Skip to main content
Log in

Occurrence of gradual resonance in a finite-length granular chain driven by harmonic vibration

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This study presents numerical simulations of the resonance of a finite-length granular chain of dissipative grains driven by a harmonically vibrated tube. Multiple gradual resonant modes, namely non-resonance mode, partial-resonance mode, and complete-resonance mode, are identified. With a fixed vibration frequency, increasing vibration acceleration leads to a one-one-one increase in the number of grains participating in resonance, which is equal to the number of grain-wall collisions in a vibration period. Compared with the characteristic time of the grain–grain and the grain–wall collisions, the time of free flight plays a dominant role in grain motion. This situation results in the occurrence of large opening separation gaps between the grains and independent grain–grain and grain–wall collisions. A general master equation that describes the dependence of the system energy on the length of the granular chain and the number of grain–wall collisions is established, and it is in good agreement with the simulation results. We observe a gradual step-jump increase in system energy when the vibration acceleration is continuously increased, which is dedicated to an individual energy injection. The phase diagrams in the spaces of packing density and vibration acceleration, chain length and vibration acceleration show that shorter granular chain and larger packing density favor the occurrence of complete-resonance mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Nesterenko, V.: Dynamics of heterogeneous materials. Springer, NY (2001)

    Book  Google Scholar 

  2. Sen, S., Hong, J., Bang, J., et al.: Solitary waves in the granular chain. Phys. Rep. 462(2), 21–66 (2008)

    Article  MathSciNet  Google Scholar 

  3. Daraio, C., Nesterenko, V.F., Herbold, E.B., et al.: Energy trapping and shock disintegration in a composite granular medium. Phys. Rev. Lett. 96(5), 058002 (2006)

    Article  Google Scholar 

  4. Man, Y., Boechler, N., Theocharis, G., et al.: Defect modes in one-dimensional granular crystals. Phys. Rev. E. 85(3), 037601 (2012)

    Article  Google Scholar 

  5. Windows-Yule, C.R.K., Rosato, A.D., Thornton, A.R., et al.: Resonance effects on the dynamics of dense granular beds: Achieving optimal energy transfer in vibrated granular systems. New J. Phys. 17(2), 023015 (2015)

    Article  Google Scholar 

  6. Chong, S.H., Kim, J.Y.: Nonlinear vibration analysis of the resonant column test of granular materials. J. Sound Vib. 393, 216–228 (2017)

    Article  Google Scholar 

  7. Cui, J.G., Yang, T., Niu, M.Q., et al.: Interaction effects of driving amplitudes and frequencies on transitivity in a granular chain. J. Sound Vib. 529, 116966 (2022)

    Article  Google Scholar 

  8. Flach, S., Gorbach, A.V.: Discrete breathers advances in theory and applications. Phys. Rep. 467(1–3), 1–116 (2008)

    Article  MATH  Google Scholar 

  9. Mithun, T., Danieli, C., Kati, Y., et al.: Dynamical glass and ergodization times in classical josephson junction chains. Phys. Rev. Lett. 122(5), 054102 (2019)

    Article  Google Scholar 

  10. Zhao, C., Zou, Y., Chen, Y., et al.: Wavelength-tunable picosecond soliton fiber laser with topological insulator: \({\rm Bi_2Se_3}\) as a mode locker. Optics Express 20(25), 27888–27895 (2012)

    Article  Google Scholar 

  11. Xu, G., Mussot, A., Kudlinski, A., et al.: Shock wave generation triggered by a weak background in optical fibers. Optics Lett. 41(11), 2656–2659 (2016)

    Article  Google Scholar 

  12. Perego, A.M., Mussot, A., Conforti, M.: Theory of filter-induced modulation instability in driven passive optical resonators. Phys. Rev. A. 103(1), 013522 (2021)

    Article  Google Scholar 

  13. Simion, R.P., Sokolow, A., Sen, S.: Nonlinear breathing processes in granular alignments. Appl. Phys. Lett. 95(22), 224101 (2009)

    Article  Google Scholar 

  14. Breindel, A., Sun, D., Sen, S.: Impulse absorption using small, hard panels of embedded cylinders with granular alignments. Appl. Phys. Lett. 99(6), 063510 (2011)

    Article  Google Scholar 

  15. Manciu, M., Sen, S., Hurd, A.J.: The propagation and backscattering of soliton-like pulses in a chain of quartz beads and related problems.(I). Propagation. Phys. A Stat. Mech. Appl. 274(3–4), 588–606 (1999)

    Article  Google Scholar 

  16. Manciu, M., Sen, S., Hurd, A.J.: The propagation and backscattering of soliton-like pulses in a chain of quartz beads and related problems.(II). Backscattering. Phys. A Stat. Mech. Appl. 274(3–4), 607–618 (1999)

    Article  Google Scholar 

  17. Coste, C., Falcon, E., Fauve, S.: Solitary waves in a chain of beads under Hertz contact. Phys. Rev. E. 56(5), 6104 (1997)

    Article  Google Scholar 

  18. Deng, G., Biondini, G., Sen, S.: Interactions of solitary waves in integrable and nonintegrable lattices. Chaos Interdiscip. J. Nonlinear Sci. 30(4), 043101 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nesterenko, V. F.: Propagation of nonlinear compression pulses in granular media. J. Appl. Mech. Tech. Phys. 24(5) (1984)

  20. Lazaridi, A.N., Nesterenko, V.F.: Observation of a new type of solitary waves in a one-dimensional granular medium. J. Appl. Mech. Techn. Phys. 26(3), 405–408 (1985)

    Article  Google Scholar 

  21. Nesterenko, V.F.: Solitary waves in discrete media with anomalous compressibility and similar to “sonic vacuum”. Le J. Phys. IV 4(C8), C8-729-C8-734 (1994)

  22. Ávalos, E., Sun, D., Doney, R.L., et al.: Sustained strong fluctuations in a nonlinear chain at acoustic vacuum: Beyond equilibrium. Phys. Rev. E. 84(4), 046610 (2011)

    Article  Google Scholar 

  23. Ávalos, E., Sen, S.: Granular chain between asymmetric boundaries and the quasiequilibrium state. Phys. Rev. E. 89(5), 053202 (2014)

    Article  Google Scholar 

  24. Takato, Y., Sen, S.: Long-lived solitary wave in a precompressed granular chain. EPL Europhys. Lett. 100(2), 24003 (2012)

    Article  Google Scholar 

  25. Sen, S., Mohan, T.K., Pfannes, J.M.: The quasi-equilibrium phase in nonlinear 1D systems. Phys. A Stat. Mech. Appl. 342(1–2), 336–343 (2004)

    Article  Google Scholar 

  26. Przedborski, M., Harroun, T.A., Sen, S.: Granular chains with soft boundaries: slowing the transition to quasiequilibrium. Phys. Rev. E. 91(4), 042207 (2015)

    Article  Google Scholar 

  27. Przedborski, M., Sen, S., Harroun, T.A.: Fluctuations in Hertz chains at equilibrium. Phys. Rev. E. 95(3), 032903 (2017)

    Article  MATH  Google Scholar 

  28. Gammaitoni, L., Hänggi, P., Jung, P., et al.: Stochastic resonance. Rev. Modern Phys. 70(1), 223 (1998)

    Article  Google Scholar 

  29. Rajasekar, S., Sanjuan, M.A.: Nonlinear Resonance. Springer International Publishing, Switzerland (2016)

    Book  MATH  Google Scholar 

  30. Vincent, U.E., McClintock, P.V., Khovanov, I.A., et al.: Vibrational and stochastic resonances in driven nonlinear systems. Philos. Trans. R. Soc. A. 379(2192), 20200226 (2021)

    Article  Google Scholar 

  31. Zuo, L.: Dynamics of 1D granular column. New Jersey Institute of Technology, Newark (2014)

    Google Scholar 

  32. Luo, A.C., Han, R.P.: The dynamics of a bouncing ball with a sinusoidally vibrating table revisited. Nonlinear Dyn. 10(1), 1–18 (1996)

    Article  MathSciNet  Google Scholar 

  33. Windows-Yule, C.R.K., Blackmore, D.L., Rosato, A.D.: Energy decay in a tapped granular column: can a one-dimensional toy model provide insight into fully three-dimensional systems? Phys. Rev. E. 96(4), 042902 (2017)

    Article  Google Scholar 

  34. Kovaleva, A.: E nergy localization in weakly dissipative resonant chains. Phys. Rev. E. 94(2), 022208 (2016)

    Article  MathSciNet  Google Scholar 

  35. Kovaleva, A.: Autoresonance in weakly dissipative Klein-Gordon chains. Phys. D Nonlinear Phenom. 402, 132284 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  36. Pierangeli, D., Flammini, M., Zhang, L., et al.: Observation of Fermi-Pasta-Ulam-Tsingou recurrence and its exact dynamics. Phys. Rev. X. 8(4), 041017 (2018)

    Google Scholar 

  37. Kovaleva, A.: Autoresonance in a strongly nonlinear chain driven at one end. Phys. Rev. E. 98(5), 052227 (2018)

    Article  Google Scholar 

  38. Berman, G.P., Izrailev, F.M.: The Fermi-Pasta-Ulam problem: Fifty years of progress. Chaos Interdiscip. J. Nonlinear Sci. 15(1), 015104 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Toda, M.: Theor. Nonlinear Lattices. Springer, NY (1988)

    Google Scholar 

  40. Vincent, U.E., Roy-Layinde, T.O., Popoola, O.O., et al.: Vibrational resonance in an oscillator with an asymmetrical deformable potential. Phys. Rev. E. 98(6), 062203 (2018)

    Article  Google Scholar 

  41. Kolebaje, O., Popoola, O.O., Vincent, U.E.: Occurrence of vibrational resonance in an oscillator with an asymmetric Toda potential. Phys. D Nonlinear Phenom. 419, 132853 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  42. Rivas, N., Luding, S., Thornton, A.R.: Low-frequency oscillations in narrow vibrated granular systems. New J. Phys. 15(11), 113043 (2013)

    Article  Google Scholar 

  43. Kollmer, J.E., Tupy, M., Heckel, M., et al.: Absence of subharmonic response in vibrated granular systems under microgravity conditions. Phys. Rev. Appl. 3(2), 024007 (2015)

    Article  Google Scholar 

  44. Shi, Q., Sun, G., Hou, M., et al.: Density-driven segregation in vertically vibrated binary granular mixtures. Phys. Rev. E. 75(6), 061302 (2007)

    Article  Google Scholar 

  45. Brum, J., Gennisson, J.L., Fink, M., Tourin, A., et al.: Drastic slowdown of the Rayleigh-like wave in unjammed granular suspensions. Phys. Rev. E. 99(4), 042902 (2019)

    Article  Google Scholar 

  46. Lydon, J., Jayaprakash, K.R., Ngo, D., et al.: Frequency bands of strongly nonlinear homogeneous granular systems. Phys. Rev. E. 88(1), 012206 (2013)

    Article  Google Scholar 

  47. Lydon, J., Theocharis, G., Daraio, C.: Nonlinear resonances and energy transfer in finite granular chains. Phys. Rev. E. 91(2), 023208 (2015)

    Article  Google Scholar 

  48. Chong, C., Kim, E., Charalampidis, E.G., et al.: Nonlinear vibrational-state excitation and piezoelectric energy conversion in harmonically driven granular chains. Phys. Rev. E. 93(5), 052203 (2016)

  49. Pozharskiy, D., Zhang, Y., Williams, M.O., et al.: Nonlinear resonances and antiresonances of a forced sonic vacuum. Phys. Rev. E. 92(6), 063203 (2015)

  50. Zhang, Y., Pozharskiy, D., McFarland, D.M., et al.: Experimental study of nonlinear resonances and anti-resonances in a forced, ordered granular chain. Exp. Mech. 57(4), 505–520 (2017)

    Article  Google Scholar 

  51. Kovaleva, A.: Resonance-induced energy localization in a weakly dissipative nonlinear chain. Phys. Rev. E. 98(1), 012205 (2018)

    Article  Google Scholar 

  52. Du, Y., Li, H., Kadanoff, L.P.: Breakdown of hydrodynamics in a one-dimensional system of inelastic particles. Phys. Rev. Lett. 74(8), 1268 (1995)

    Article  Google Scholar 

  53. Sinkovits, R.S., Sen, S.: Nonlinear dynamics in granular columns. Phys. Rev. Lett. 74(14), 2686 (1995)

  54. Luding, S., Clment, E., Blumen, A., et al.: Anomalous energy dissipation in molecular-dynamics simulations of grains: the “detachment’’ effect. Phys. Rev. E. 50(5), 4113 (1994)

    Article  Google Scholar 

  55. Blackmore, D., Rosato, A., Sen, S., Wu, H.: Simulation, modeling and dynamical analysis of multibody flows. Int. J. Mod. Phys. B. 31(10), 1742004 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  56. Landau, L.D., Lifshitz, E.M.: Theory of Elasticity. Butterworth Heinemann, Oxford (1986)

    MATH  Google Scholar 

  57. Huang, D.C., Sun, G., Lu, K.Q.: Relationship between the flow rate and the packing fraction in the choke area of the two-dimensional granular flow. Phys. Rev. E. 74(6), 061306 (2006)

    Article  Google Scholar 

  58. Huang, D.C., Lu, M., Sun, G., et al.: Ringlike spin segregation of binary mixtures in a high-velocity rotating drum. Phys. Rev. E. 85(3), 031305 (2012)

  59. Li, C.H., Li, X., Jiao, T.F., et al.: Influence of grain bidispersity on dense granular flow in a two-dimensional hopper. Powder. Tech. 401, 117271–8 (2022)

    Article  Google Scholar 

  60. Ma, L., Huang, D.C., Chen, W.Z., et al.: Oscillating collision of the granular chain on static wall. Phys. Lett. A. 381(5), 542–548 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (Grant No. 11574153) and the foundation of the Ministry of Industry and Information Technology of China (No.TSXK2022D007).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Decai Huang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, T., Zhang, S., Sun, M. et al. Occurrence of gradual resonance in a finite-length granular chain driven by harmonic vibration. Nonlinear Dyn 111, 9049–9058 (2023). https://doi.org/10.1007/s11071-023-08322-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08322-z

Keywords

Navigation