Skip to main content
Log in

Asymmetric three-link passive walker

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Passive walkers are dynamically stable robots with a gait that resembles the human locomotion. These walkers can be studied to better understand the dynamic behavior of the human gait and design efficient active walkers and assistive devices. In this paper, we study the walking dynamics of a three-link passive walker with an asymmetrical structure where one leg has a knee while the other is knee-less. After finding a 2-periodic steady gait for the three-link walker with humanlike inertial parameters for both legs, the possibility of a gait with symmetrical step lengths is discussed where the half inter-leg angles at the beginning of every step are made equal by altering the physical parameters of the knee-less leg. We further study the gaits with symmetrical step lengths and show that by replacing one leg of a four-link symmetric walker with the knee-less leg of the three-link walker with the symmetrical half inter-leg angles, the dynamic behavior of the kneed leg remains unchanged. This approach can be adapted in the field of gait rehabilitation and prosthesis design to obtain a more symmetrical gait and preserve the motion of the healthy leg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Sakagami, Y., Watanabe, R., Aoyama, C., Matsunaga, S., Higaki, N. and Fujimura, K.: The intelligent ASIMO: system overview and integration. In IEEE/RSJ International Conference on Intelligent Robots and Systems (Vol. 3, pp. 2478–2483) (2002). IEEE. https://doi.org/10.1109/IRDS.2002.1041641

  2. McGeer, T.: Passive dynamic walking. Int. J. Robot. Res. 9(2), 62–82 (1990). https://doi.org/10.1177/027836499000900206

    Article  Google Scholar 

  3. McGeer, T.: Passive walking with knees. In: IEEE International Conference on Robotics and Automation, Proceedings. IEEE (1990) https://doi.org/10.1109/ROBOT.1990.126245

  4. Garcia, M., Chatterjee, A., Ruina, A., Coleman, M.: The simplest walking model: stability, complexity, and scaling. ASME J. Biomech. Eng. 120, 281–288 (1998). https://doi.org/10.1115/1.2798313

    Article  Google Scholar 

  5. Goswami, A., Thuilot, B., Espiau, B.: Compass-like biped robot part I: stability and bifurcation of passive gaits. INRIA (1996)

  6. Das, S.L., Chatterjee, A.: An alternative stability analysis technique for the simplest walker. Nonlinear Dyn. 28(3), 273–284 (2002). https://doi.org/10.1023/A:1015685325992

    Article  MATH  Google Scholar 

  7. Schwab, A.L. and Wisse, M.: Basin of attraction of the simplest walking model. In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (Vol. 80272, pp. 531–539). American Society of Mechanical Engineers. (2001) https://doi.org/10.1115/DETC2001/VIB-21363

  8. Montazeri Moghadam, S., Sadeghi Talarposhti, M., Niaty, A., Towhidkhah, F., Jafari, S.: The simple chaotic model of passive dynamic walking. Nonlinear Dyn. 93(3), 1183–1199 (2018). https://doi.org/10.1007/s11071-018-4252-8

    Article  Google Scholar 

  9. Wisse, M., Hobbelen, D.G., Rotteveel, R.J., Anderson, S.O. and Zeglin, G.J.: Ankle springs instead of arc-shaped feet for passive dynamic walkers. In 2006 6th IEEE-RAS International Conference on Humanoid Robots (pp. 110–116) (2006). IEEE. https://doi.org/10.1109/ICHR.2006.321371

  10. Zang, X., Liu, X., Liu, Y., Iqbal, S., Zhao, J.: Influence of the swing ankle angle on walking stability for a passive dynamic walking robot with flat feet. Adv. Mech. Eng. 8(3), 1687814016642018 (2016). https://doi.org/10.1177/1687814016642018

    Article  Google Scholar 

  11. Liu, X., Zang, X., Zhu, Y., Liu, Y., Zhao, J.: System overview and walking dynamics of a passive dynamic walking robot with flat feet. Adv. Mech. Eng. 7(12), 1687814015620967 (2015). https://doi.org/10.1177/1687814015620967

    Article  Google Scholar 

  12. Wang, Q., Huang, Y., Wang, L.: Passive dynamic walking with flat feet and ankle compliance. Robotica 28(3), 413–425 (2010). https://doi.org/10.1017/S0263574709005736

    Article  Google Scholar 

  13. Borzova, E., Hurmuzlu, Y.: Passively walking five-link robot. Automatica 40(4), 621–629 (2004). https://doi.org/10.1016/j.automatica.2003.10.015

    Article  MathSciNet  MATH  Google Scholar 

  14. Wisse, M., Schwab, A.L., Van Der Helm, F.C.T.: Passive dynamic walking model with upper body. Robotica 22, 681–688 (2004). https://doi.org/10.1017/S0263574704000475

    Article  Google Scholar 

  15. Adolfsson, J., Dankowicz, H., Nordmark, A.: 3D passive walkers: finding periodic gaits in the presence of discontinuities. Nonlinear Dyn. 24(2), 205–229 (2001). https://doi.org/10.1023/A:1008300821973

    Article  MATH  Google Scholar 

  16. Wisse, M. and Frankenhuyzen, J.V.: Design and construction of mike; a 2-d autonomous biped based on passive dynamic walking. In Adaptive motion of animals and machines (pp. 143–154). Springer, Tokyo. (2006) https://doi.org/10.1007/4-431-31381-8_13

  17. Collins, S.H., Wisse, M., Ruina, A.: A three-dimensional passive-dynamic walking robot with two legs and knees. Int. J. Robot. Res. 20(7), 607–615 (2001). https://doi.org/10.1177/02783640122067561

    Article  Google Scholar 

  18. Wang, K., Tobajas, P.T., Liu, J., Geng, T., Qian, Z., Ren, L.: Towards a 3D passive dynamic walker to study ankle and toe functions during walking motion. Robot. Auton. Syst. 115, 49–60 (2019). https://doi.org/10.1016/j.robot.2019.02.010

    Article  Google Scholar 

  19. Sabaapour, M.R., Hairi Yazdi, M.R., Beigzadeh, B.: Passive turning motion of 3D rimless wheel: novel periodic gaits for bipedal curved walking. Adv. Robot. 29(5), 375–384 (2015). https://doi.org/10.1080/01691864.2014.1001788

    Article  Google Scholar 

  20. Sabaapour, M.R., Hairi Yazdi, M.R., Beigzadeh, B.: Passive dynamic turning in 3D biped locomotion: an extension to passive dynamic walking. Adv. Robot. 30(3), 218–231 (2016). https://doi.org/10.1080/01691864.2015.1107500

    Article  Google Scholar 

  21. Beigzadeh, B., Sabaapour, M.R., Yazdi, M.R.H., Raahemifar, K.: From a 3d passive biped walker to a 3d passivity-based controlled robot. Int. J. Humanoid Rob. 15(04), 1850009 (2018). https://doi.org/10.1142/S0219843618500093

    Article  Google Scholar 

  22. Kobayashi, T., Aoyama, T., Hasegawa, Y., Sekiyama, K., Fukuda, T.: Adaptive speed controller using swing leg motion for 3-D limit-cycle-based bipedal gait. Nonlinear Dyn. 84(4), 2285–2304 (2016). https://doi.org/10.1007/s11071-016-2645-0

    Article  MathSciNet  Google Scholar 

  23. Gritli, H., Belghith, S., Khraief, N.: OGY-based control of chaos in semi-passive dynamic walking of a torso-driven biped robot. Nonlinear Dyn. 79(2), 1363–1384 (2015). https://doi.org/10.1007/s11071-014-1747-9

    Article  MATH  Google Scholar 

  24. Gritli, H., Belghith, S.: Bifurcations and chaos in the semi-passive bipedal dynamic walking model under a modified OGY-based control approach. Nonlinear Dyn. 83(4), 1955–1973 (2016). https://doi.org/10.1007/s11071-015-2458-6

    Article  MathSciNet  Google Scholar 

  25. Znegui, W., Gritli, H., Belghith, S.: Stabilization of the passive walking dynamics of the compass-gait biped robot by developing the analytical expression of the controlled Poincaré map. Nonlinear Dyn. 101(2), 1061–1091 (2020). https://doi.org/10.1007/s11071-020-05851-9

    Article  MATH  Google Scholar 

  26. Fenili, A., Balthazar, J.M.: The rigid-flexible nonlinear robotic manipulator: modeling and control. Commun. Nonlinear Sci. Numer. Simul. 16(5), 2332–2341 (2011). https://doi.org/10.1016/j.cnsns.2010.04.057

    Article  Google Scholar 

  27. Beigzadeh, B., Meghdari, A., Sohrabpour, S.: Passive dynamic object manipulation: preliminary definition and examples. Acta Autom. Sin. 36(12), 1711–1719 (2010). https://doi.org/10.1016/S1874-1029(09)60067-7

    Article  MathSciNet  Google Scholar 

  28. Beigzadeh, B., Meghdari, A., and Sohrabpour, S.: Passive dynamic object manipulation: A framework for passive walking systems. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 227(2), pp. 185–198. (2013) https://doi.org/10.1177/1464419313478525

  29. Sushko, J., Honeycutt, C., and Reed, K.B.: Prosthesis design based on an asymmetric passive dynamic walker. In 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) (pp. 1116–1121) (2012). IEEE. https://doi.org/10.1109/BioRob.2012.6290293

  30. Wang, D., Lee, K.M., Ji, J.: A passive gait-based weight-support lower extremity exoskeleton with compliant joints. IEEE Trans. Rob. 32(4), 933–942 (2016). https://doi.org/10.1109/TRO.2016.2572692

    Article  Google Scholar 

  31. Apte, S., Plooij, M., Vallery, H.: Simulation of human gait with body weight support: benchmarking models and unloading strategies. J. Neuroeng. Rehabil. 17(1), 1–16 (2020). https://doi.org/10.1186/s12984-020-00697-z

    Article  Google Scholar 

  32. Honeycutt, C., Sushko, J., and Reed, K.B.: Asymmetric passive dynamic walker. In 2011 IEEE International Conference on Rehabilitation Robotics (pp. 1–6) (2011). IEEE. https://doi.org/10.1109/icorr.2011.5975465

  33. Beigzadeh, B., Razavi, S.A.: Dynamic walking analysis of an underactuated biped robot with asymmetric structure. Int. J. Humanoid Rob. 18(04), 2150014 (2021). https://doi.org/10.1142/s0219843621500146

    Article  Google Scholar 

  34. Little, V.L., Perry, L.A., Mercado, M.W., Kautz, S.A., Patten, C.: Gait asymmetry pattern following stroke determines acute response to locomotor task. Gait Posture 77, 300–307 (2020). https://doi.org/10.1016/j.gaitpost.2020.02.016

    Article  Google Scholar 

  35. Barnett, C., Vanicek, N., Polman, R., Hancock, A., Brown, B., Smith, L., Chetter, I.: Kinematic gait adaptations in unilateral transtibial amputees during rehabilitation. Prosthet. Orthot. Int. 33(2), 135–147 (2009). https://doi.org/10.1080/03093640902751762

    Article  Google Scholar 

  36. Dumas, R. and Wojtusch, J.: Estimation of the Body Segment Inertial Parameters for the Rigid Body Biomechanical Models Used in Motion Analysis. In: Müller B., Wolf S. (eds.) Handbook of Human Motion. (2018)

  37. Westervelt, E.R., Grizzle, J.W., Chevallereau, C., Choi, J.H., Morris, B.: Feedback Control of Dynamic Bipedal Robot Locomotion. CRC Press, Boca Raton (2018)

    Book  Google Scholar 

  38. Highsmith, M.J., Andrews, C.R., Millman, C., Fuller, A., Kahle, J.T., Klenow, T.D., Lewis, K.L., Bradley, R.C., Orriola, J.J.: Gait training interventions for lower extremity amputees: a systematic literature review. Technol. Innov. 18(2–3), 99–113 (2016). https://doi.org/10.21300/18.2-3.2016.99

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study and the discussion of the presented results. BB conceived the original idea and developed the theory. The numerical simulations were performed by MJM. The first draft of the manuscript was written by MJM, and BB approved and finalized the manuscript to be published.

Corresponding author

Correspondence to Borhan Beigzadeh.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaberi Miandoab, M., Beigzadeh, B. Asymmetric three-link passive walker. Nonlinear Dyn 111, 9145–9159 (2023). https://doi.org/10.1007/s11071-023-08316-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08316-x

Keywords

Navigation