Skip to main content
Log in

Effect of ion and negative ion temperatures on KdV and mKdV solitons in a multicomponent plasma

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The formation of ion-acoustic solitons (IASs) in an unmagnetized plasma with negative ions has been investigated through the KdV equation in both the situations \(Q^{\prime}\left( { = m_{j} /m_{i} = {\text{negative}}\;{\text{to}}\;{\text{positive}}\;{\text{ion}}\;{\text{mass}}\;{\text{ratio}}} \right)\) less and greater than one and the mKdV equation only for \(Q^{\prime} > 1\). The existence of both KdV and mKdV solitons has been established for \(\alpha \left( { = {\text{ion}}\;{\text{to}}\;{\text{electron}}\;{\text{temperature}}\;{\text{ratio}}} \right)\; > \;\beta \left( { = {\text{negative}}\;{\text{ion}}\;{\text{to}}\;{\text{electron}}\;{\text{temperature}}\;{\text{ratio}}} \right)\) and \(\alpha < \beta\), which is the new outcome of the current investigation. Furthermore, the existence of both compressive and rarefactive solitons for \(Q^{\prime} > 1\) and \(Q^{\prime} < 1\) has been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability Statement

Inquiries about data availability should be directed to the authors.

References

  1. Washimi, H., Taniuti, T.: Propagation of ion-acoustic solitary waves of small amplitude. Phys. Rev. Lett. 17, 996–998 (1966)

    Google Scholar 

  2. Watanabe, S.: Ion acoustic soliton in plasma with negative ion. J. Phys. Soc. Jpn. 53, 950–956 (1984)

    Google Scholar 

  3. Lonngren, K.E.: Soliton experiments in plasmas. Plasma Phys. 25, 943–982 (1983)

    Google Scholar 

  4. Tagare, S.G.: Effect of ion temperature on ion-acoustic solitons in a two-ion warm plasma with adiabatic positive and negative ions and isothermal electrons. J. Plasma Phys. 36, 301–312 (1986)

    Google Scholar 

  5. Kalita, B.C., Kalita, M.K.: Modified Korteweg-de Vries solitons in a warm plasma with negative ions. Phys. Fluids B 2, 674 (1990)

    Google Scholar 

  6. Kalita, B.C., Devi, N.: Solitary waves in a warm plasma with negative ions and drifting effect of electrons. Phys. Fluids B 5, 440 (1993)

    Google Scholar 

  7. Kalita, B.C., Barman, S.N.: Solitons in a warm unmagnetized plasma with electron inertia and negative ions. J. Phys. Soc. Jpn. 64, 784–790 (1995)

    Google Scholar 

  8. Zabusky, N.J., Kruskal, M.D.: Interaction of “Solitons” in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965)

    MATH  Google Scholar 

  9. Ludwig, G.O., Ferreira, J.L., Nakamura, Y.: Observation of ion-acoustic rarefaction solitons in a multicomponent plasma with negative ions. Phys. Rev. Lett. 52, 275 (1984)

    Google Scholar 

  10. Nakamura, Y., Ferreira, J.L., Ludwig, G.O.: Experiments on ion-acoustic rarefactive solitons in a multi-component plasma with negative ions. J. Plasma Phys. 33, 237–248 (1985)

    Google Scholar 

  11. Nakamura, Y., Tsukabayashi, I.: Modified Korteweg-de Vries ion-acoustic solitons in a plasma. J. Plasma Phys. 34, 401–415 (1985)

    Google Scholar 

  12. Aossey, D.W., Cooney, J.L., Williams, J.E., Lonngren, K.E.: Interacting geometric solitons in a positive ion–negative ion plasma. J. Phys. D: Appl. Phys. 26, 215 (1993)

    Google Scholar 

  13. von Goeler, S., Ohe, T., D’Angelo, N.: Production of a thermally ionized plasma with negative ions. J. Appl. Phys. 37, 2519 (1966)

    Google Scholar 

  14. Ikezi, H.: Experiments on ion–acoustic solitary waves. Phys. Fluids 16, 1668 (1973)

    Google Scholar 

  15. Sagdeev, R. Z.: Reviews of plasma physics. Leontovich, M. A. (eds.), Consultants Bureau 4, pp. 23 – 91. New York (1966)

  16. Wong, A.Y., Mamas, D.L., Arnush, D.: Negative ion plasmas. Phys. Fluids 18, 1489–1493 (1975)

    Google Scholar 

  17. Das, G.C.: Ion-acoustic solutions and shock waves in multicomponent plasmas. Plasma Phys. 21, 257 (1979)

    Google Scholar 

  18. Verheest, F.: Ion-acoustic solitons in multi–component plasmas including negative ions at critical densities. J. Plasma Phys. 39, 71–79 (1988)

    Google Scholar 

  19. Baboolal, S., Bharathram, R., Hellberg, M.A.: Arbitrary-amplitude theory of ion-acoustic solitons in warm multi-fluid plasmas. J. Plasma Phys. 41, 341–353 (1989)

    Google Scholar 

  20. Das, G.C., Tagare, G.S.: Propagation of ion-acoustic waves in a multi-component plasma. Plasma Phys. 17, 1025 (1975)

    Google Scholar 

  21. Tagare, S.G.: Effect of ion temperature on propagation of ion-acoustic solitary waves of small amplitudes in collisionless plasma. Plasma Phys. 15, 1247–1252 (1973)

    Google Scholar 

  22. Tagare, S.G., Reddy, R.V.: Effect of ionic temperature on ion-acoustic solitons in a two-ion warm plasma consisting of negative ions and non-isothermal electrons. Plasma Phys. Controll. Fusion 29, 671 (1987)

    Google Scholar 

  23. Nakamura, Y., Tsukabayashi, I.: Observation of modified Korteweg-de Vries solitons in a multicomponent plasma with negative ions. Phys. Rev. Lett. 52, 2356–2359 (1984)

    Google Scholar 

  24. Kalita, B.C., Das, R.: A comparative study of modified Korteweg-de Vries (MKdV) and Korteweg-de Vries (KdV) solitons in plasmas with negative ions under the influence of electrons’ drift motion. Phys. Plasmas 5, 3588 (1998)

    Google Scholar 

  25. Kalita, B.C., Das, R.: Modified Korteweg de Vries (MKdV) and Korteweg de Vries (KdV) solitons in a warm plasma with negative ions and electrons’ drift motion. J. Phys. Soc. Jpn. 71, 2918–2924 (2002)

    MATH  Google Scholar 

  26. Gill, T.S., Kaur, H., Saini, N.S.: Ion-acoustic solitons in a plasma consisting of positive and negative ions with nonisothermal electrons. Phys. Plasmas 10, 3927–3932 (2003)

    Google Scholar 

  27. Sharma, S.K., Devi, K., Bailung, H.: Characteristics of ion acoustic modified Korteweg de Vries (KdV) solitons in multicomponent plasma with negative ions. J. Phys. Conf. Ser. 208, 012036 (2010)

    Google Scholar 

  28. Rouhani, M.R., Abbasi, Z.E.: Characteristics of ion acoustic solitary waves in a negative ion plasma with superthermal electrons. Phys. Plasmas 19, 112307 (2012)

    Google Scholar 

  29. Saini, N.S.: Shalini: Ion acoustic solitons in a nonextensive plasma with multi-temperature electrons. Astrophys Space Sci 346, 155–163 (2013)

    Google Scholar 

  30. Mehdipoor, M.: K-dV and mK-dV equations for solitary waves in negative ion plasmas with non-Maxwellian electrons. Astrophys. Space Sci. 348, 115–121 (2013)

    Google Scholar 

  31. Verheest, F., Olivier, C.P., Hereman, W.A.: Modified Korteweg-de Vries solitons at supercritical densities in two-electron temperature plasmas. J. Plasma Phys. 82, 905820208 (2016)

    Google Scholar 

  32. Li, C., Wei, M., Lin, Y.: Existence of solitary waves in a perturbed KdV-mKdV equation. J. Math. 2021, Article ID 2270924, 6 pages (2021)

  33. Kalita, J., Das, R., Hosseini, K., Baleanu, D., Salahshour, S.: Solitons in magnetized plasma with electron inertia under weakly relativistic effect. Nonlinear Dyn. (2022). https://doi.org/10.1007/s11071-022-08015-z

    Article  Google Scholar 

  34. Nassiri-Mofakham, N.: Evolution of ion–ion acoustic instability in multi-ion plasma sheaths. Nonlinear Dyn. 93, 2301–2314 (2018)

    Google Scholar 

  35. Wazwaz, A.M., El-Tantawy, S.A.: A new integrable (3+1)-dimensional KdV-like model with its multiple-soliton solutions. Nonlinear Dyn. 83, 1529–1534 (2016)

    MathSciNet  MATH  Google Scholar 

  36. Wazwaz, A.M.: New (3+1)-dimensional Painlevé integrable fifth-order equation with third-order temporal dispersion. Nonlinear Dyn. 106, 891–897 (2021)

    Google Scholar 

  37. El-Wakil, S.A., Abulwafa, E.M., Zahran, M.A., Mahmoud, A.A.: Time-fractional KdV equation: formulation and solution using variational methods. Nonlinear Dyn. 65, 55–63 (2011)

    MathSciNet  MATH  Google Scholar 

  38. Dehghan, M., Shokri, A.: A numerical method for KdV equation using collocation and radial basis functions. Nonlinear Dyn. 50, 111–120 (2007)

    MathSciNet  MATH  Google Scholar 

  39. Das, R.: Effect of ion temperature on small-amplitude ion acoustic solitons in a magnetized ion-beam plasma in presence of electron inertia. Astrophys. Space Sci. 341, 543–549 (2012)

    Google Scholar 

  40. Das, R., Karmakar, K.: Modified Korteweg-de Vries solitons in a dusty plasma with electron inertia and drifting effect of electrons. Can. J. Phys. 91, 839–843 (2013)

    Google Scholar 

  41. Zhang, R.F., Bilige, S.: Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equation. Nonlinear Dyn. 95, 3041–3048 (2019)

    MATH  Google Scholar 

  42. Wazwaz, A.M., Albalawi, W., El-Tantawy, S.A.: Optical envelope soliton solutions for coupled nonlinear Schrödinger equations applicable to high birefringence fibers. Optik 255, 168673 (2022)

    Google Scholar 

  43. Zhang, R.F., Li, M.C.: Bilinear residual network method for solving the exactly explicit solutions of nonlinear evolution equations. Nonlinear Dyn. 108, 521–531 (2022)

    Google Scholar 

  44. Zhang, R.F., Li, M.C., Gan, J.Y., Li, Q., Lan, Z.Z.: Novel trial functions and rogue waves of generalized breaking soliton equation via bilinear neural network method. Chaos Solitons Fractals 154, 111692 (2022)

    MathSciNet  MATH  Google Scholar 

  45. Zhang, R.F., Li, M.C., Albishari, M., Zheng, F.C., Lan, Z.Z.: Generalized lump solutions, classical lump solutions and rogue waves of the (2+1)-dimensional Caudrey–Dodd–Gibbon–Kotera–Sawada-like equation. Appl. Math. Comput. 403, 126201 (2021)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Hosseini or D. Baleanu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhukalya, B., Das, R., Hosseini, K. et al. Effect of ion and negative ion temperatures on KdV and mKdV solitons in a multicomponent plasma. Nonlinear Dyn 111, 8659–8671 (2023). https://doi.org/10.1007/s11071-023-08262-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08262-8

Keywords

Navigation