Skip to main content
Log in

Hybrid of block-pulse functions and generalized Mott polynomials and their applications in solving delay fractional optimal control problems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We give the hybrid of block-pulse function and generalized Mott polynomials (HBGMP) and use it to solve delay fractional optimal control problems (DFOCPs). First, we develop a method for computing the exact formula of the Riemann–Liouville fractional integral operator of the HBGMP by using the regularized beta function. Next, the DFOCPs will be transformed into parameter optimization problems. By imposing the optimality conditions, we reduce the problem to algebraic equations. Several examples are given to show the advantages of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Ding, Y., Wang, Z., Ye, H.: Optimal control of a fractional-order HIV-immune system with memory. IEEE Trans. Cont. Syst. Technol. 20(3), 763–769 (2011)

    Google Scholar 

  2. Benson, D.A., Meerschaert, M.M., Revielle, J.: Fractional calculus in hydrologicmodeling: a numerical perspective. Adv. Water. Resour. 51, 479–497 (2013)

    Google Scholar 

  3. Larsson, S., Racheva, M., Saedpanah, F.: Discontinuous Galerkin method for an integro-differential equation modeling dynamic fractional order viscoelasticity. Comput. Methods. Appl. Mech. Eng. 283, 196–209 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Popovic, J.K., Spasic, D.T., Tosic, J., Kolarovic, J.L., Malti, R., Mitic, I.M., Pilipovic, S., Atanackovic, T.M.: Fractional model for pharmacokinetics of high dose methotrexate in children with acute lymphoblastic leukaemia. Commun. Nonlinear. Sci. Numer. Simul. 22, 451–471 (2015)

    MathSciNet  Google Scholar 

  5. Baillie, R.T.: Long memory processes and fractional integration in econometrics. J. Econom. 73, 5–59 (1996)

    MathSciNet  MATH  Google Scholar 

  6. Sierociuk, D., Dzielinski, A., Sarwas, G., Petras, I., Podlubny, I., Skovranek, T.: Modelling heat transfer in heterogeneous media using fractional calculusPhil. Trans. R. Soc. A. 371, 20120146 (2013). https://doi.org/10.1098/rsta.2012.0146

    Article  MathSciNet  MATH  Google Scholar 

  7. Sun, L., Chen, L.: Free vibrations of a taut cable with a general viscoelastic damper modeled by fractional derivatives. J. Sound. Vib. 335, 19–33 (2015)

    Google Scholar 

  8. Mainardi, F.: Fractional Calculus some basic problems in continuum and statistical mechanics Fractals and Fractional Calculus in Continuum Mechanics. Springer Verlag: New York. 291-348 (1997)

  9. Bohannan, G.: Analog fractional order controller in temperature and motor control applications. J. Vib. Contr. 14, 1487–1498 (2008)

    MathSciNet  Google Scholar 

  10. Magin, R.L.: Fractional calculus in bioengineering. Crit. Rev. Biomed. Eng. 32, 1–104 (2004)

    Google Scholar 

  11. Heydari, M.H., Hooshmandasl, M.R., Mohammadi, F., Cattani, C.: Wavelets method for solving systems of nonlinear singular fractional Volterra integro-differential equations. Commun. Nonlinear Sci. Numer. Simul. 19(1), 37–48 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Bryson, A.E., Ho, Y.C.: Applied Optimal Control Optimization, Estimation, and Control. Blaisdell Publishing Company, Waltham (1975)

    Google Scholar 

  13. Hestenes, M.R.: Calculus of Variations and Optimal Control Theory. Wiley, New York (1966)

    MATH  Google Scholar 

  14. Rabiei, K., Ordokhani, Y., Babolian, E.: The Boubaker polynomials and their application to solve fractional optimal control problems. Nonlinear. Dyn. 88(2), 1013–1026 (2017)

    MathSciNet  MATH  Google Scholar 

  15. Nemati, S., Lima, P.M., Torres, D.F.M.: A numerical approach for solving fractional optimal control problems using modified hat functions. Commun. Nonlinear Sci. Numer. Simul. 78, 104849 (2019)

    MathSciNet  MATH  Google Scholar 

  16. Driver, R.D.: Ordinary and Delay Differential Equations. Applied Mathematical Sciences. Springer, New York (1977)

    MATH  Google Scholar 

  17. Kuang, E.: Delay Differential Equations with Applications in Population Dynamics. Acadamic Press, Boston (1993)

    MATH  Google Scholar 

  18. Sweilam, N.H., AL-Mekhlafi, S.M.: Optimal control for a time delay multi-strain tuberculosis fractional model: a numerical approach. IMA J. Math. Control Inf 1(36), 317–340 (2019). https://doi.org/10.1093/imamci/dnx046

    Article  MathSciNet  MATH  Google Scholar 

  19. Das, P., Das, S., Das, P., Rihan, F.A., Uzuntarla, M., Ghosh, D.: Optimal control strategy for cancer remission using combinatorial therapy: a mathematical model-based approach. Chaos Solit. Fract. 145, 109 (2021). https://doi.org/10.1016/j.chaos.2021.110789

    Article  MathSciNet  MATH  Google Scholar 

  20. Sabermahani, S., Ordokhani, Y., Yousefi, S.A.: Fractional-order Lagrange polynomials: an application for solving delay fractional optimal control problems. Trans. Inst. Meas. 41(11), 2997–3009 (2019). https://doi.org/10.1177/0142331218819048

    Article  Google Scholar 

  21. Singh, V.K., Pandey, R.K., Singh, S.: A stable algorithm for Hankel transforms using hybrid of block-pulse and Legendre polynomials. Comput. Phys. Commun. 181, 1–10 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Razzaghi, M., Marzban, H.R.: Direct method for variational problems via hybrid of block-pulse and Chebyshev functions. Math. Prob. Eng. 6, 85–97 (2000)

    MathSciNet  MATH  Google Scholar 

  23. Marzban, H.R., Razzaghi, M.: Analysis of time-delay systems via hybrid of block-pulse functions and Taylor series. J. Vib. Contr. 11, 1455–1468 (2005)

    MathSciNet  MATH  Google Scholar 

  24. Mashayekhi, S., Ordokhani, Y., Razzaghi, M.: Hybrid functions approach for nonlinear constrained optimal control problems. Commun. Nonlin. Sci. Numer. Simulat. 17, 1831–1843 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Mashayekhi, S., Razzaghi, M.: Numerical solution of distributed order fractional differential equations by hybrid functions. J. Comput. Phys. 315, 169–181 (2016)

    MathSciNet  MATH  Google Scholar 

  26. Toan, P.T., Vo, T.N., Razzaghi, M.: Taylor wavelet method for fractional delay differential equations. Eng. Comput. 9, 1–10 (2019)

    Google Scholar 

  27. Vichitkunakorn, P., Vo, T.N., Razzaghi, M.: A numerical method for fractional pantograph differential equations based on Taylor wavelets. Trans. Inst. Meas. 42, 1334–1344 (2010)

    Google Scholar 

  28. Mott, N.F.: the polarisation of electrons by double scattering. In: proceedings of the royal society of London. Series A Containing Papers of a Mathematical and Physical Character. 135(827): 429-458 (1932)

  29. Razzaghi, M., Elnagar, G.: Linear quadratic optimal control problems via shifted Legendre state parametrization. Int. J. Syst. Sci. 25, 393–399 (1994)

    MathSciNet  MATH  Google Scholar 

  30. Mashayekhi, S., Ordokhani, Y., Razzaghi, M.: Hybrid functions approach for optimal control of systems described by integro-differential equations. Appl. Math. Model. 37(5), 3355–3368 (2013)

    MathSciNet  MATH  Google Scholar 

  31. Marzban, H.R., Malakoutikhah, F.: Solution of delay fractional optimal control problems using a hybrid of block-pulse functions and orthonormal Taylor polynomials. J. Franklin. Inst. 356(15), 8182–8215 (2019)

    MathSciNet  MATH  Google Scholar 

  32. Li, C., Qian, D., Chen, Y.: On Riemann-Liouville and Caputo derivatives. Discrete. Dyn. Nat. Soc. 20, 11 (2011). https://doi.org/10.1155/2011/562494

    Article  MathSciNet  MATH  Google Scholar 

  33. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  34. Kruchinin, D.V.: Explicit formula for generalized Mott polynomials. Adv. Stud. Contemp. Math. 24, 327–322 (2014)

    MATH  Google Scholar 

  35. Kreyszig, E.: Introductory Functional Analysis with Applications. Wiley, New York (1989)

    MATH  Google Scholar 

  36. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions: with Formulas. graphs, and mathematical tables. Dover (1973)

  37. Rahimkhani, P., Ordokhani, Y., Babolian, E.: An efficient approximate method for solving delay fractional optimal control problems. Nonlinear. Dyn. 86(3), 1649–1661 (2016)

    MathSciNet  MATH  Google Scholar 

  38. Rabiei, K., Ordokhani, Y., Babolian, E.: Boubaker functions and their applications in solving delay fractional optimal control problems. J. Vib. Contr. 24(15), 3370–3383 (2017)

    MathSciNet  MATH  Google Scholar 

  39. Malmir, I.: A general framework for optimal control of fractional nonlinear delay systems by wavelets. Stat. Optim. Inf. Comput. 8(4), 858–875 (2020)

    MathSciNet  Google Scholar 

  40. Jajarmi, A., Baleanu, D.: Suboptimal control of fractional-order dynamic systems with delay argument. J. Vib. Contr. 24(12), 2430–2446 (2018)

    MathSciNet  MATH  Google Scholar 

  41. Lewis, Frank L., Vrabie, Draguna L., Syrmos, Vassilis L.: Optimal Control, 3rd edn., pp. 97–114. Wiley, New York (2012)

    MATH  Google Scholar 

  42. Bass, R.F.: Real Analysis for Graduate Students. Createspace Ind, Pub (2013)

    Google Scholar 

  43. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods-Fundamentals in Single Domains. Springer, Berlin (2006)

    MATH  Google Scholar 

  44. Shen, J., Tang, T.: Spectral and High-Order Methods with Applications. Science Press, Beijing (2006)

    MATH  Google Scholar 

  45. Dadkhah, M., Farahi, M.H.: Optimal control of time delay systems via hybrid of block-pulse functions and orthonormal Taylor series. Int. J. Appl. Comput. Math. 2(1), 137–152 (2015)

    MathSciNet  MATH  Google Scholar 

  46. Moradi, L., Mohammadi, F., Baleanu, D.: A direct numerical solution of time-delay fractional optimal control problems by using Chelyshkov wavelets. J. Vib. Contr. 25(2), 310–324 (2019)

    MathSciNet  Google Scholar 

  47. Banks, H.T., Burns, J.A.: Hereitary control problems: numerical methods based on averaging approximations. SIAM J. Control. Optim. 16(2), 169–208 (1978)

    MathSciNet  MATH  Google Scholar 

  48. Hosseinpour, S., Nazemi, A., Tohidi, E.: Muntz-Legendre spectral collocation method for solving delay fractional optimal control problems. J. Comput. Appl. Math. 351, 344–363 (2019)

    MathSciNet  MATH  Google Scholar 

  49. Safaie, E., Farahi, M.H., Farmani Ardehaie, M.: An approximate method for numerically solving multi-dimensional delay fractional optimal control problems by Bernstein polynomials. Comput. Appl. Math. 34(3), 831–846 (2014)

  50. Haddadi, N., Ordokhani, Y., Razzaghi, M.: Optimal control of delay systems by using an hybrid functions approximation. J. Optim. Theory Appl. 153, 338–356 (2012)

    MathSciNet  MATH  Google Scholar 

  51. Mohammadzadeh, R., Lakestani, M.: Optimal control of linear time-delay systems by a hybrid of block-pulse functions and biorthogonal cubic Hermite spline multi-wavelets. Optim. Control Appl. Methods. 39, 357–376 (2018)

    MATH  Google Scholar 

  52. Khellat, F.: Optimal control of linear time-delayed systems by linear Legendre multi-wavelets. J. Optim. Theory. Appl. 143(1), 107–121 (2009)

    MathSciNet  MATH  Google Scholar 

  53. Safaie, E., Farahi, M.H.: An approximation method for numerical solution of multi-dimensional feedback delay fractional optimal control problems by Bernstein polynomials. IJNAO. 4(1), 77–94 (2014)

  54. Malmir, I.: Novel Chebyshev wavelets algorithms for optimal control and analysis of general linear delay models. Appl. Math. Model. 69, 621–647 (2019)

    MathSciNet  MATH  Google Scholar 

  55. Bhrawy, A.H., Ezz-Eldien, S.S.: A new Legendre operational technique for delay fractional optimal control problems. Calcolo. 53(4), 521–543 (2016)

    MathSciNet  MATH  Google Scholar 

  56. Marzban, H.R., Razzaghi, M.: Optimal control of linear delay systems via hybrid of block-pulse and Legendre polynomials. J. Frankl. Inst. 341, 279–293 (2004)

    MathSciNet  MATH  Google Scholar 

  57. Nazemi, A., Shabani, M.M.: Numerical solution of the time-delayed optimal control problems with hybrid functions. IMA J. Math. Control. Inf. 32(3), 623–638 (2015)

    MathSciNet  MATH  Google Scholar 

  58. Rakhshan, S.A., Effati, S.: Fractional optimal control problems with time-varying delay: a new delay fractional Euler-Lagrange equations. J. Franklin. Inst. 357, 5954–5988 (2020)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to express their sincere thanks to the anonymous referees for valuable suggestions that improved the final version of the manuscript.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Razzaghi.

Ethics declarations

Conflict of interest

The authors have not disclosed any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabiei, K., Razzaghi, M. Hybrid of block-pulse functions and generalized Mott polynomials and their applications in solving delay fractional optimal control problems. Nonlinear Dyn 111, 6469–6486 (2023). https://doi.org/10.1007/s11071-022-08177-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08177-w

Keywords

Navigation