Skip to main content
Log in

Fuzzy observer-based command filtered tracking control for uncertain strict-feedback nonlinear systems with sensor faults and event-triggered technology

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

For the trajectory tracking problem of nth-order uncertain nonlinear systems with sensor faults, a fuzzy controller based on command filtered and event-triggered technology is designed to improve the tracking error of the system. Concurrently, a fault-tolerant control scheme is introduced to effectively solve the problem of sudden output sensor failure. Additionally, the proposed controller can also greatly avoid complexity explosion problem of derivations of virtual control laws, which makes the design of the controller simpler. Furthermore, an effective observer is designed to solve the problem of system state immeasurability. Therefore, the proposed control scheme makes the design of the controller more convenient and flexible. According to Lyapunov stability theory, it is proved that all closed-loop signals are uniformly and ultimately bounded. Finally, two simulation examples of second-order nonlinear system and single-link robot show the effectiveness of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available in the [BaiduDisk] repository, [https://pan.baidu.com/s/1XHYGpq4L3gvW3f0RY2ywxA], pin number [6666].

References

  1. Al-Jodah, A., Shirinzadeh, B., Ghafarian, M., Das, T.K., Tian, Y., Zhang, D.: A fuzzy disturbance observer based control approach for a novel 1-dof micropositioning mechanism. Mechatron. Sci. Intell. Mach. 65, 102317 (2020)

    Google Scholar 

  2. Cao, L., Zhou, Q., Dong, G., Li, H.: Observer-based adaptive event-triggered control for nonstrict-feedback nonlinear systems with output constraint and actuator failures. IEEE Trans. Syst. Man Cybern. Syst. 51(3), 1380–1391 (2021)

    Article  Google Scholar 

  3. Chen, W., Jiao, L., Li, R., Jing, L.: Adaptive backstepping fuzzy control for nonlinearly parameterized systems with periodic disturbances. IEEE Trans. Fuzzy Syst. 18(4), 674–685 (2010)

    Article  Google Scholar 

  4. De Persis, C., Sailer, R., Wirth, F.: On a small-gain approach to distributed event-triggered control. IFAC Proc. Vol. 44(1), 2401–2406 (2011)

    Article  Google Scholar 

  5. Dong, J., Yang, G.H.: Reliable state feedback control of t-s fuzzy systems with sensor faults. IEEE Trans. Fuzzy Syst. 23(2), 421–433 (2015)

    Article  MathSciNet  Google Scholar 

  6. Farrell, J.A., Polycarpou, M., Sharma, M., Dong, W.: Command filtered backstepping. IEEE Trans. Autom. Control 54(6), 1391–1395 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gao, C., Zhou, X., Liu, X., Yang, Y., Li, Z.: Observer-based adaptive fuzzy tracking control for a class of strict-feedback systems with event-triggered strategy and tan-type barrier lyapunov function. Int. J. Fuzzy Syst. 22(9), 2534–2545 (2020)

    Article  Google Scholar 

  8. Godhavn, J.M., Fossen, T.I., Berge, S.P.: Non-linear and adaptive backstepping designs for tracking control of ships. Int. J. Adapt. Control Signal Process. 12(8), 649–670 (1998)

    Article  Google Scholar 

  9. Hou, Y., Tong, S.: Command filter-based adaptive fuzzy backstepping control for a class of switched nonlinear systems. Fuzzy Sets Syst. 314, 46–60 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hua, T., Xiao, J., Lei, Y., Yang, W.: Dynamic event-triggered control for singularly perturbed systems. Int. J. Robust Nonlinear Control 31(13), 6410–6421 (2021)

    Article  MathSciNet  Google Scholar 

  11. Ijaz, S., Chen, F., Hamayun, M.T.: A new actuator fault-tolerant control for lipschitz nonlinear system using adaptive sliding mode control strategy. Int. J. Robust Nonlinear Control 31(6), 2305–2333 (2021)

    Article  MathSciNet  Google Scholar 

  12. Ji, Z.C., Li, S.D., Shen, Y.X.: Adaptive backstepping design for the servo controller of permanent magnet synchronous motor. Control Decis. 20(3), 329–331 (2005)

    Google Scholar 

  13. Li, Y., Li, K., Tong, S.: Finite-time adaptive fuzzy output feedback dynamic surface control for mimo non-strict feedback systems. IEEE Trans. Fuzzy Syst. 27(1), 96–110 (2019)

    Article  MathSciNet  Google Scholar 

  14. Li, Y., Sun, K., Tong, S.: Observer-based adaptive fuzzy fault-tolerant optimal control for siso nonlinear systems. IEEE Trans. Cybern. 49(2), 649–661 (2019)

    Article  Google Scholar 

  15. Li, Y.X.: Finite time command filtered adaptive fault tolerant control for a class of uncertain nonlinear systems. Automatica 106, 117–123 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lian, J., Li, C.: Event-triggered control for a class of switched uncertain nonlinear systems. Syst. Control Lett. 135, 104592 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, C., Liu, X., Wang, H., Gao, C., Zhou, Y., Lu, S.: Event-triggered adaptive finite-time prescribed performance tracking control for uncertain nonlinear systems. Int. J. Robust Nonlinear Control 30(18), 8449–8468 (2020)

    Article  MathSciNet  Google Scholar 

  18. Liu, G., Sun, Q., Wang, R., Huang, Y.: Reduced-order observer-based fuzzy adaptive dynamic event-triggered consensus control for multi-agent systems with communication faults. Nonlinear Dyn. 110(2), 1421–1435 (2022)

    Article  Google Scholar 

  19. Liu, W., Ma, Q., Xu, S., Zhang, Z.: State quantized output feedback control for nonlinear systems via event-triggered sampling. IEEE Trans. Autom. Control Press (2021). https://doi.org/10.1109/TAC.2021.3135390

    Article  Google Scholar 

  20. Liu, Y.J., Tong, S.: Barrier lyapunov functions-based adaptive control for a class of nonlinear pure-feedback systems with full state constraints. Automatica 64, 70–75 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ma, Z., Tong, S., Li, Y.: Adaptive output feedback fault-tolerant control for mimo non-affine non-linear systems based on disturbance observer. IET Control Theor. Appl. 10(18), 2422–2436 (2016)

  22. Niu, B., Liu, J., Duan, P., Li, J., Yang, D.: Reduced-order observer-based adaptive fuzzy tracking control scheme of stochastic switched nonlinear systems. IEEE Trans. Syst. Man Cybern. Syst. 51(7), 4566–4578 (2021)

  23. Ren, B., Ge, S.S., Su, C.Y., Lee, T.H.: Adaptive neural control for a class of uncertain nonlinear systems in pure-feedback form with hysteresis input. IEEE Trans. Syst. Man Cybern. Part B 39(2), 431–443 (2009)

    Article  Google Scholar 

  24. Shaker, M.S., Patton, R.J.: Active sensor fault tolerant output feedback tracking control for wind turbine systems via t-s model. Eng. Appl. Artif. Intell. Int. J. Intell. Real-Time Autom. 34, 1–12 (2014)

    Article  Google Scholar 

  25. Shieh, H.J., Shyu, K.K.: Nonlinear sliding-mode torque control with adaptive backstepping approach for induction motor drive. IEEE Trans. Ind. Electron. 46(2), 380–389 (1999)

    Article  Google Scholar 

  26. Tong, S., Li, Y., Peng, S.: Fuzzy adaptive backstepping robust control for siso nonlinear system with dynamic uncertainties. Inf. Sci. 179(9), 1319–1332 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, L.X.: Stable adaptive fuzzy control of nonlinear systems. IEEE Trans. Fuzzy Syst. 1(2), 146–155 (1993)

    Article  Google Scholar 

  28. Zhou, X., Gao, C., Li, Z.G., Ouyang, X.Y., Wu, L.B.: Observer-based adaptive fuzzy finite-time prescribed performance tracking control for strict-feedback systems with input dead-zone and saturation. Nonlinear Dyn. 103, 1645–1661 (2021)

    Article  Google Scholar 

  29. Xing, L., Wen, C., Liu, Z., Su, H., Cai, J.: Adaptive compensation for actuator failures with event-triggered input. Automatica 85, 129–136 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xing, L., Wen, C., Liu, Z., Su, H., Cai, J.: Event-triggered adaptive control for a class of uncertain nonlinear systems. IEEE Trans. Autom. Control 62(4), 2071–2076 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yang, Y., Tang, L., Zou, W., Ding, D.: Robust adaptive control of uncertain nonlinear systems with unmodeled dynamics using command filter. Int. J. Robust Nonlinear Control 31(16), 7764–7784 (2021)

    Article  MathSciNet  Google Scholar 

  32. Yu, J., Shi, P., Dong, W., Yu, H.: Observer and command-filter-based adaptive fuzzy output feedback control of uncertain nonlinear systems. IEEE Trans. Ind. Electron. 62(9), 5962–5970 (2015)

    Article  Google Scholar 

  33. Yu, Q., He, X., Wu, L., Guo, L., Hu, Y.: Finite-time adaptive event-triggered fault-tolerant control of nonlinear systems based on fuzzy observer. Inf. Sci. 572(3), 241–262 (2021)

    Article  MathSciNet  Google Scholar 

  34. Yu, Y., Zhang, S.: Adaptive backstepping synchronization of uncertain chaotic system. Chaos Solitons Fractals 21(3), 643–649 (2004)

    Article  MATH  Google Scholar 

  35. Zhang, L., Yang, G.: Adaptive fuzzy fault compensation tracking control for uncertain nonlinear systems with multiple sensor faults. Fuzzy Sets Syst. 392, 46–59 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang, L., Yang, G.H.: Observer-based fuzzy adaptive sensor fault compensation for uncertain nonlinear strict-feedback systems. IEEE Trans. Fuzzy Syst. 26(4), 2301–2310 (2018)

  37. Zhang, Z.H., Hao, L.Y., Guo, M.: Fault detection for uncertain nonlinear systems via recursive observer and tight threshold. Appl. Math. Comput. 414, 126665 (2022)

  38. Zhao, M., Pu, H., Wang, Y., Luo, J., Xie, S., Peng, Y.: High-gain-observer based adaptive output-feedback formation control for underactuated unmanned surface vessels with input saturation and uncertainties. Int. J. Vehicle Des. 84(1/4), 180–202 (2020)

    Article  Google Scholar 

  39. Zhou, X., Gao, C., Li, Z.G., Yang, Y.H., Wu, L.B.: High-gain observer-based adaptive fuzzy finite-time prescribed performance tracking control for linear stepping motor with event-triggered strategy. Asian J. Control 24(6), 3200–3213 (2022)

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (62173029).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuang Gao.

Ethics declarations

Conflict of interest

No potential competing interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Proof of Proposition 1:

The proof is carried out from 2 cases for \({\tilde{\iota }}\ge 0\) and \({\tilde{\iota }}<0.\)

Case 1: For \({\tilde{\iota }}\ge 0,\) \(\iota >0\) and \({\hat{\iota }}\ge 0,\) then we have

$$\begin{aligned} \left( {\tilde{\iota }}-\iota \right) ^{2}\left( 2{\tilde{\iota }}+\iota \right) >0. \end{aligned}$$
(97)

It follows from (97) that

$$\begin{aligned} 2{\tilde{\iota }}^{3}-3{\tilde{\iota }}^{2}\iota +\iota ^{3}>0. \end{aligned}$$
(98)

Then, from \({\tilde{\iota }}=\iota -{\hat{\iota }},\) the following results hold.

$$\begin{aligned} {\tilde{\iota }}^{2}\left( \iota -{\tilde{\iota }}\right) ={\tilde{\iota }}^{2}\hat{ \iota }<-\frac{1}{3}{\tilde{\iota }}^{3}+\frac{1}{3}\iota ^{3}. \end{aligned}$$
(99)

From \({\tilde{\iota }}\ge 0,\) it gives \(sgn\left( {\tilde{\iota }}\right) =1\), therefore, we can obtain

$$\begin{aligned} {\tilde{\iota }}^{2}{\hat{\iota }}sgn\left( {\tilde{\iota }}\right) <-\frac{1}{3}| {\tilde{\iota }}|^{3}+\frac{1}{3}\iota ^{3}. \end{aligned}$$
(100)

Case 2: For \({\tilde{\iota }}<0,\) \(\iota >0\) and \({\hat{\iota }}\ge 0,\) we start from the following inequality:

$$\begin{aligned} 2{\tilde{\iota }}^{3}-3{\tilde{\iota }}^{2}\iota -\iota ^{3}<0. \end{aligned}$$
(101)

Then, it gives that

$$\begin{aligned} -3{\tilde{\iota }}^{2}\iota +3{\tilde{\iota }}^{3}=-3{\tilde{\iota }}^{2}\left( \iota -{\tilde{\iota }}\right) <{\tilde{\iota }}^{3}+\iota ^{3}. \end{aligned}$$
(102)

From \({\tilde{\iota }}<0\) and \({\tilde{\iota }}=\iota -{\hat{\iota }}\), it produces that

$$\begin{aligned} -{\tilde{\iota }}^{2}{\hat{\iota }}<\frac{1}{3}{\tilde{\iota }}^{3}+\frac{1}{3}\iota ^{3}. \end{aligned}$$
(103)

For \({\tilde{\iota }}<0,\) it implies \(sgn\left( {\tilde{\iota }}\right) =-1\); thus, we have

$$\begin{aligned} {\tilde{\iota }}^{2}{\hat{\iota }}sgn\left( {\tilde{\iota }}\right) <-\frac{1}{3}| {\tilde{\iota }}|^{3}+\frac{1}{3}\iota ^{3}. \end{aligned}$$
(104)

\(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Gao, C., Wu, Lb. et al. Fuzzy observer-based command filtered tracking control for uncertain strict-feedback nonlinear systems with sensor faults and event-triggered technology. Nonlinear Dyn 111, 8329–8345 (2023). https://doi.org/10.1007/s11071-023-08273-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08273-5

Keywords

Navigation