Skip to main content
Log in

Dynamics of one-dimensional granular arrays with pre-compression

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Bifurcations of periodic orbits and band zones of a one-dimensional granular array are numerically investigated in this study. A conservative two-bead system is first considered without any dissipation or external forcing. By using the Hertzian contact model, and confining the system’s total energy to a certain level, changes in the in-phase periodic orbit are studied for various pre-compression levels. At a certain pre-compression level, symmetry breaking and period doubling simultaneously occur, and an asymmetric period-two orbit emerges from the in-phase periodic orbit. Floquet analysis is conducted to study the stability of the in-phase periodic solution and to detect the bifurcation location. Although the trajectory of the period-two orbit is close to the in-phase orbit at the bifurcation point, the asymmetry of the period-two orbit becomes more pronounced away from the bifurcation point. Pre-compression is found to affect the periodic orbit frequencies, which in turn result in changes in the wave propagation band zones. These changes are illustrated by studying vibration transmission through a granular chain at different frequencies to ascertain the band zone limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Johnson, P.A., Jia, X.: Nonlinear dynamics, granular media and dynamic earthquake triggering. Nature 437(7060), 871 (2005)

    Article  Google Scholar 

  2. Dorostkar, O., Guyer, Robert A, Johnson, P.A., Marone, C., Carmeliet, J.: Cohesion-induced stabilization in stick-slip dynamics of weakly wet, sheared granular fault gouge. J. Geophys. Res. Solid Earth 123(3), 2115–2126 (2018)

    Article  Google Scholar 

  3. Wang, G., Riaz, A., Balachandran, B.: Smooth particle hydrodynamics studies of wet granular column collapses. Acta Geotech (accepted) (2019)

  4. Li, C., Umbanhowar, P.B., Komsuoglu, H., Koditschek, D.E., Goldman, D.I.: Sensitive dependence of the motion of a legged robot on granular media. Proc. Nat. Acad. Sci. 106(9), 3029–3034 (2009)

    Article  Google Scholar 

  5. Juarez, G., Lu, K., Sznitman, J., Arratia, P.E.: Motility of small nematodes in wet granular media. EPL (Europhys. Lett.) 92(4), 44002 (2010)

    Article  Google Scholar 

  6. Li, C., Zhang, T., Goldman, D.I.: A terradynamics of legged locomotion on granular media. Science 339(6126), 1408–1412 (2013)

    Article  Google Scholar 

  7. Brzinski III, T.A., Mayor, P., Durian, D.J.: Depth-dependent resistance of granular media to vertical penetration. Phys. Rev. Lett. 111(16), 168002 (2013)

    Article  Google Scholar 

  8. Birch, S.P.D., Manga, M., Delbridge, B., Chamberlain, M.: Penetration of spherical projectiles into wet granular media. Phys. Rev. E 90(3), 032208 (2014)

    Article  Google Scholar 

  9. Li, R., Yang, H., Zheng, G., Sun, Q.C.: Granular avalanches in slumping regime in a 2d rotating drum. Powder Technol. 326, 322–326 (2018)

    Article  Google Scholar 

  10. Guerrero, B.V., Pugnaloni, L.A., Lozano, C., Zuriguel, I., Garcimartín, A.: Slow relaxation dynamics of clogs in a vibrated granular silo. Phys. Rev. E 97(4), 042904 (2018)

    Article  Google Scholar 

  11. Liu, L., Li, J., Wan, C.: Nonlinear dynamics of excited plate immersed in granular matter. Nonlinear Dyn. 91(1), 147–156 (2018)

    Article  Google Scholar 

  12. Nakashima, H., Fujii, H., Oida, A., Momozu, M., Kawase, Y., Kanamori, H., Aoki, S., Yokoyama, T.: Parametric analysis of lugged wheel performance for a lunar microrover by means of DEM. J. Terrramech. 44(2), 153–162 (2007)

    Article  Google Scholar 

  13. Wang, G., Riaz, A., Balachandran, B.: Computational studies on interactions between robot leg and deformable terrain. Procedia Eng. 199, 2439–2444 (2017)

    Article  Google Scholar 

  14. Fan, F., Parteli, E.J.R., Pöschel, T.: Origin of granular capillarity revealed by particle-based simulations. Phys. Rev. Lett. 118(21), 218001 (2017)

    Article  Google Scholar 

  15. Lee, S., Marghitu, D.B.: Analysis of a rigid body obliquely impacting granular matter. Nonlinear Dyn. 57(1–2), 289–301 (2009)

    Article  Google Scholar 

  16. Jayaprakash, K.R., Vakakis, A.F., Starosvetsky, Y.: Nonlinear resonances in a general class of granular dimers with no pre-compression. Granul. Matter 15(3), 327–347 (2013)

    Article  Google Scholar 

  17. Chong, C., Porter, M.A., Kevrekidis, P.G., Daraio, C.: Nonlinear coherent structures in granular crystals. J. Phys.: Condens. Matter 29(41), 413003 (2017)

    Google Scholar 

  18. Starosvetsky, Y., Vakakis, A.F.: Traveling waves and localized modes in one-dimensional homogeneous granular chains with no precompression. Phys. Rev. E 82(2), 026603 (2010)

    Article  MathSciNet  Google Scholar 

  19. Jayaprakash, K.R., Starosvetsky, Y., Vakakis, A.F., Peeters, M., Kerschen, G.: Nonlinear normal modes and band zones in granular chains with no pre-compression. Nonlinear Dyn. 63(3), 359–385 (2011)

    Article  MathSciNet  Google Scholar 

  20. Nesterenko, V.F.: Propagation of nonlinear compression pulses in granular media. J. Appl. Mech. Tech. Phys. 24(5), 733–743 (1983)

    Article  Google Scholar 

  21. James, G.: Periodic travelling waves and compactons in granular chains. J. Nonlinear Sci. 22(5), 813–848 (2012)

    Article  MathSciNet  Google Scholar 

  22. Betti, M., Pelinovsky, D.E.: Periodic traveling waves in diatomic granular chains. J. Nonlinear Sci. 23(5), 689–730 (2013)

    Article  MathSciNet  Google Scholar 

  23. Nesterenko, V.F., Daraio, C., Herbold, E.B., Jin, S.: Anomalous wave reflection at the interface of two strongly nonlinear granular media. Phys. Rev. Lett. 95(15), 158702 (2005)

    Article  Google Scholar 

  24. Boechler, N., Theocharis, G., Daraio, C.: Bifurcation-based acoustic switching and rectification. Nat. Mater. 10(9), 665 (2011)

    Article  Google Scholar 

  25. Lin, W.H., Daraio, C.: Wave propagation in one-dimensional microscopic granular chains. Phys. Rev. E 94(5), 052907 (2016)

    Article  Google Scholar 

  26. Zhang, Y., Moore, K.J., McFarland, D.M., Vakakis, A.F.: Targeted energy transfers and passive acoustic wave redirection in a two-dimensional granular network under periodic excitation. J. Appl. Phys. 118(23), 234901 (2015)

    Article  Google Scholar 

  27. Cui, J.G., Yang, T., Chen, L.Q.: Frequency-preserved non-reciprocal acoustic propagation in a granular chain. Appl. Phys. Lett. 112(18), 181904 (2018)

    Article  Google Scholar 

  28. Wang, J., Liu, C., Wiercigroch, M., Wang, C., Shui, Y.: Stability of periodic modes and bifurcation behaviors in a bouncing-dimer system. Nonlinear Dyn. 86(3), 1477–1492 (2016)

    Article  Google Scholar 

  29. Norris, A.N., Johnson, D.L.: Nonlinear elasticity of granular media. J. Appl. Mech. 64(1), 39–49 (1997)

    Article  Google Scholar 

  30. Peeters, M., Viguié, R., Sérandour, G., Kerschen, G., Golinval, J.C.: Nonlinear normal modes, Part II: Toward a practical computation using numerical continuation techniques. Mech. Syst. Signal Process. 23(1), 195–216 (2009)

    Article  Google Scholar 

  31. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods. Wiley, Hoboken (2008)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support received from the U.S. National Science Foundation, through grant CMMI-1507612.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gizem Dilber Acar.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acar, G.D., Balachandran, B. Dynamics of one-dimensional granular arrays with pre-compression. Nonlinear Dyn 99, 707–720 (2020). https://doi.org/10.1007/s11071-019-05407-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05407-6

Keywords

Navigation