Skip to main content
Log in

Fission and annihilation phenomena of breather/rogue waves and interaction phenomena on nonconstant backgrounds for two KP equations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we investigate various nonlinear phenomena of two Kadomtsev–Petviashvili (KP) equations. Based on bilinear neural network method, we present the fission and annihilation phenomena of breather waves and rogue waves on non-zero backgrounds of a (3+1)-dimensional KP equation by its reduced equation. Then with the aid of symmetry transformation and Hirota bilinear form, we obtain three interaction solutions on nonconstant backgrounds of a (2+1)-dimensional KP equation with variable coefficients. Also, we perform the analysis of the dynamic characteristics and evolution behaviors of the obtained solutions through three-dimensional animations with proper choices of different values for the parameters. This paper shows that the bilinear neural network method combined with symmetry analysis effectively solves high-dimensional differential equations with constant and variable coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Wazwaz, A.M.: Partial Differ. Equ. Solitary Waves Theory. Higher education press, Beijing (2009)

    Book  Google Scholar 

  2. Ren, B., Ma, W.X., Yu, J.: Rational solutions and their interaction solutions of the (2+1)-dimensional modified dispersive water wave equation. Comput. Math. Appl. 77(8), 2086–2095 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Tang, X.Y., Liang, Z.F., Hao, X.Z.: Nonlinear waves of a nonlocal modified KdV equation in the atmospheric and oceanic dynamical system. Commun. Nonlinear Sci. Numer. Simul. 60, 62–71 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kumar, S., Mohan, B.: A generalized nonlinear fifth-order KdV-type equation with multiple soliton solutions: Painlev\(\acute{e}\) analysis and Hirota Bilinear technique. Phys. Scr. 97, 125214 (2022)

    Article  Google Scholar 

  5. Wang, R., Yuan, X.G., Zhang, H.W., Zhang, J., Lv, N.: Symmetry transformations and exact solutions of a generalized hyperelastic rod equation. CMC-Comput. Mater. Con. 55, 345–357 (2018)

    Google Scholar 

  6. Lv, N., Li, J.H., Yuan, X.G., Wang, R.: Controllable rogue waves in a compressible hyperelastic plate. Phys. Lett. A 461, 128639 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  7. Sakkaravarthi, K., Kanna, T., Babu, Mareeswaran R.: Higher-order optical rogue waves in spatially inhomogeneous multimode fiber. Physica D: Nonlin. Phenomena 435, 133285 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  8. Wang, Y.F., Guo, B.L., Liu, N.: Optical rogue waves for the coherently coupled nonlinear Schrödinger equation with alternate signs of nonlinearities. Appl. Math. Lett. 78, 112–117 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Seadawy, A.R.: Solitary wave solutions of two-dimensional nonlinear Kadomtsev-Petviashvili dynamic equation in dust-acoustic plasmas. Pramana-J. Phys. 89, 49 (2017)

    Article  Google Scholar 

  10. Islam, S.M.R., Khan, S., Arafat, S.M.Y., Akbar, M.A.: Diverse analytical wave solutions of plasma physics and water wave equations. Results Phys. 40, 105834 (2022)

    Article  Google Scholar 

  11. Kumar, S., Mohan, B., Kumar, R.: Lump, soliton, and interaction solutions to a generalized two-mode higher-order nonlinear evolution equation in plasma physics. Nonlinear Dyn. 110, 693–704 (2022)

    Article  Google Scholar 

  12. Kumar, S., Mohan, B., Kumar, A.: Generalized fifth-order nonlinear evolution equation for the Sawada Kotera, Lax, and Caudrey-Dodd-Gibbon equations in plasma physics: Painlev\(\acute{e}\) analysis and multi-soliton solutions. Phys. Scr. 97, 035201 (2022)

    Article  Google Scholar 

  13. Seadawy, A.R., Ahmed, S., Rizvi, S.T.R., Ali, K.: Lumps, breathers, interactions and rogue wave solutions for a stochastic gene evolution in double chain deoxyribonucleic acid system. Chaos Solitons Fract. 161, 112307 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  14. Du, Z., Tian, B., Chai, H.P., Yuan, Y.Q.: Vector multi-rogue waves for the three-coupled fourth-order nonlinear Schrodinger equations in an alpha helical protein. Commun. Nonlinear Sci. Numer. Simul. 67, 49–59 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lou, S.Y., Tang, X.Y.: Nonlinear Methods of Mathematical Physics. Science and Technology, Bei Jing (2006)

    Google Scholar 

  16. Raza, N., Salman, F., Butt, A.R., Gandarias, M.L.: Lie symmetry analysis, soliton solutions and qualitative analysis concerning to the generalized q-deformed Sinh-Gordon equation. Commun. Nonlinear Sci. Numer. Simul. 116, 106824 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  17. Alshehri, H.M., Maturi, D.A., Al-Bogami, D.H., Kumar, S., Yildirim, Y., Biswas, A.: Cubic-quartic optical solitons in fiber Bragg gratings with Kerr law of nonlinearity and dispersive reflectivity by Lie symmetry. Optik 270, 169927 (2022)

    Article  Google Scholar 

  18. Kumar, S., Hamid, I.: Dynamics of closed-form invariant solutions and diversity of wave profiles of (2+1)-dimensional Ito integro-differential equation via Lie symmetry analysis. J. Ocean Eng. Sci. (2022). https://doi.org/10.1016/j.joes.2022.06.017

    Article  Google Scholar 

  19. Harrison, B.K.: Differential form method for finding symmetries. Symmetry, Integrability and Geometry: Methods and Applications. 1, 1–12 (2005)

    MathSciNet  MATH  Google Scholar 

  20. Lv, N., Mei, J.Q., Zhang, H.Q.: Differential form method for finding symmetries of a (2+1)-dimensional Camassa-Holm system based on its Lax pair. Chaos Solitons Fract. 45, 503–506 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Torregros, A.J., Gil, A., Quintero, P., Cremades, A.: A Reduced Order Model based on Artificial Neural Networks for nonlinear aeroelastic phenomena and application to composite material beams. Compos. Struct. 295, 115845 (2022)

    Article  Google Scholar 

  22. Linka, K., Schäfer, A., Meng, X.H., Zou, Z.R., Karniadakis, G.E., Kuhl, E.: Bayesian Physics Informed Neural Networks for real-world nonlinear dynamical systems. Comput. Method. Appl. M. 402, 115346 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shen, J.L., Wu, X.Y.: Periodic-soliton and periodic-type solutions of the (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation by using BNNM. Nonlinear Dyn. 106, 831–840 (2021)

    Article  Google Scholar 

  24. Qu, H.D., Liu, X., Lu, X., Rahman, M., She, Z.H.: Neural network method for solving nonlinear fractional advection-diffusion equation with spatiotemporal variable-order. Chaos Solitons Fract. 156, 111856 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zeynel, M., Yaşar, E.: A new (3+1)-dimensional Hirota bilinear equation: Periodic, rogue, bright and dark wave solutions by bilinear neural network method. J. Ocean Eng. Sci. (2022). https://doi.org/10.1016/j.joes.2022.04.017

    Article  Google Scholar 

  26. Pu, J.C., Li, J., Chen, Y.: Solving localized wave solutions of the derivative nonlinear Schrödinger equation using an improved PINN method. Nonlinear Dyn. 105, 1723–1739 (2021)

    Article  Google Scholar 

  27. Li, J.H., Chen, J.C., Li, B.: Gradient-optimized physics-informed neural networks (GOPINNs): a deep learning method for solving the complex modified KdV equation. Nonlinear Dyn. 107, 781–792 (2022)

    Article  Google Scholar 

  28. Zhong, M., Gong, S.B., Tian, S.F., Yan, Z.Y.: Data-driven rogue waves and parameters discovery in nearly integrable-symmetric Gross-Pitaevskii equations via PINNs deep learning. Physica D: Nonlin. Phenomena 439, 133430 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang, R.F., Li, M.C., Gan, J.Y., Li, Q., Lan, Z.Z.: Novel trial functions and rogue waves of generalized breaking soliton equation via bilinear neural network method. Chaos Solitons Fract. 154, 111692 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang, R.F., Bilige, S.D.: Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equation. Nonlinear Dyn. 95, 3041–3048 (2019)

    Article  MATH  Google Scholar 

  31. Zhang, R.F., Li, M.C.: Bilinear residual network method for solving the exactly explicit solutions of nonlinear evolution equations. Nonlinear Dyn. 108, 521–531 (2022)

    Article  Google Scholar 

  32. Kumar, S., Mohan, B.: A novel and efficient method for obtaining Hirota’s bilinear form for the nonlinear evolution equation in (n+1) dimensions. Partial Differ. Equat. Appl Math 5, 100274 (2022)

    Article  Google Scholar 

  33. Zhang, R.F., Li, M.C., Albishari, M., Zheng, F.C., Lan, Z.Z.: Generalized lump solutions, classical lump solutions and rogue waves of the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada-like equation. Appl. Math. Computat. 403, 126201 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  34. Khalfallah, M.: New exact traveling wave solutions of the (3+1)-dimensional Kadomtsev-Petviashvili (KP) equation. Commun. Nonlinear Sci. Numer. Simul. 14, 1169–1175 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Guo, L.J., Chabchoub, A., He, J.S.: Higher-order rogue wave solutions to the Kadomtsev-Petviashvili 1 equation. Physica D 426, 132990 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lv N., Wang J.Z., Mei J.Q., Wu L.J.: Symmetry reductions and explicit solutions of (3+1)-dimensional Kadomtsev-Petviashvili (KP) equation. The Sixth International Conference on Nonlinear Mechanics, Shanghai, 211-215 (2013)

  37. Yuan, Y.Q., Tian, B., Liu, L., Chai, H.P., Sun, Y.: Semi-rational solutions for the (3+1)-dimensional Kadomtsev-Petviashvili equation in a plasma or fluid. Comput. Math. Appl. 76, 2566–2574 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang, D.D., Wang, L., Liu, L., Liu, T.X., Sun, W.R.: Shape-changed propagations and interactions for the (3+1)-dimensional generalized Kadomtsev-Petviashvili equation in fluids. Commun. Theor. Phys. 73, 095001 (2021)

    Article  MathSciNet  Google Scholar 

  39. Qin, C.Y., Tian, S.F., Wang, X.B., Zhang, T.T., Li, J.: Rogue waves, bright-dark solitons and traveling wave solutions of the (3+1)-dimensional generalized Kadomtsev-Petviashvili equation. Comput. Math. Appl. 75, 4221–4231 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, X.B., Tian, S.F., Qin, C.Y., Zhang, T.T.: Characteristics of the solitary waves and rogue waves with interaction phenomena in a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation. Appl. Math. Lett. 72, 58–64 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. Xie, Y.C.: Exact solutions of the Wick-type stochastic Kadomtsev-Petviashvili equations. Chaos Solitons Fract. 21, 473–480 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wu, X.Y., Tian, B., Liu, L., Sun, Y.: Rogue waves for a variable-coefficient Kadomtsev-Petviashvili equation in fluid mechanics. Comput. Math. Appl. 76, 215–223 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  43. Ma, H.C., Deng, A.P., Wang, Y.: Exact solution of a KdV equation with variable coefficients. Comput. Math. Appl. 61, 2278–2280 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The work is supported by the National Natural Science Foundation of China (Nos. 11902067, 12172086, 12102242).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, translation, data collection and analysis were performed by Na Lv, Yichao Yue and Ran Wang. Theoretical analysis and algorithm design were performed by Na Lv, Runfa Zhang and Xuegang Yuan. The first draft of the manuscript was written by Na Lv and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xuegang Yuan.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, N., Yue, Y., Zhang, R. et al. Fission and annihilation phenomena of breather/rogue waves and interaction phenomena on nonconstant backgrounds for two KP equations. Nonlinear Dyn 111, 10357–10366 (2023). https://doi.org/10.1007/s11071-023-08329-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08329-6

Keywords

Navigation