Skip to main content
Log in

Data-driven solutions and parameter discovery of the nonlocal mKdV equation via deep learning method

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we systematically study the integrability and data-driven solutions of the nonlocal mKdV equation. The infinite conservation laws of the nonlocal mKdV equation and the corresponding infinite conservation quantities are given through Riccti equation. The data-driven solutions of the zero boundary for the nonlocal mKdV equation are studied by using the multilayer physical information neural network algorithm, which include kink soliton, complex soliton, bright-bright soliton and the interaction between soliton and kink-type. For the data-driven solutions with nonzero boundary, we study kink, dark, anti-dark and rational solution. By means of image simulation, the relevant dynamic behavior and error analysis of these solutions are given. In addition, we discuss the inverse problem of the integrable nonlocal mKdV equation by applying the physics-informed neural network algorithm to discover the parameters of the nonlinear terms of the equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Nixon, S., Ge, L., Yang, J.: Stability analysis for solitons in \(PT\)-symmetric optical lattices. Phys. Rev. A 85(2), 023822 (2012)

    Article  Google Scholar 

  2. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear Schrödinger equation. Phys. Rev. Lett. 110(6), 064105 (2013)

    Article  Google Scholar 

  3. Bender, C.M., Brody, D.C., Jones, H.F.: Complex extension of quantum mechanics. Phys. Rev. Lett. 89, 270401 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ablowitz, M.J., Musslimani, Z.H.: Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation. Nonlinearity 29, 915–946 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Feng, B.F., Luo, X.D., Ablowitz, M.J., Musslimani, Z.H.: General soliton solution to a nonlocal nonlinear Schrödinger equation with zero and nonzero boundary conditions. Nonlinearity 31(12), 5385 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wang, M.M., Chen, Y.: Dynamic behaviors of general N-solitons for the nonlocal generalized nonlinear Schrödinger equation. Nonlinear Dyn. 104(3), 2621–2638 (2021)

    Article  Google Scholar 

  7. Rybalko, Y., Shepelsky, D.: Long-time asymptotics for the integrable nonlocal nonlinear Schrödinger equation. J. Math. Phys. 60(3), 031504 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Li, G., Yang, Y., Fan, E.: Long time asymptotic behavior for the nonlocal nonlinear Schrödinger equation with weighted Sobolev initial data. arXiv preprint arXiv:2110.05907 (2021)

  9. Rao, J.G., Cheng, Y., He, J.S.: Rational and semi-rational solutions of the nonlocal Davey-Stewartson equations. Stud. Appl. Math. 139(4), 568–598 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhou, Z.X.: Darboux transformations and global solutions for a nonlocal derivative nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 62, 480–488 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cen, J., Correa, F., Fring, A.: Integrable nonlocal Hirota equations. J. Math. Phys. 60(8), 081508 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhu, J., Chen, Y.: Long time asymptotic analysis for a nonlocal Hirota equation via the Dbar steepest descent method. arXiv preprint arXiv:2206.08634, (2022)

  13. Gürses, M., Pekcan, A.: Nonlocal KdV equations. Phys. Lett. A 384(35), 126894 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lou, S.Y., Huang, F.: Alice-Bob physics: coherent solutions of nonlocal KdV systems. Sci. Rep. 7(1), 1–11 (2017)

    Article  MathSciNet  Google Scholar 

  15. Ji, J.L., Zhu, Z.N.: Soliton solutions of an integrable nonlocal modified Korteweg-de Vries equation through inverse scattering transform. J. Math. Anal. Appl. 453, 973–984 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhang, G., Yan, Z.: Inverse scattering transforms and soliton solutions of focusing and defocusing nonlocal mKdV equations with non-zero boundary conditions. Physica D 402, 132170 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ji, J.L., Zhu, Z.N.: On a nonlocal modified Korteweg-de Vries equation: integrability, Darboux transformation and soliton solutions. Commun. Nonlinear Sci. Numer. Simul. 42, 699–708 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Luo, J., Fan, E.: \({\bar{\partial }}\)-dressing method for the nonlocal mKdV equation. J. Geom. Phys. 177, 104550 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  19. He, F.J., Fan, E.G., Xu, J.: Long-time asymptotics for the nonlocal mKdV equation. Commun. Theor. Phys. 71, 475–488 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hydon, P.E.: Conservation laws of partial difference equations with two independent variables. J. Phys. A Math. Gen. 34(48), 10347 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Miura, R.M., Gardner, C.S., Kruskal, M.D.: Korteweg-de vries equation and generalizations .II. Existence of conservation laws and constants of motion. J. Math. Phys. 9(8), 1204–1209 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ablowitz, M.J., Ladik, J.F.: Nonlinear differential-difference equations and Fourier analysis. J. Math. Phys. 17(6), 1011–1018 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wadati, M., Sanuki, H., Konno, K.: Relationships among inverse method, Bäcklund transformation and an infinite number of conservation laws. Prog. Theoret. Phys. 53(2), 419–436 (1975)

    Article  MATH  Google Scholar 

  24. Shabat, A., Zakharov, V.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34(1), 62 (1972)

    MathSciNet  Google Scholar 

  25. Konno, K., Sanuki, H., Ichikawa, Y.H.: Conservation laws of nonlinear-evolution equations. Prog. Theoret. Phys. 52(3), 886–889 (1974)

    Article  Google Scholar 

  26. Tsuchida, T., Wadati, M.: The coupled modified Korteweg-de Vries equations. J. Phys. Soc. Jpn. 67(4), 1175–1187 (1998)

    Article  MATH  Google Scholar 

  27. Weiss, J., Tabor, M., Carnevale, G.: The Painlevé property for partial differential equations. J. Math. Phys. 24(3), 522–526 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lou, S., Wu, Q.: Painlevé integrability of two sets of nonlinear evolution equations with nonlinear dispersions. Phys. Lett. A 262(4–5), 344–349 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lü, X., Peng, M.: Painlevé-integrability and explicit solutions of the general two-coupled nonlinear Schrödinger system in the optical fiber communications. Nonlinear Dyn. 73(1), 405–410 (2013)

    Article  MATH  Google Scholar 

  30. Wazwaz, A.M.: New (3+ 1)-dimensional Painlevé integrable fifth-order equation with third-order temporal dispersion. Nonlinear Dyn. 106(1), 891–897 (2021)

    Article  Google Scholar 

  31. Wazwaz, A.M.: Painlevé integrability and lump solutions for two extended (3+ 1)-and (2+ 1)-dimensional Kadomtsev-Petviashvili equations. Nonlinear Dyn. (2022). https://doi.org/10.1007/s11071-022-08074-2

    Article  Google Scholar 

  32. Wazwaz, A.M., El-Tantawy, S.A.: Bright and dark optical solitons for (3+ 1)-dimensional hyperbolic nonlinear Schrödinger equation using a variety of distinct schemes. Optik 270, 170043 (2022)

    Article  Google Scholar 

  33. Kaur, L., Wazwaz, A.M.: Optical soliton solutions of variable coefficient Biswas-Milovic (BM) model comprising Kerr law and damping effect. Optik 266, 169617 (2022)

    Article  Google Scholar 

  34. Zhang, R.F., Bilige, S., Liu, J.G., Li, M.: Bright-dark solitons and interaction phenomenon for p-gBKP equation by using bilinear neural network method. Phys. Scr. 96(2), 025224 (2020)

    Article  Google Scholar 

  35. Zhang, R.F., Li, M.C., Albishari, M., Zheng, F.C., Lan, Z.Z.: Generalized lump solutions, classical lump solutions and rogue waves of the (2+ 1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada-like equation. Appl. Math. Comput. 403, 126201 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  36. Dudley, J.M., Dias, F., Erkintalo, M., Genty, G.: Instabilities, breathers and rogue waves in optics. Nat. Photonics 8(10), 755–764 (2014)

    Article  Google Scholar 

  37. Zhang, R.F., Li, M.C., Gan, J.Y., Li, Q., Lan, Z.Z.: Novel trial functions and rogue waves of generalized breaking soliton equation via bilinear neural network method. Chaos Solit. Fract. 154, 111692 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sun, X.D., Wu, P.C., Hoi, S.C.H.: Face detection using deep learning: an improved faster RCNN approach. Neurocomputing 299, 42–50 (2018)

    Article  Google Scholar 

  39. Alipanahi, B., Delong, A., Weirauch, M.T., Frey, B.J.: Predicting the sequence specificities of DMA-and RNA-binding proteins by deep learning. Nat. Biotechnol. 33(8), 831–838 (2015)

    Article  Google Scholar 

  40. Shao, Z.F., Wang, L.G., Wang, Z.Y., Du, W., Wu, W.J.: Saliency-aware convolution neural network for ship detection in surveillance video. IEEE Trans. Circ. Syst. Video Technol. 30, 781–94 (2020)

    Article  Google Scholar 

  41. Nassif, A.B., Shahin, I., Attili, I., Azzeh, M., Shaalan, K.: Speech recognition using deep neural networks: a systematic review. IEEE Access 7, 19143–19165 (2019)

    Article  Google Scholar 

  42. Collobert, R., Weston, J., Bottou, G., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–537 (2011)

    MATH  Google Scholar 

  43. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  44. Li, J., Chen, Y.: Solving second-order nonlinear evolution partial differential equations using deep learning. Commun. Theor. Phys. 72, 105005 (2020)

    Article  MathSciNet  Google Scholar 

  45. Peng, W.Q., Chen, Y.: N-double poles solutions for nonlocal Hirota equation with nonzero boundary conditions using Riemann-Hilbert method and PINN algorithm. Physica D 435, 133274 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  46. Pu, J.C., Li, J., Chen, Y.: Soliton, breather and rogue wave solutions for solving the nonlinear Schrödinger equation using a deep learning method with physical constraints. Chin. Phys. B 30(6), 060202 (2021)

    Article  Google Scholar 

  47. Pu, J.C., Li, J., Chen, Y.: Solving localized wave solutions of the derivative nonlinear Schrödinger equation using an improved PINN method. Nonlinear Dyn. 105(2), 1–17 (2021)

    Article  Google Scholar 

  48. Pu, J.C., Chen, Y.: Data-driven vector localized waves and parameters discovery for Manakov system using deep learning approach. Chaos Solit. Fract. 160, 112182 (2022)

    Article  MathSciNet  Google Scholar 

  49. Miao, Z.W., Chen, Y.: Physics-informed neural networks method in high-dimensional integrable systems. Mod. Phys. Lett. B 36(01), 2150531 (2022)

    Article  MathSciNet  Google Scholar 

  50. Peng, W.Q., Pu, J.C., Chen, Y.: PINN deep learning for the Chen-Lee-Liu equation: rogue wave on the periodic background. Commun. Nonlinear Sci. Numer. Simul. 105, 106067 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  51. Lin, S., Chen, Y.: A two stage physics-informed neural network method based on conserved quantities and applications in localized wave solutions. J. Comput. Phys. 457, 111053 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  52. Lin, S., Chen, Y.: Physics-informed neural network methods based on Miura transformations and discovery of new localized wave solutions. arXiv preprint arXiv:2211.15526, (2022)

  53. Wang, L., Yan, Z.: Data-driven rogue waves and parameter discovery in the defocusing nonlinear Schrödinger equation with a potential using the PINN deep learning. Phys. Lett. A 404, 127408 (2021)

    Article  MATH  Google Scholar 

  54. Fang, Y., Wu, G.Z., Wang, Y.Y., Dai, C.Q.: Data-driven femtosecond optical soliton excitations and parameters discovery of the high-order NLSE using the PINN. Nonlinear Dyn. 105(1), 603–616 (2021)

    Article  Google Scholar 

  55. Mo, Y., Ling, L., Zeng, D.: Data-driven vector soliton solutions of coupled nonlinear Schrödinger equation using a deep learning algorithm. Phys. Lett. A 421, 127739 (2022)

    Article  MATH  Google Scholar 

  56. Li, J., Li, B.: Mix-training physics-informed neural networks for the rogue waves of nonlinear Schrödinger equation. Chaos Solit. Fract. 164, 112712 (2022)

    Article  MATH  Google Scholar 

  57. Wen, X.K., Wu, G.Z., Liu, W., Dai, C.Q.: Dynamics of diverse data-driven solitons for the three-component coupled nonlinear Schrodinger model by the MPS-PINN method. Nonlinear Dyn. 109(4), 3041–3050 (2022)

    Article  Google Scholar 

  58. Bo, W.B., Wang, R.R., Fang, Y., Wang, Y.Y., Dai, C.Q.: Prediction and dynamical evolution of multipole soliton families in fractional Schrödinger equation with the PT-symmetric potential and saturable nonlinearity. Nonlinear Dyn. 111(2), 1577–1588 (2023)

    Article  Google Scholar 

  59. Baydin, A.G., Pearlmutter, B.A., Radul, A.A., Siskind, J.M.: Automatic differentiation in machine learning: a survey. J. Mach. Learn. Res. 18, 1–43 (2018)

    MathSciNet  MATH  Google Scholar 

  60. Stein, M.: Large sample properties of simulations using Latin hypercube sampling. Technometrics 29(2), 143–151 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  61. Gürses, M., Pekcan, A.: Nonlocal modified KdV equations and their soliton solutions by Hirota method. Commun. Nonlinear Sci. Numer. Simul. 67, 427–448 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  62. Fang, Y., Wu, G.Z., Wen, X.K., Dai, C.Q.: Predicting certain vector optical solitons via the conservation-law deep-learning method. Opt. Laser Technol. 155, 108428 (2022)

    Article  Google Scholar 

  63. Zhang, R.F., Li, M.C., Yin, H.M.: Rogue wave solutions and the bright and dark solitons of the (3+ 1)-dimensional Jimbo-Miwa equation. Nonlinear Dyn. 103(1), 1071–1079 (2021)

    Article  Google Scholar 

  64. Zhang, R.F., Bilige, S.: Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equation. Nonlinear Dyn. 95(4), 3041–3048 (2019)

    Article  MATH  Google Scholar 

  65. Zhang, R.F., Li, M.C.: Bilinear residual network method for solving the exactly explicit solutions of nonlinear evolution equations. Nonlinear Dyn. 108(1), 521–531 (2022)

    Article  Google Scholar 

Download references

Funding

The project is supported by National Natural Science Foundation of China (No. 12175069 and No. 12235007) and Science and Technology Commission of Shanghai Municipality (No. 21JC1402500 and No. 22DZ2229014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Chen.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The project is supported by National Natural Science Foundation of China (No. 12175069 and No. 12235007) and Science and Technology Commission of Shanghai Municipality (No. 21JC1402500 and No. 22DZ2229014).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Chen, Y. Data-driven solutions and parameter discovery of the nonlocal mKdV equation via deep learning method. Nonlinear Dyn 111, 8397–8417 (2023). https://doi.org/10.1007/s11071-023-08287-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08287-z

Keywords

Navigation