Skip to main content
Log in

Nonlinear low-velocity impact response of graphene platelet-reinforced metal foam cylindrical shells under axial motion with geometrical imperfection

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the nonlinear low-velocity impact response of geometrically imperfect graphene platelets-reinforced metal foams (GPLRMF) cylindrical shells under axial motion. Based on Love’s thin shell theory and von Karman's geometric nonlinearity, the nonlinear equations of motion for the GPLRMF cylindrical shells are established. Then, combined with the Galerkin method, the fourth-order Runge–Kutta technique is adopted to simulate the time history curves of the GPLRMF cylindrical shells, in which the simply supported boundary condition is considered. Subsequently, the nonlinear impact force between the GPLRMF cylindrical shells and impactor is obtained by using Hertz contact force model and Newton's second law. In the end, numerical results are presented to investigate the effects of various parameters including foam distribution, graphene platelets (GPLs) distribution pattern, GPLs weight fraction, foam coefficient, axially moving velocity of the cylindrical shells, radius and initial velocity of the spherical impactor, pre-stressing force, damping coefficient and initial geometrical imperfection on the nonlinear low-impact response of the GPLRMF cylindrical shells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig.11
Fig. 12
Fig.13
Fig.14

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. Zhou, J., Liu, B., Wang, S.: Finite element analysis on impact response and damage mechanism of composite laminates under single and repeated low-velocity impact. Aerosp. Sci. Technol. 129, 107810 (2022)

    Google Scholar 

  2. Song, M., Li, X., Kitipornchai, S., Bi, Q.S., Yang, J.: Low-velocity impact response of geometrically nonlinear functionally graded graphene platelet-reinforced nanocomposite plates. Nonlinear Dynam. 95(3), 2333–2352 (2019)

    Google Scholar 

  3. Al-Furjan, M.S.H., Farrokhian, A., Mahmoud, S.R., Kolahchi, R.: Dynamic deflection and contact force histories of graphene platelets reinforced conical shell integrated with magnetostrictive layers subjected to low-velocity impact. Thin. Walled. Struct. 163, 107706 (2021)

    Google Scholar 

  4. Fan, Y., Wang, Y.: The effect of negative Poisson’s ratio on the low-velocity impact response of an auxetic nanocomposite laminate beam. Int. J. Mech. Mater. Des. 17(1), 153–169 (2021)

    Google Scholar 

  5. Chen, D., Yang, J., Schneider, J., Kitipornchai, S., Zhang, L.H.: Impact response of inclined self-weighted functionally graded porous beams reinforced by graphene platelets. Thin. Wall. Struct. 179, 109501 (2022)

    Google Scholar 

  6. Yang, F.L., Wang, Y.Q., Liu, Y.: Low-velocity impact response of axially moving functionally graded graphene platelet reinforced metal foam plates. Aerosp. Sci. Technol. 123, 107496 (2022)

    Google Scholar 

  7. Li, H., Li, Z., Xiao, Z., Wang, X., Xiong, J., Zhou, J., Guan, Z.: Development of an integrated model for prediction of impact and vibration response of hybrid fiber metal laminates with a viscoelastic layer. Int. J. Mech. Sci. 197, 106298 (2021)

    Google Scholar 

  8. Mao, Y., Hong, L., Ai, S., Fu, H., Chen, C.: Dynamic response and damage analysis of fiber-reinforced composite laminated plates under low-velocity oblique impact. Nonlinear Dyn. 87, 1511–1530 (2017)

    MathSciNet  Google Scholar 

  9. Selim, B.A., Liu, Z.S.: Impact analysis of functionally-graded graphene nanoplatelets-reinforced composite plates laying on Winkler-Pasternak elastic foundations applying a meshless approach. Eng. Struct. 241, 112453 (2021)

    Google Scholar 

  10. Zhang, L., Chen, Z., Habibi, M., Ghabussi, A., Alyousef, R.: Low-velocity impact, resonance, and frequency responses of FG-GPLRC viscoelastic doubly curved panel. Compos. Struct. 269, 114000 (2021)

    Google Scholar 

  11. Dong, Y.H., Zhu, B., Wang, Y., He, L.W., Li, Y.H., Yang, J.: Analytical prediction of the impact response of graphene reinforced spinning cylindrical shells under axial and thermal loads. Appl. Math. Model. 71, 331–348 (2019)

    MathSciNet  MATH  Google Scholar 

  12. Oskouie, M.F., Hassanzadeh-Aghdam, M.K., Ansari, R.: A new numerical approach for low velocity impact response of multiscale-reinforced nanocomposite plates. Eng. Comput-Germany. 37, 713–730 (2021)

    Google Scholar 

  13. Zhang, W., Guo, L.J., Wang, Y.W., Mao, J.J.: Nonlinear low-velocity impact response of GRC beam with geometrical imperfection under thermo-electro-mechanical loads. Nonlinear Dyn. (2022)

  14. Pham, P.T., Hong, K.S.: Dynamic models of axially moving systems: a review. Nonlinear Dyn. 100(1), 315–349 (2020)

    Google Scholar 

  15. Wang, Y., Han, W.U., Yang, F., Wang, Q.: An efficient method for vibration and stability analysis of rectangular plates axially moving in fluid. Appl. Math. Mech. 42(2), 291–308 (2021)

    MathSciNet  MATH  Google Scholar 

  16. Marynowski, K.: Free vibration analysis of an axially moving multiscale composite plate including thermal effect. Int. J. Mech. Sci. 120, 62–69 (2016)

    Google Scholar 

  17. Yan, H., Dai, H., Ni, Q., Zhou, K., Wang, L.: Dynamics and stability analysis of an axially moving beam in axial flow. J. Mech. Mater. Struct. 15(1), 37–60 (2020)

    MathSciNet  Google Scholar 

  18. Ebrahimi-Mamaghani, A., Forooghi, A., Sarparast, H., Alibeigloo, A., Friswell, M.I.: Vibration of viscoelastic axially graded beams with simultaneous axial and spinning motions under an axial load. Appl. Math. Model. 90, 131–150 (2020)

    MathSciNet  MATH  Google Scholar 

  19. Yang, S., Hu, A., Mo, G., Zhang, X., Zhang, J.: Dynamic modeling and analysis of an axially moving and spinning rayleigh beam based on a time-varying element. Appl. Math. Model. 95, 409–434 (2021)

    MathSciNet  MATH  Google Scholar 

  20. Arani, A.G., Shahraki, M.E., Haghparast, E.: Instability analysis of axially moving sandwich plates with a magnetorheological elastomer core and gnp-reinforced face sheets. J. Braz. Soc. Mech. Sci. 44(4), 1–22 (2022)

    Google Scholar 

  21. Li, C., Wang, P.Y., Luo, Q.Y., Li, S.: Free vibration of axially moving functionally graded nanoplates based on the nonlocal strain gradient theory. Int. J. Acoust. Vib. 25(4), 587–596 (2020)

    Google Scholar 

  22. Li, M., Jiang, W., Li, Y., Dai, F.: Steady-state response of an axially moving circular cylindrical panel with internal resonance. Eur. J. Mech. A-Solid. 92, 104464 (2022)

    MathSciNet  MATH  Google Scholar 

  23. Li, X.Q., Song, M.T., Yang, J., Kitipornchai, S.: Primary and secondary resonances of functionally graded graphene platelet-reinforced nanocomposite beams. Nonlinear Dyn. 95(3), 1807–1826 (2019)

    MATH  Google Scholar 

  24. Xu, H., Wang, Y.Q., Zhang, Y.F.: Free vibration of functionally graded graphene platelet-reinforced porous beams with spinning movement via differential transformation method. Arch Appl Mech. 91, 4817–4834 (2021)

    Google Scholar 

  25. Kiani, F., Hekmatifar, M., Toghraie, D.: Analysis of forced and free vibrations of composite porous core sandwich cylindrical shells and FG-CNTs reinforced face sheets resting on visco-Pasternak foundation under uniform thermal field. J. Braz. Soc. Mech. Sci. 42(10), 504 (2020)

    Google Scholar 

  26. Song, M.T., Gong, Y.H., Yang, J., Zhu, W.D., Kitipornchai, S.: Nonlinear free vibration of cracked functionally graded graphene platelet-reinforced nanocomposite beams in thermal environments. J. Sound Vib. 468, 115115 (2020)

    Google Scholar 

  27. Song, M.T., Zhou, L., Karunasena, W.: Nonlinear dynamic instability of edge-cracked functionally graded graphene-reinforced composite beams. Nonlinear Dyn. 109, 2423–2441 (2022)

    Google Scholar 

  28. Li, Q.Y., Wu, D., Chen, X.J., Liu, L., Yu, Y.G., Gao, W.: Nonlinear vibration and dynamic buckling analyses of sandwich functionally graded porous plate with graphene platelet reinforcement resting on Winkler-Pasternak elastic foundation. Int. J. Mech. Sci. 148, 596–610 (2018)

    Google Scholar 

  29. Nguyen, N.V., Nguyen, X.H., Lee, D., Lee, J.: A novel computational approach to functionally graded porous plates with graphene platelets reinforcement. Thin. Wall. Struct. 150, 106684 (2020)

    Google Scholar 

  30. Gao, W.L., Qin, Z.Y., Chu, F.L.: Wave propagation in functionally graded porous plates reinforced with graphene platelets. Aerosp. Sci. Techno. 102, 105860 (2020)

    Google Scholar 

  31. Xu, M.N., Li, X.P., Luo, Y., Wang, G., Guo, Y.H., Liu, T.T., Huang, J.H., Yan, G.: Thermal buckling of graphene platelets toughening sandwich functionally graded porous plate with temperature-dependent properties. Int. J. Appl. Mech. 12(8), 2050089 (2020)

    Google Scholar 

  32. Teng, M.W., Wang, Y.Q.: Nonlinear forced vibration of simply supported functionally graded porous nanocomposite thin plates reinforced with graphene platelets. Thin. Wall. Struct. 164, 2050089 (2021)

    Google Scholar 

  33. Dong, Y., Li, X., Gao, K.: Harmonic resonances of graphene-reinforced nonlinear cylindrical shells: effects of spinning motion and thermal environment. Nonlinear Dyn. 99, 981–1000 (2020)

    MATH  Google Scholar 

  34. Ye, C., Wang, Y.Q.: Nonlinear forced vibration of functionally graded graphene platelet-reinforced metal foam cylindrical shells: internal resonances. Nonlinear Dyn. 104, 2051–2069 (2021)

    Google Scholar 

  35. Zhou, Z.H., Ni, Y.W., Tong, Z.Z., Zhu, S.B., Sun, J.B., Xu, X.S.: Accurate nonlinear buckling analysis of functionally graded porous graphene platelet reinforced composite cylindrical shells. Int. J. Mech. Sci. 151, 537–550 (2019)

    Google Scholar 

  36. Chai, Q.D., Wang, Y.Q.: Traveling wave vibration of graphene platelet reinforced porous joined conical-cylindrical shells in a spinning motion. Eng. Struct. 252, 113718 (2022)

    Google Scholar 

  37. Liu, D.Y., Zhou, Y.Y., Zhu, J.: On the free vibration and bending analysis of functionally graded nanocomposite spherical shells reinforced with graphene nanoplatelets: three-dimensional elasticity solutions. Eng. Struct. 226, 111376 (2021)

    Google Scholar 

  38. Zu, X.D., Gao, Z.J., Zhao, J., Wang, Q.S., Li, H.: Vibration suppression performance of frp spherical-cylindrical shells with porous graphene platelet coating in a thermal environment. Int. J. Struct. Stab. Dy. 22(8), 2250081 (2022)

    MathSciNet  Google Scholar 

  39. Huang, X., Qi, X., Boey, F., Zhang, H.: Graphene-based composites. Chem. Soc. Rev. 41, 525–944 (2012)

    Google Scholar 

  40. Tjong, S.C.: Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Mater. Sci. Eng. R Rep. 74, 281–350 (2013)

    Google Scholar 

  41. Hu, Z., Tong, G., Lin, D., Chen, C., Guo, H., Xu, J., Zhou, L.: Graphene-reinforced metal matrix nanocomposites–a review. Mater. Sci. Technol. 32, 930–953 (2016)

    Google Scholar 

  42. Halpin, J.C., Kardos, J.L.: The Halpin-Tsai equations: a review. Polym. Eng. Sci. 16, 344–352 (1976)

    Google Scholar 

  43. de Guzman Villoria, R., Miravete, A.: Mechanical model to evaluate the effect of the dispersion in nanocomposites. Acta Mater. 55, 3025–3031 (2007)

    Google Scholar 

  44. Ke, L.L., Yang, J., Kitipornchai, S.: Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams. Compos. Struct. 92, 676–683 (2010)

    Google Scholar 

  45. Gibson, L.J., Ashby, M.F.: Mechanics of three-dimensional cellular materials. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 382, 43–59 (1982)

    Google Scholar 

  46. Ashby, M., Evans, A., Fleck, N., Gibson, L., Hutchinson, J., Wadley, H.: Metal foams: a design guide. Mater. Des. 23, 119 (2002)

    Google Scholar 

  47. Gibson, L.J., Ashby, M.F.: Cellular solids: structure and properties, 2nd edn. Cambridge University Press, Cambridge (2014)

    MATH  Google Scholar 

  48. Fan, Y., Xiang, Y., Shen, H.S., Hui, D.: Nonlinear low-velocity impact response of FG-GRC laminated plates resting on visco-elastic foundations. Compos. B Eng. 144, 184–194 (2018)

    Google Scholar 

  49. Yang, S.H., Sun, C.T.: Indentation law for composite laminates. NASA CR-165460. (1981)

  50. Wang, Y.Q., Ye, C., Zu, J.W.: Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets. Aerosp. Sci. Technol. 85, 359–370 (2019)

    Google Scholar 

  51. Wang, Z.X., Xu, J., Qiao, P.: Nonlinear low-velocity impact analysis of temperature-dependent nanotube-reinforced composite plates. Compos. Struct. 108, 423–434 (2014)

    Google Scholar 

  52. Khalili, S.M.R., Malekzadeh, K., Gorgabad, A.V.: Low velocity transverse impact response of functionally graded plates with temperature dependent properties. Compos Struct. 96, 64–74 (2013)

    Google Scholar 

  53. Wu, H.-Y.T., Chung, F.K.: Transient dynamic analysis of laminated composite plates subjected to transverse impact. Comput Struct. 31, 453–466 (1989)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge this work is supported by the talent introduction project of Chongqing University (02090011044159) and Fundamental Research Funds for the Central Universities (2022CDJXY-005).

Funding

The talent introduction project of Chongqing University, 02090011044159, Gui-Lin She, Fundamental Research Funds for Central Universities of the Central South University, 2022CDJXY-005, Gui-Lin She.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-Lin She.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix 1

$$ L_{11} = A_{11} \frac{{\partial^{2} u}}{{\partial x^{2} }} + \frac{{A_{66} }}{{R^{2} }}\frac{{\partial^{2} u}}{{\partial \theta^{2} }} $$
(A1)
$$ L_{12} = \left[ {A_{12} + A_{66} + \frac{1}{R}\left( {B_{12} + 2B_{66} } \right)} \right]\frac{1}{R}\frac{{\partial^{2} v}}{\partial x\partial \theta } $$
(A2)
$$ \begin{aligned} L_{{13}} = & \frac{{A_{{12}} }}{R}\frac{{\partial w}}{{\partial x}} - B_{{11}} \frac{{\partial ^{3} w}}{{\partial x^{3} }} - \frac{{\left( {B_{{12}} + 2B_{{66}} } \right)}}{{R^{2} }}\frac{{\partial ^{3} w}}{{\partial x\partial \theta ^{2} }} \\ & + A_{{11}} \left( {\frac{{\partial ^{2} w}}{{\partial x^{2} }}\frac{{\partial w^{*} }}{{\partial x}} + \frac{{\partial w}}{{\partial x}}\frac{{\partial ^{2} w^{*} }}{{\partial x^{2} }}} \right) + A_{{12}} \left( {\frac{1}{{R^{2} }}\frac{{\partial ^{2} w}}{{\partial x\partial \theta }}\frac{{\partial w^{*} }}{{\partial \theta }} + \frac{1}{{R^{2} }}\frac{{\partial w}}{{\partial \theta }}\frac{{\partial ^{2} w^{*} }}{{\partial x\partial \theta }}} \right) \\ & + \frac{{A_{{66}} }}{{R^{2} }}\left( {\frac{{\partial ^{2} w}}{{\partial x\partial \theta }}\frac{{\partial w^{*} }}{{\partial \theta }} + \frac{{\partial w}}{{\partial \theta }}\frac{{\partial ^{2} w^{*} }}{{\partial x\partial \theta }} + \frac{{\partial ^{2} w}}{{\partial \theta ^{2} }}\frac{{\partial w^{*} }}{{\partial x}} + \frac{{\partial ^{2} w^{*} }}{{\partial \theta ^{2} }}\frac{{\partial w}}{{\partial x}}} \right) \\ \end{aligned} $$
(A3)
$$ P_{1} = A_{11} \frac{\partial w}{{\partial x}}\frac{{\partial^{2} w}}{{\partial x^{2} }} + \frac{{A_{12} }}{{R^{2} }}\frac{\partial w}{{\partial \theta }}\frac{{\partial^{2} w}}{\partial x\partial \theta } + \frac{{A_{66} }}{{R^{2} }}\left( {\frac{{\partial^{2} w}}{{\partial \theta^{2} }}\frac{\partial w}{{\partial x}} + \frac{{\partial^{2} w}}{\partial x\partial \theta }\frac{\partial w}{{\partial \theta }}} \right) $$
(A4)
$$ L_{21} = \left[ {A_{66} + A_{12} + \frac{1}{R}\left( {2B_{66} + B_{12} } \right)} \right]\frac{1}{R}\frac{{\partial^{2} u}}{\partial x\partial \theta } $$
(A5)
$$ \begin{aligned} L_{{22}} = & \left[ {A_{{66}} + \frac{1}{R}\left( {4B_{{66}} + \frac{4}{R}D_{{66}} } \right)} \right]\frac{{\partial ^{2} v}}{{\partial x^{2} }} \\ & + \left[ {A_{{22}} + \frac{1}{R}\left( {2B_{{22}} + \frac{1}{R}D_{{22}} } \right)} \right]\frac{1}{{R^{2} }}\frac{{\partial ^{2} v}}{{\partial \theta ^{2} }} \\ \end{aligned} $$
(A6)
$$ \begin{gathered} L_{23} = - \left[ {2B_{66} + B_{12} + \frac{1}{R}\left( {4D_{66} + D_{12} } \right)} \right]\frac{1}{R}\frac{{\partial^{3} w}}{{\partial x^{2} \partial \theta }} + \frac{1}{{R^{2} }}\left( {A_{22} + \frac{{B_{22} }}{R}} \right)\frac{\partial w}{{\partial \theta }} - \left( {B_{22} + \frac{1}{R}D_{22} } \right)\frac{1}{{R^{3} }}\frac{{\partial^{3} w}}{{\partial \theta^{3} }} \hfill \\ + \left( {A_{66} + \frac{{B_{66} }}{R}} \right)\frac{1}{R}\left( {\frac{{\partial^{2} w^{*} }}{{\partial x^{2} }}\frac{\partial w}{{\partial \theta }} + \frac{{\partial w^{*} }}{\partial x}\frac{{\partial^{2} w}}{\partial x\partial \theta } + \frac{\partial w}{{\partial x}}\frac{{\partial^{2} w^{*} }}{\partial x\partial \theta } + \frac{{\partial w^{*} }}{\partial \theta }\frac{{\partial^{2} w}}{{\partial x^{2} }}} \right) \hfill \\ + \left( {A_{12} + \frac{{B_{12} }}{R}} \right)\frac{1}{R}\left( {\frac{{\partial^{2} w}}{\partial x\partial \theta }\frac{{\partial w^{*} }}{\partial x} + \frac{\partial w}{{\partial x}}\frac{{\partial^{2} w^{*} }}{\partial x\partial \theta }} \right) + \frac{1}{{R^{3} }}\left( {A_{22} + \frac{{B_{22} }}{R}} \right)\left( {\frac{{\partial^{2} w}}{{\partial \theta^{2} }}\frac{{\partial w^{*} }}{\partial \theta } + \frac{\partial w}{{\partial \theta }}\frac{{\partial^{2} w^{*} }}{{\partial \theta^{2} }}} \right) \hfill \\ \end{gathered} $$
(A7)
$$ P_{2} = \frac{1}{R}\left( {A_{66} + 2\frac{{B_{66} }}{R}} \right)\left( {\frac{{\partial^{2} w}}{{\partial x^{2} }}\frac{\partial w}{{\partial \theta }} + \frac{\partial w}{{\partial x}}\frac{{\partial^{2} w}}{\partial x\partial \theta }} \right) + \frac{1}{R}\left( {A_{12} + \frac{{B_{12} }}{R}} \right)\frac{{\partial^{2} w}}{\partial x\partial \theta }\frac{\partial w}{{\partial x}} + \frac{1}{{R^{3} }}\left( {A_{22} + \frac{{B_{22} }}{R}} \right)\frac{{\partial^{2} w}}{{\partial \theta^{2} }}\frac{\partial w}{{\partial \theta }} $$
(A8)
$$ L_{31} = B_{11} \frac{{\partial^{3} u}}{{\partial x^{3} }} + \frac{1}{{R^{2} }}\left( {2B_{66} + B_{12} } \right)\frac{{\partial^{3} u}}{{\partial x\partial \theta^{2} }} - \frac{{A_{12} }}{R}\frac{\partial u}{{\partial x}} $$
(A9)
$$ L_{32} = \frac{1}{R}\left[ {B_{12} + 2B_{66} + \frac{1}{R}\left( {4D_{66} + D_{12} } \right)} \right]\frac{{\partial^{3} v}}{{\partial x^{2} \partial \theta }} + \frac{1}{{R^{3} }}\left( {B_{22} + \frac{{D_{22} }}{R}} \right)\frac{{\partial^{3} v}}{{\partial \theta^{3} }} - \frac{1}{R}\left( {\frac{{A_{22} }}{R} + \frac{{B_{22} }}{{R^{2} }}} \right)\frac{\partial v}{{\partial \theta }} $$
(A10)
$$ \begin{gathered} L_{33} = \frac{{2B_{12} }}{R}\frac{{\partial^{2} w}}{{\partial x^{2} }} + \frac{{2B_{22} }}{{R^{3} }}\frac{{\partial^{2} w}}{{\partial \theta^{2} }} - D_{11} \frac{{\partial^{4} w}}{{\partial x^{4} }} - \frac{{D_{22} }}{{R^{4} }}\frac{{\partial^{4} w}}{{\partial \theta^{4} }} - \frac{{(2D_{12} + 4D_{66} )}}{{R^{2} }}\frac{{\partial^{4} w}}{{\partial x^{2} \partial \theta^{2} }} - \frac{{A_{22} }}{{R^{2} }}w \hfill \\ + B_{11} \left( {\frac{{\partial^{3} w}}{{\partial x^{3} }}\frac{{\partial w^{*} }}{\partial x} + 2\frac{{\partial^{2} w}}{{\partial x^{2} }}\frac{{\partial^{2} w^{*} }}{{\partial x^{2} }} + \frac{{\partial^{3} w^{*} }}{{\partial x^{3} }}\frac{\partial w}{{\partial x}}} \right) + \frac{{B_{12} }}{{R^{2} }}\left( {\frac{{\partial^{3} w}}{{\partial x^{2} \partial \theta }}\frac{{\partial w^{*} }}{\partial \theta } + 2\frac{{\partial^{2} w}}{\partial x\partial \theta }\frac{{\partial^{2} w^{*} }}{\partial x\partial \theta } + \frac{\partial w}{{\partial \theta }}\frac{{\partial^{3} w^{*} }}{{\partial x^{2} \partial \theta }}} \right) \hfill \\ + \frac{{2B_{66} }}{{R^{2} }}\left( \begin{gathered} \frac{\partial w}{{\partial \theta }}\frac{{\partial^{3} w^{*} }}{{\partial x^{2} \partial \theta }} + \frac{{\partial^{2} w^{*} }}{{\partial x^{2} }}\frac{{\partial^{2} w}}{{\partial \theta^{2} }} + 2\frac{{\partial^{2} w}}{\partial x\partial \theta }\frac{{\partial^{2} w^{*} }}{\partial x\partial \theta } \hfill \\ + \frac{{\partial^{3} w}}{{\partial x\partial \theta^{2} }}\frac{{\partial w^{*} }}{\partial x} + \frac{{\partial^{2} w}}{{\partial x^{2} }}\frac{{\partial^{2} w^{*} }}{{\partial \theta^{2} }} + \frac{{\partial w^{*} }}{\partial \theta }\frac{{\partial^{3} w}}{{\partial x^{2} \partial \theta }} + \frac{{\partial^{3} w^{*} }}{{\partial x\partial \theta^{2} }}\frac{\partial w}{{\partial x}} \hfill \\ \end{gathered} \right) \hfill \\ + \frac{{B_{12} }}{{R^{2} }}\left( {\frac{{\partial^{3} w}}{{\partial x\partial \theta^{2} }}\frac{\partial w}{{\partial x}} + 2\frac{{\partial^{2} w}}{\partial x\partial \theta }\frac{{\partial^{2} w^{*} }}{\partial x\partial \theta } + \frac{\partial w}{{\partial x}}\frac{{\partial^{3} w^{*} }}{{\partial x\partial \theta^{2} }}} \right) \hfill \\ + \frac{{B_{22} }}{{R^{4} }}\left( {\frac{{\partial^{3} w}}{{\partial \theta^{3} }}\frac{{\partial w^{*} }}{\partial \theta } + 2\frac{{\partial^{2} w}}{{\partial \theta^{2} }}\frac{{\partial^{2} w^{*} }}{{\partial \theta^{2} }} + \frac{{\partial^{3} w^{*} }}{{\partial \theta^{3} }}\frac{\partial w}{{\partial \theta }}} \right) - \frac{{A_{12} }}{R}\frac{\partial w}{{\partial x}}\frac{{\partial w^{*} }}{\partial x} - \frac{{A_{22} }}{{R^{3} }}\frac{\partial w}{{\partial \theta }}\frac{{\partial w^{*} }}{\partial \theta } \hfill \\ \end{gathered} $$
(A11)
$$ \begin{gathered} P_{3} = B_{11} \left( {\frac{{\partial^{3} w}}{{\partial x^{3} }}\frac{\partial w}{{\partial x}} + \frac{{\partial^{2} w}}{{\partial x^{2} }}\frac{{\partial^{2} w}}{{\partial x^{2} }}} \right) + \frac{{B_{12} }}{{R^{2} }}\left( {\frac{{\partial^{3} w}}{{\partial x^{2} \partial \theta }}\frac{\partial w}{{\partial \theta }} + \frac{{\partial^{2} w}}{\partial x\partial \theta }\frac{{\partial^{2} w}}{\partial x\partial \theta }} \right) + \frac{{A_{22} }}{{R^{4} }}\frac{\partial w}{{\partial \theta }}\frac{{\partial w^{*} }}{\partial \theta }\frac{{\partial^{2} w}}{{\partial \theta^{2} }} \hfill \\ + \frac{{2B_{66} }}{{R^{2} }}\left( {\frac{{\partial^{3} w}}{{\partial x^{2} \partial \theta }}\frac{\partial w}{{\partial \theta }} + \frac{{\partial^{2} w}}{{\partial x^{2} }}\frac{{\partial^{2} w}}{{\partial \theta^{2} }} + \frac{{\partial^{2} w}}{\partial x\partial \theta }\frac{{\partial^{2} w}}{\partial x\partial \theta } + \frac{\partial w}{{\partial x}}\frac{{\partial^{3} w}}{{\partial x\partial \theta^{2} }}} \right) + \frac{{B_{12} }}{{R^{2} }}\left( {\frac{{\partial^{3} w}}{{\partial x\partial \theta^{2} }}\frac{\partial w}{{\partial x}} + \frac{{\partial^{2} w}}{\partial x\partial \theta }\frac{{\partial^{2} w}}{\partial x\partial \theta }} \right) \hfill \\ + \frac{{B_{22} }}{{R^{4} }}\left( {\frac{{\partial^{3} w}}{{\partial \theta^{3} }}\frac{\partial w}{{\partial \theta }} + \frac{{\partial^{2} w}}{{\partial \theta^{2} }}\frac{{\partial^{2} w}}{{\partial \theta^{2} }}} \right) - \frac{{A_{12} }}{2R}\left( {\frac{\partial w}{{\partial x}}} \right)^{2} - \frac{{A_{22} }}{{2R^{3} }}\left( {\frac{\partial w}{{\partial \theta }}} \right)^{2} + \frac{{A_{12} }}{R}w\frac{{\partial^{2} w}}{{\partial x^{2} }} - B_{11} \left( {\frac{{\partial^{2} w}}{{\partial x^{2} }}} \right)^{2} \hfill \\ - \frac{{2B_{12} }}{{R^{2} }}\frac{{\partial^{2} w}}{{\partial x^{2} }}\frac{{\partial^{2} w}}{{\partial \theta^{2} }} - \frac{{4B_{66} }}{{R^{2} }}\left( {\frac{{\partial^{2} w}}{\partial x\partial \theta }} \right)^{2} + \frac{{A_{22} }}{{R^{3} }}w\frac{{\partial^{2} w}}{{\partial \theta^{2} }} - \frac{{B_{22} }}{{R^{4} }}\left( {\frac{{\partial^{2} w}}{{\partial \theta^{2} }}} \right)^{2} + A_{11} \frac{\partial w}{{\partial x}}\frac{{\partial w^{*} }}{\partial x}\frac{{\partial^{2} w}}{{\partial x^{2} }} \hfill \\ + \frac{{A_{12} }}{{R^{2} }}\frac{\partial w}{{\partial \theta }}\frac{{\partial w^{*} }}{\partial \theta }\frac{{\partial^{2} w}}{{\partial x^{2} }} + \frac{{2A_{66} }}{{R^{2} }}\left( {\frac{{\partial w^{2} }}{\partial x\partial \theta }\frac{{\partial w^{*} }}{\partial x}\frac{\partial w}{{\partial \theta }} + \frac{{\partial w^{2} }}{\partial x\partial \theta }\frac{\partial w}{{\partial x}}\frac{{\partial w^{*} }}{\partial \theta }} \right) + \frac{{A_{12} }}{{R^{2} }}\frac{\partial w}{{\partial x}}\frac{{\partial w^{*} }}{\partial x}\frac{{\partial^{2} w}}{{\partial \theta^{2} }} \hfill \\ \end{gathered} $$
(A12)
$$ \begin{gathered} P_{4} = \frac{1}{2}A_{11} \left( {\frac{\partial w}{{\partial x}}} \right)^{2} \frac{{\partial^{2} w}}{{\partial x^{2} }} + \frac{1}{{2R^{2} }}A_{12} \left( {\frac{\partial w}{{\partial \theta }}} \right)^{2} \frac{{\partial^{2} w}}{{\partial x^{2} }} + \frac{{2A_{66} }}{{R^{2} }}\frac{{\partial^{2} w}}{\partial x\partial \theta }\frac{\partial w}{{\partial x}}\frac{\partial w}{{\partial \theta }} \hfill \\ + \frac{1}{{2R^{2} }}A_{12} \left( {\frac{\partial w}{{\partial x}}} \right)^{2} \frac{{\partial^{2} w}}{{\partial \theta^{2} }} + \frac{1}{{2R^{4} }}A_{12} \left( {\frac{\partial w}{{\partial \theta }}} \right)^{2} \frac{{\partial^{2} w}}{{\partial \theta^{2} }} \hfill \\ \end{gathered} $$
(A13)
$$ Q_{3} = A_{11} \frac{\partial u}{{\partial x}}\frac{{\partial^{2} w}}{{\partial x^{2} }} + \frac{{2A_{66} }}{{R^{2} }}\frac{{\partial^{2} w}}{\partial x\partial \theta }\frac{\partial u}{{\partial \theta }} + \frac{{A_{12} }}{{R^{2} }}\frac{{\partial^{2} w}}{{\partial \theta^{2} }}\frac{\partial u}{{\partial x}} $$
(A14)
$$ R_{3} = \frac{1}{R}\left( {A_{12} + \frac{{B_{12} }}{R}} \right)\frac{\partial v}{{\partial \theta }}\frac{{\partial^{2} w}}{{\partial x^{2} }} + \frac{1}{R}\left( {2A_{66} + \frac{{4A_{66} }}{R}} \right)\frac{{\partial^{2} w}}{\partial x\partial \theta }\frac{\partial v}{{\partial x}} + \frac{1}{{R^{3} }}\left( {A_{22} + \frac{{B_{22} }}{R}} \right)\frac{{\partial^{2} w}}{{\partial \theta^{2} }}\frac{\partial v}{{\partial \theta }} $$
(A15)

Appendix 2

$$ l_{11} = - \frac{{{\mkern 1mu} \left( {A_{66} {\mkern 1mu} L^{2} {\mkern 1mu} n^{2} + A_{11} {\mkern 1mu} \pi^{2} {\mkern 1mu} R^{2} {\mkern 1mu} m^{2} } \right)}}{{{\mkern 1mu} L^{2} {\mkern 1mu} R^{2} {\mkern 1mu} }} $$
(B1)
$$ l_{12} = \frac{{{\mkern 1mu} \pi mn\left( {B_{12} + 2{\mkern 1mu} B_{66} + A_{12} {\mkern 1mu} R + A_{66} {\mkern 1mu} R} \right)}}{{{\mkern 1mu} L{\mkern 1mu} R^{2} {\mkern 1mu} }} $$
(B2)
$$ l_{13} = \frac{{\pi {\mkern 1mu} m\left( {B_{12} {\mkern 1mu} L^{2} {\mkern 1mu} n^{2} + 2{\mkern 1mu} B_{66} {\mkern 1mu} L^{2} {\mkern 1mu} n^{2} + A_{12} {\mkern 1mu} L^{2} {\mkern 1mu} R + B_{11} {\mkern 1mu} R^{2} {\mkern 1mu} m^{2} {\mkern 1mu} \pi^{2} } \right)}}{{L^{3} {\mkern 1mu} R^{2} {\mkern 1mu} }} $$
(B3)
$$ l_{21} = \frac{{\pi mn\left( {B_{12} + 2{\mkern 1mu} B_{66} + A_{12} {\mkern 1mu} R + A_{66} {\mkern 1mu} R} \right)}}{{L{\mkern 1mu} R^{2} {\mkern 1mu} }} $$
(B4)
$$ l_{22} = - \frac{{\left( \begin{gathered} A_{22} {\mkern 1mu} L^{2} {\mkern 1mu} R^{2} {\mkern 1mu} n^{2} + 2{\mkern 1mu} B_{22} {\mkern 1mu} L^{2} {\mkern 1mu} R{\mkern 1mu} n^{2} + D_{22} {\mkern 1mu} L^{2} {\mkern 1mu} n^{2} \hfill \\ + A_{66} {\mkern 1mu} \pi^{2} {\mkern 1mu} R^{4} {\mkern 1mu} m^{2} + 4{\mkern 1mu} B_{66} {\mkern 1mu} \pi^{2} {\mkern 1mu} R^{3} {\mkern 1mu} m^{2} + 4{\mkern 1mu} D_{66} {\mkern 1mu} \pi^{2} {\mkern 1mu} R^{2} {\mkern 1mu} m^{2} \hfill \\ \end{gathered} \right)}}{{L^{2} {\mkern 1mu} R^{4} }} $$
(B5)
$$ l_{23} = - \frac{{n\left( \begin{gathered} D_{22} L^{2} n^{2} + B_{22} L^{2} R + A_{22} L^{2} R^{2} + B_{22} L^{2} Rn^{2} + B_{12} R^{3} m^{2} \pi^{2} \hfill \\ + 2B_{66} R^{3} m^{2} \pi^{2} + D_{12} R^{3} m^{2} \pi^{2} + 4D_{66} R^{2} m^{2} \pi^{2} \hfill \\ \end{gathered} \right)}}{{L^{2} R^{4} }} $$
(B6)
$$ l_{31} = \frac{{\pi {\mkern 1mu} m\left( {B_{12} {\mkern 1mu} L^{2} {\mkern 1mu} n^{2} + 2{\mkern 1mu} B_{66} {\mkern 1mu} L^{2} {\mkern 1mu} n^{2} + A_{12} {\mkern 1mu} L^{2} {\mkern 1mu} R + B_{11} {\mkern 1mu} R^{2} {\mkern 1mu} m^{2} {\mkern 1mu} \pi^{2} } \right)}}{{L^{3} {\mkern 1mu} R^{2} {\mkern 1mu} }} $$
(B7)
$$ l_{32} = - \frac{{n\left( \begin{gathered} D_{22} L^{2} n^{2} + B_{22} L^{2} R + A_{22} L^{2} R^{2} + B_{22} L^{2} Rn^{2} + B_{12} R^{3} m^{2} \pi^{2} \hfill \\ + 2B_{66} R^{3} m^{2} \pi^{2} + D_{12} R^{3} m^{2} \pi^{2} + 4D_{66} R^{2} m^{2} \pi^{2} \hfill \\ \end{gathered} \right)}}{{L^{2} R^{4} }} $$
(B8)
$$ l_{33} = - \frac{\begin{gathered} D_{22} L^{4} n^{4} + A_{22} L^{4} R^{2} + 2B_{22} L^{4} Rn^{2} + D_{11} R^{4} m^{4} \pi^{4} + 2B_{12} L^{2} R^{3} m^{2} \pi^{2} \hfill \\ + L^{2} R^{4} m^{2} \pi^{2} ph - I_{0} L^{2} R^{4} V^{2} m^{2} \pi^{2} + 4D_{66} L^{2} R^{2} m^{2} n^{2} \pi^{2} \hfill \\ \end{gathered} }{{L^{4} R^{4} }} $$
(B9)
$$ p_{3} = - \frac{{3A_{22} W_{1} n^{4} }}{{16R^{4} }} - \frac{{3A_{11} W_{1} m^{4} \pi^{4} }}{{16L^{4} }} - \frac{{\pi A_{12} W_{1} m^{2} }}{{16L^{2} R}} - \frac{{3A_{12} W_{1} m^{2} n^{2} \pi^{2} }}{{16L^{2} R^{2} }} + \frac{{A_{66} W_{1} m^{2} n^{2} \pi^{2} }}{{4L^{2} R^{2} }} $$
(B10)
$$ p_{4} = \frac{{ - 96A_{22} L^{4} mn^{5} \pi^{2} - 96A_{11} R^{4} m^{5} n\pi^{6} - 192A_{12} L^{2} R^{2} m^{3} n^{3} \pi^{4} + 128A_{66} L^{2} R^{2} m^{3} n^{3} \pi^{4} }}{{1024L^{4} R^{4} mn\pi^{2} }} $$
(B11)
$$ p_{1} = p_{2} = n_{1} = n_{2} = 0 $$
(B12)

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YW., She, GL. Nonlinear low-velocity impact response of graphene platelet-reinforced metal foam cylindrical shells under axial motion with geometrical imperfection. Nonlinear Dyn 111, 6317–6334 (2023). https://doi.org/10.1007/s11071-022-08186-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08186-9

Keywords

Navigation