric nonlinear states of harmonically trapped Bose-Einstein condensates. Phys. Rev. A 77, 023625 (2008)

    Article  Google Scholar 

  38. Law, K.J.H., Kevrekidis, P.G., Tuckerman, L.S.: Stable vortex-bright-soliton structures in two-component Bose-Einstein condensates. Phys. Rev. Lett. 105, 160405 (2010)

    Article  Google Scholar 

  39. Pola, M., Stockhofe, J., Schmelcher, P., Kevrekidis, P.G.: Vortex-bright-soliton dipoles: bifurcations, symmetry breaking, and soliton tunneling in a vortex-induced double well. Phys. Rev. A 86, 053601 (2012)

    Article  Google Scholar 

  40. Mukherjee, K., Mistakidis, S., Kevrekidis, P.G., Schmelcher, P.: Quench induced vortex-bright-soliton formation in binary Bose-Einstein condensates. J. Phys. B 53, 055302 (2020)

    Google Scholar 

  41. Wang, W.: Controlled engineering of a vortex-bright soliton dynamics using a constant driving force. J. Phys. B At. Mol. Opt. Phys. 55, 105301 (2022)

    Article  Google Scholar 

  42. Kevrekidis, P., Frantzeskakis, D.: Solitons in coupled nonlinear Schrödinger models: a survey of recent developments. Rev. Phys. 1, 140 (2016)

    Article  Google Scholar 

  43. Yu, F., Li, L.: Vector dark and bright soliton wave solutions and collisions for spin-1 Bose-Einstein condensate. Nonlinear Dyn. 87(4), 2697–2713 (2017)

    Article  MathSciNet  Google Scholar 

  44. Huang, H., Wang, H., Chen, M., Lim, C.S., Wong, K.-C.: Binary-vortex quantum droplets. Chaos Soliton Fract. 158, 112079 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  45. dos Santos, M.C.P., Cardoso, W.B.: Spontaneous symmetry breaking induced by interaction in linearly coupled binary Bose-Einstein condensates. Nonlinear Dyn. (2022). https://doi.org/10.1007/s11071-022-07986-3

    Article  Google Scholar 

  46. Sakaguchi, H., Li, B., Malomed, B.A.: Creation of twodimensional composite solitons in spin-orbit-coupled selfattractive Bose-Einstein condensates in free space. Phys. Rev. E 89, 032920 (2014)

    Article  Google Scholar 

  47. Sakaguchi, H., Malomed, B.A.: Discrete and continuum composite solitons in Bose-Einstein condensates with the Rashba spin-orbit coupling in one and two dimensions. Phys. Rev. E 90, 062922 (2014)

    Article  Google Scholar 

  48. Liao, B.J., Ye, Y.B., Zhuang, J.H., Huang, C.Q., Deng, H.M., Pang, W., Liu, B., Li, Y.Y.: Anisotropic solitary semivortices in dipolar spinor condensates controlled by the two-dimensional anisotropic spin-orbit coupling. Chaos Soliton Fract. 116, 424–432 (2018)

    Article  MathSciNet  Google Scholar 

  49. Malomed, B.A.: Two-dimensional solitons in nonlocal media: a brief review. Symmetry 14(8), 1565 (2022)

    Article  Google Scholar 

  50. Jiang, X.D., Fan, Z.W., Chen, Z.P., Pang, W., Li, Y.Y., Malomed, B.A.: Two-dimensional solitons in dipolar bose-einstein condensates with spin-orbit coupling. Phys. Rev. A 93, 023633 (2016)

    Article  Google Scholar 

  51. Cuevas, J., Malomed, B.A., Kevrekidis, P.G., Frantzeskakis, D.J.: Solitons in quasi-one-dimensional Bose-Einstein condensates with competing dipolar and local interactions. Phys. Rev. A 79, 053608 (2009)

    Article  Google Scholar 

  52. Vakhitov, N.G., Kolokolov, A.A.: Stationary solutions of the wave equation in a medium with nonlinearity saturation. Radiophys. Quantum Electron. 16, 78–789 (1973)

    Article  Google Scholar 

  53. Bergé, L.: Wave collapse in physics: principles and applications to light and plasma waves. Phys. Rep. 303, 259 (1998)

    Article  MathSciNet  Google Scholar 

  54. Lin, Y.J., Jimenez-Garcia, K., Spielman, I.B.: Spin-orbit coupled Bose-Einstein condensates. Nature 471, 83 (2011)

    Article  Google Scholar 

  55. Bloch, I., Dalibard, J., Zwerger, W.: Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885 (2008)

    Article  Google Scholar 

  56. Aidelsburger, M., Lohse, M., Schweizer, C., Atala, M., Barreiro, J.T., Nascimbène, S., Cooper, N.R., Bloch, I., Goldman, N.: Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms. Nat. Phys. 11, 162 (2014)

    Article  Google Scholar 

  57. Würtz, P., Langen, T., Gericke, T., Koglbauer, A., Ott, H.: Experimental demonstration of single-site addressability in a two-dimensional optical lattice. Phys. Rev. Lett. 103, 080404 (2009)

    Article  Google Scholar 

  58. Griesmaier, A., Werner, J., Hensler, S., Stuhler, J., Pfau, T.: Bose-Einstein condensation of chromium. Phys. Rev. Lett. 94, 160401 (2005)

    Article  Google Scholar 

  59. Lahaye, T., Menotti, C., Santos, L., Lewenstein, M., Pfau, T.: The physics of dipolar bosonic quantum gases. Rep. Prog. Phys. 72, 126401 (2009)

    Article  Google Scholar 

  60. Vengalattore, M., Leslie, S.R., Guzman, J., Stamper-Kurn, D.M.: Spontaneously modulated spin textures in a dipolar spinor Bose-Einstein condensate. Phys. Rev. Lett. 100, 170403 (2008)

    Article  Google Scholar 

  61. Seo, B., Huang, M.C., Chen, Z.T., Parit, M.K., He, Y.F., Chen, P., Jo, G.B.: Observation of superradiance in a phase fluctuating diolar Bose-Einstein condensate. arXiv:2210.01586v1 (2022)

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No.12175315, the Hunan Provincial Natural Science Foundation under Grants No. 2019JJ30044, the Scientific Research Fund of Hunan Provincial Education Department under Grant No. 19A510 and the Talent project of Central South University of Forestry and Technology under Grant No. 2017YJ035.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honghua Zhong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Equivalence of the mean square errors of \(F_{1}\) and \(F_{2}\)

Appendix A: Equivalence of the mean square errors of \(F_{1}\) and \(F_{2}\)

In Eq. (13), we use the mean square error of norm share of bright component as a criterion to implement stability analysis. Here, we will prove the mean square errors of \(F_{1}\) and \(F_{2}\) are equivalent. According to the definition, the mean square error of norm share of vortex component defined as

$$\begin{aligned} \langle \Delta ^{2} F_{2}(t)\rangle =\langle F_{2}^{2}(t) \rangle -\overline{F}_{2}^{2}, \end{aligned}$$
(A1)

where the time-dependent norm share of the vortex component \(F_{2}(t)={\int \int |\psi _{2}(x, y, t)|^{2}dxdy}/N\), the average value of the norm share of the vortex component in the evolution \(\overline{F}_{2}=\langle F_{2}(t) \rangle \) and the variance \(\Delta F_{2}(t)=F_{2}(t)-\overline{F}_{2}\). Because our system is close, we have \(F_{1}(t)+F_{2}(t)= 1\) and \(\overline{F}_{1}+\overline{F}_{2}=1\). Combining the Eq. (13), we can obtain

$$\begin{aligned} \Delta F_{1}(t)= & {} F_{1}(t)-\overline{F}_{1} \nonumber \\= & {} 1-F_{2}(t)-(1-\overline{F}_{2}) \nonumber \\= & {} \overline{F}_{2}-F_{2}(t) \nonumber \\= & {} -\Delta F_{2}(t) \end{aligned}$$
(A2)

Obviously, the mean square errors of \(F_{1}\) and \(F_{2}\) are equivalent, \(\langle \Delta ^{2}F_{1}(t) \rangle = \langle \Delta ^{2}F_{2}(t) \rangle \).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Z., Gong, H., Zhu, B. et al. Two-dimensional anisotropic vortex–bright soliton and its dynamics in dipolar Bose–Einstein condensates in optical lattice. Nonlinear Dyn 111, 9467–9476 (2023). https://doi.org/10.1007/s11071-023-08335-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08335-8

Keywords

Navigation