Skip to main content
Log in

Online system identification using fractional-order Hammerstein model with noise cancellation

  • Review
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Slow convergence and low accuracy are two main drawbacks in nonlinear system identification methods. It becomes more complicated when time delay and noises are considered. In this paper, considering a fractional-order Hammerstein model, an online identification method is proposed. A combination of an evolutionary optimization method and recursive least square algorithm is used to estimate the system parameters and orders in the presence of unknown noises. Finally, simulation results are taken to prove the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37

Similar content being viewed by others

Data availability

The examples data are available in references [34, 40]. The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Oustaloup, A.: From fractality to non-integer derivation through recursivity, a property common to these two concepts: a fundamental idea from a new process control strategy. In: Proceeding of the 12th IMACS World Congress, Paris, pp. 18–22. (1988)

  2. Manabe, S.: The non-integer integral and its application to control systems. Mitsubishi Denki Lab. Rep. 2(2), 1–4 (1961)

    MathSciNet  Google Scholar 

  3. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  4. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and some of their Applications. Academic Press, Cambridge (1998)

    MATH  Google Scholar 

  5. Baleanu, D., Güvenç, Z.B., Machado, J.T. (eds.): New Trends in Nanotechnology and Fractional Calculus Applications, p. 978. Springer, New York (2010)

    Google Scholar 

  6. Sabatier, J., Agrawal, O.P., Machado, J.T.: Advances in Fractional Calculus. Springer, Dordrecht, The Netherlands (2007)

    MATH  Google Scholar 

  7. Gabano, J.D., Poinot, T., Kanoun, H.: Identification of a thermal system using continuous linear parameter-varying fractional modelling. IET Control Theory Appl. 5(7), 889–899 (2011)

    MathSciNet  Google Scholar 

  8. Ionescu, C.M., Hodrea, R., De Keyser, R.: Variable time-delay estimation for anesthesia control during intensive care. IEEE Trans. Biomed. Eng. 58(2), 363–369 (2011)

    Google Scholar 

  9. Mathieu, B., Melchior, P., Oustaloup, A., Ceyral, C.: Fractional differentiation for edge detection. Signal Process. 83(11), 2421–2432 (2003)

    MATH  Google Scholar 

  10. Barbosa, R.S., Machado, J.T., Silva, M.F.: Time domain design of fractional differintegrators using least-squares. Signal Process. 86(10), 2567–2581 (2006)

    MATH  Google Scholar 

  11. Melchior, P., Orsoni, B., Lavialle, O., Poty, A., Oustaloup, A.: Consideration of obstacle danger level in path planning using A∗ and fast-marching optimisation: comparative study. Signal Process. 83(11), 2387–2396 (2003)

    MATH  Google Scholar 

  12. Yousfi, N., Melchior, P., Rekik, C., Derbel, N., Oustaloup, A.: Design of centralized CRONE controller combined with MIMO-QFT approach applied to non square multivariable systems. Int. J. Comput. Appl. 45(16), 0975–8887 (2012)

    Google Scholar 

  13. Silva, M.F., Machado, J.T., Lopes, A.M.: Fractional order control of a hexapod robot. Nonlinear Dyn. 38(1–4), 417–433 (2004)

    MATH  Google Scholar 

  14. Cao, J., Ma, C., Xie, H., Jiang, Z.: Nonlinear dynamics of duffing system with fractional order damping. J. Comput. Nonlinear Dyn. 5(4), 041012 (2010)

    Google Scholar 

  15. Cugnet, M., Sabatier, J., Laruelle, S., Grugeon, S., Sahut, B., Oustaloup, A., Tarascon, J.M.: On lead-acid-battery resistance and cranking-capability estimation. IEEE Trans. Ind. Electron. 57(3), 909–917 (2010)

    Google Scholar 

  16. Monje, C.A., Vinagre, B.M., Feliu, V., Chen, Y.: Tuning and auto-tuning of fractional order controllers for industry applications. Control Eng. Pract. 16(7), 798–812 (2008)

    Google Scholar 

  17. Zhao, M., Wang, J.: Outer synchronization between fractional-order complex networks: a non-fragile observer-based control scheme. Entropy 15(4), 1357–1374 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Baleanu, D., Golmankhaneh, A., Nigmatullin, R., Golmankhaneh, A.: Fractional newtonian mechanics. Open Phys. 8(1), 120–125 (2010)

    MATH  Google Scholar 

  19. Chen, W., Ye, L., Sun, H.: Fractional diffusion equations by the Kansa method. Comput. Math. Appl. 59(5), 1614–1620 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Suchorsky, M.K., Rand, R.H.: A pair of van der Pol oscillators coupled by fractional derivatives. Nonlinear Dyn. 69(1–2), 313–324 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Yang, J.H., Zhu, H.: Vibrational resonance in duffing systems with fractional-order damping. Chaos Interdiscip. J. Nonlinear Sci. 22(1), 013112 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Rossikhin, Y.A., Shitikova, M.V.: Analysis of damped vibrations of thin bodies embedded into a fractional derivative viscoelastic medium. J. Mech. Behav. Mater. 21(5–6), 155–159 (2013)

    Google Scholar 

  23. Bagley, R.L., Calico, R.A.: Fractional order state equations for the control of viscoelasticallydamped structures. J. Guid. Control Dyn. 14(2), 304–311 (1991)

    Google Scholar 

  24. Battaglia, J.L., Le Lay, L., Batsale, J.C., Oustaloup, A., Cois, O.: Heat flux estimation through inverted non integer identification models. Int. J. Therm. Sci. 39(3), 374–389 (2000)

    Google Scholar 

  25. Zaborovsky, V., & Meylanov, R.: Informational network traffic model based on fractional calculus. In: Info-tech and Info-net, 2001. Proceedings. ICII 2001-Beijing. 2001 International Conferences, vol. 1, pp.58–63. IEEE (2001)

  26. Vinagre, B. M., & Feliu, V.: Modeling and control of dynamic system using fractional calculus: application to electrochemical processes and flexible structures. In: Proceeding 41st IEEE Conference Decision and Control vol. 1, pp. 214–239. (2002)

  27. Sjöberg, M.M., Kari, L.: Non-linear behavior of a rubber isolator system using fractional derivatives. Veh. Syst. Dyn. 37(3), 217–236 (2002)

    Google Scholar 

  28. Reyes-Melo, M. E., Martinez-Vega, J. J., Guerrero-Salazar, C. A., & Ortiz-Mendez, U.: Application of fractional calculus to modelling of relaxation phenomena of organic dielectric materials. In: Solid Dielectrics, 2004. ICSD 2004. Proceedings of the 2004 IEEE International Conference on vol. 2, pp. 530–533). IEEE (2004)

  29. Ionescu, C., Desager, K., De Keyser, R.: Fractional order model parameters for the respiratory input impedance in healthy and in asthmatic children. Comput. Methods Programs Biomed. 101(3), 315–323 (2011)

    Google Scholar 

  30. Li, C., Peng, G.: Chaos in Chen’s system with a fractional order. Chaos Solitons Fractals 22(2), 443–450 (2004)

    MathSciNet  MATH  Google Scholar 

  31. Chen, Y., Petras, I., & Xue, D.: Fractional order control-a tutorial. In: 2009 American Control Conference, pp. 1397–1411. IEEE (2009)

  32. Farouki, R., Goodman, T.: On the optimal stability of the Bernstein basis. Math. Comput. Am. Math. Soc. 65(216), 1553–1566 (1996)

    MathSciNet  MATH  Google Scholar 

  33. Pislaru, C., Shebani, A.: Identification of nonlinear systems using radial basis function neural network. Int. J. Comput. Inf. Syst. Control Eng. 8(9), 1528–1533 (2014)

    Google Scholar 

  34. Hong, X., Mitchell, R.J.: Hammerstein model identification algorithm using Bezier-Bernstein approximation. IET Control Theory Appl. 1(4), 1149–1159 (2007)

    MathSciNet  Google Scholar 

  35. Aoun, M., Malti, R., Cois, O., & Oustaloup, A.: System identification using fractional Hammerstein models. In: Proceeding of the 15th IFAC World Congress, pp. T-We-M21. (2002)

  36. Liao, Z., Zhu, Z., Liang, S., Peng, C., Wang, Y.: Subspace identification for fractional order Hammerstein systems based on instrumental variables. Int. J. Control Autom. Syst. 10(5), 947–953 (2012)

    Google Scholar 

  37. Vanbeylen, L.: A fractional approach to identify Wiener-Hammerstein systems. Automatica 50(3), 903–909 (2014)

    MathSciNet  MATH  Google Scholar 

  38. Zhao, Y., Li, Y., & Chen, Y.: Complete parametric identification of fractional order Hammerstein systems. In: Fractional Differentiation and its Applications (ICFDA), 2014 International Conference on, pp. 1–6. IEEE (2014)

  39. Li, Y., Zhai, L., Chen, Y., & Ahn, H. S.: Fractional-order iterative learning control and identification for fractional-order Hammerstein system. In: Intelligent Control and Automation (WCICA), 2014 11th World Congress on, pp. 840–845. IEEE (2014)

  40. Hammar, K., Djamah, T., & Bettayeb, M.: Fractional Hammerstein system identification using polynomial non-linear state space model. In: Control, Engineering & Information Technology (CEIT), 2015 3rd International Conference on, pp. 1–6. IEEE (2015)

  41. Hammar, K., Djamah, T., & Bettayeb, M.: Fractional Hammerstein system identification using particle swarm optimization. In: 2015 7th International Conference on Modelling, Identification and Control (ICMIC), pp. 1–6. IEEE (2015)

  42. Ivanov, D. V.: Identification discrete fractional order Hammerstein systems. In: Control and Communications (SIBCON), 2015 International Siberian Conference on, pp. 1–4. IEEE (2015)

  43. Karimshoushtari, M., Novara, C.: Design of experiments for nonlinear system identification: a set membership approach. Automatica 119, 109036 (2020)

    MathSciNet  MATH  Google Scholar 

  44. Karagoz, R., Batselier, K.: Nonlinear system identification with regularized tensor network B-splines. Automatica 122, 109300 (2020)

    MathSciNet  MATH  Google Scholar 

  45. Kaltenbacher, B., Nguyen, T.T.N.: A model reference adaptive system approach for nonlinear online parameter identification. Inverse Probl. 37(5), 055006 (2021)

    MathSciNet  MATH  Google Scholar 

  46. Du, Y., Liu, F., Qiu, J., Buss, M.: A novel recursive approach for online identification of continuous-time switched nonlinear systems. Int. J. Robust Nonlinear Control 31(15), 7546–7565 (2021)

    MathSciNet  Google Scholar 

  47. Mania, H., Jordan, M.I., Recht, B.: Active learning for nonlinear system identification with guarantees. J. Mach. Learn. Res. 23, 32–41 (2022)

    MathSciNet  MATH  Google Scholar 

  48. Leylaz, G., Wang, S., Sun, J.Q.: Identification of nonlinear dynamical systems with time delay. Int. J. Dyn. Control 10(1), 13–24 (2022)

    Google Scholar 

  49. Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D., Feliu-Batlle, V.: Fractional-order Systems and Controls: Fundamentals and Applications. Springer, Cham (2010)

    MATH  Google Scholar 

  50. Mohammed, A.A.: Approximate solution of differential equations of fractional orders using Bernstein-Bézier polynomial. Al- Mustansiriya J. Sci. 23(1), 65–74 (2012)

    Google Scholar 

  51. Jahani Moghaddam, M., Mojallali, H., Teshnehlab, M.: A multiple-input–single-output fractional-order Hammerstein model identification based on modified neural network. Math. Methods Appl. Sci. 41(16), 6252–6271 (2018)

    MathSciNet  MATH  Google Scholar 

  52. Elleuch, K., Chaari, A.: Modeling and identification of Hammerstein system by using triangular basis functions. Int. J. Electr. Comput. Energ. Electron. Commun. Eng. 1, 1 (2011)

    Google Scholar 

  53. Laurain, V., Tóth, R., Gilson, M., Garnier, H.: Direct identification of continuous-time linear parameter-varying input/output models. IET Control Theory Appl. 5(7), 878–888 (2011)

    MathSciNet  Google Scholar 

  54. Rao, G. P., & Garnier, H.: Numerical illustrations of the relevance of direct continuous-time model identification. In: 15th Triennial IFAC World Congress on Automatic Control. Barcelona, Barcelona (Spain) (2002)

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Study concept and design; analysis and interpretation of data; drafting of the manuscript; critical revision of the manuscript for important intellectual content; and statistical analysis are all done by the corresponding author.

Corresponding author

Correspondence to Mohammad Jahani Moghaddam.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahani Moghaddam, M. Online system identification using fractional-order Hammerstein model with noise cancellation. Nonlinear Dyn 111, 7911–7940 (2023). https://doi.org/10.1007/s11071-023-08249-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08249-5

Keywords

Navigation