Skip to main content
Log in

Complicated nonlinear oscillations caused by maneuvering of a flexible spacecraft equipped with hinged solar arrays

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We present a general methodology for the nonlinear dynamical modeling of a three-axis stabilized spacecraft equipped with flexible solar arrays. The large-span multi-panel solar arrays are modeled as flexible thin plates that are connected to the rigid central body of the spacecraft by means of nonlinear flexible hinges. We construct a low-dimensional yet accurate dynamical model by using a Galerkin expansion in terms of global modes of the system that we compute first by using the Rayleigh–Ritz method. The hinged connections between the rigid and flexible parts of the system are imposed employing Lagrange multipliers. The model is used to study the spacecraft response triggered by various maneuvering scenarios. We in particular focus on the coupling between vibrations of the flexible components and the rigid motion of the spacecraft induced by hinge nonlinearities during these orbital and attitude maneuvering operations. In all cases considered, it is found that four global modes are sufficient to accurately compute the system’s response. We also observe other complicated nonlinear dynamical phenomena, such as hysteresis and superharmonic resonance that may be of concern in spacecraft design. Our modeling approach can be applied to other multibody systems directly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Ji, H.R., Li, D.X.: A novel nonlinear finite element method for structural dynamic modeling of spacecraft under large deformation. Thin-Walled Struct. 165, 107926 (2021)

    Article  Google Scholar 

  2. Zhang, X.Y., Zong, Q., Dou, L.Q., Tian, B.L., Liu, W.J.: Finite-time attitude maneuvering and vibration suppression of flexible spacecraft. J. Frank. Inst. 357, 11604–11628 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. Liu, L., Cao, D.Q., Wei, J.: Rigid-flexible coupling dynamic modeling and vibration control for flexible spacecraft based on its global analytical modes. Sci. China Technol. Sci. 62, 608–618 (2019)

    Article  Google Scholar 

  4. Azimi, M., Shahravi, M., Fard, K.M.: Modeling and vibration suppression of flexible spacecraft using higher-order sandwich panel theory. Int. J. Acoust. Vib. 22(2), 1–14 (2017)

    Google Scholar 

  5. Shahravi, M., Azimi, M.: Attitude and vibration control of flexible spacecraft using singular perturbation approach. ISRN Aerospace Eng. 2014, 1 (2014)

    Article  Google Scholar 

  6. Guy, N., Alazard, D., Cumer, C., Charbonnel, C.: Dynamic modeling and analysis of spacecraft with variable tilt of flexible appendages. J. Dyn. Syst. Meas. Contr. 136(2), 021020 (2014)

    Article  Google Scholar 

  7. Azimi, M., Moradi, S.: Nonlinear dynamic and stability analysis of an edge cracked rotating flexible structure. Int. J. Struct. Stab. Dyn. 21(07), 2150091 (2021)

    Article  MathSciNet  Google Scholar 

  8. Ni, Z.Y., Liu, J.G., Wu, S.N., Wu, Z.G.: Time-varying state-space model identification of an on-orbit rigid-flexible coupling spacecraft using an improved predictor-based recursive subspace algorithm. Acta Astronaut. 163, 157–167 (2019)

    Article  Google Scholar 

  9. Gaite, J.: Nonlinear analysis of spacecraft thermal models. Nonlinear Dyn. 65, 283–300 (2011)

    Article  MathSciNet  Google Scholar 

  10. Liu, L., Cao, D.Q., Huang, H., Shao, C.H., Xu, Y.Q.: Thermal-structural analysis for an attitude maneuvering flexible spacecraft under solar radiation. Int. J. Mech. Sci. 126, 161–170 (2017)

    Article  Google Scholar 

  11. Liu, L., Sun, S.P., Cao, D.Q., Liu, X.Y.: Thermal-structural analysis for flexible spacecraft with single or double solar panels: A comparison study. Acta Astronaut. 154, 33–43 (2019)

    Article  Google Scholar 

  12. Liu, L., Cao, D.Q., Tan, X.J.: Studies on global analytical mode for a three-axis attitude stabilized spacecraft by using the Rayleigh-Ritz method. Arch. Appl. Mech. 86, 1927–1946 (2016)

    Article  Google Scholar 

  13. Zhang, D., Luo, J., Yuan, J.: Dynamics modeling and attitude control of spacecraft flexible solar array considering the structure of the hinge rolling. Acta Astronaut. 153, 60–70 (2018)

    Article  Google Scholar 

  14. Ratcliffen, M.J., Lieven, A.J.: A generic element-based method for joint identification. Mech. Syst. Signal Process. 14(1), 3–28 (2000)

    Article  Google Scholar 

  15. Kimm, W.J., Park, Y.S.: Non-linear joint parameter identification by applying the force-state mapping technique in the frequency domain. Mech. Syst. Signal Process. 8(5), 519–529 (1994)

    Article  Google Scholar 

  16. Wu, S., Zhao, S., Wu, D., Luo, M.: Parameter identification of nonlinear joints in spacecraft by force-state mapping. J. Harbin Eng. Univ. 36(12), 1578–1583 (2015)

    MATH  Google Scholar 

  17. Ahmadian, H., Jalali, H.: Identification of bolted lap joints parameters in assembled structures. Mech. Syst. Signal Process. 21(2), 1041–1050 (2007)

    Article  Google Scholar 

  18. Ren, Y., Lim, T.M., Lim, M.K.: Identification of properties of nonlinear joints using dynamic test data. J. Vib. Acoust. 120(2), 324–330 (1998)

    Article  Google Scholar 

  19. Cao, D.Q., Wang, L.C., Wei, J., Nie, Y.F.: Natural frequencies and global mode functions for flexible jointed-panel structures. J. Aerosp. Eng. 33(04020018), 1–10 (2020)

    Google Scholar 

  20. He, G.Q., Cao, D.Q., Wei, J., Cao, Y.T., Chen, Z.G.: Study on analytical global modes for a multi-panel structure connected with flexible hinges. Appl. Math. Model. 91, 1081–1099 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  21. He, G.Q., Cao, D.Q., Cao, Y.T., Huang, W.H.: Investigation on global analytic modes for a three-axis attitude stabilized spacecraft with jointed panels. Aerosp. Sci. Technol. 106, 106087 (2020)

    Article  Google Scholar 

  22. Wei, J., Cao, D.Q., Huang, W.H.: Nonlinear vibration phenomenon of maneuvering spacecraft with flexible jointed appendages. Nonlinear Dyn. 94, 2863–2877 (2018)

    Article  Google Scholar 

  23. Wei, J., Cao, D.Q., Wang, L.C., Huang, H., Huang, W.H.: Dynamic modeling and simulation for flexible spacecraft with flexible jointed solar panels. Int. J. Mech. Sci. 130, 558–570 (2017)

    Article  Google Scholar 

  24. Paik, J.K., Thayamballi, A.K., Kim, G.S.: The strength characteristics of aluminum honeycomb sandwich panels. Thin-Walled Struct. 35, 205–231 (1999)

    Article  Google Scholar 

  25. Bhat, R.B.: Natural frequencies of rectangular plates using characteristic orthogonal polynomials in Rayleigh-Ritz method. J. Sound Vib. 102, 493–499 (1985)

    Article  Google Scholar 

  26. He, G.Q., Cao, D.Q., Cao, Y.T., Huang, W.H.: Dynamic modeling and orbit maneuvering response analysis for a three-axis attitude stabilized large scale flexible spacecraft installed with hinged solar arrays. Mech. Syst. Signal Process. 162, 108083 (2022)

    Article  Google Scholar 

Download references

Funding

This work was supported by the China Scholarship Council (No. 202006120108) and the National Natural Science Foundation of China (Grant No. 11732005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dengqing Cao or G. H. M. van der Heijden.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

The mass matrix M is as follows:

$$ {\varvec{M}} = \left[ {\begin{array}{*{20}c} {M_{11} } & 0 & 0 & 0 & 0 & {M_{{1{6}}} } & {{\varvec{M}}_{17} } \\ 0 & {M_{22} } & 0 & 0 & 0 & {M_{{{26}}} } & {{\varvec{M}}_{27} } \\ 0 & 0 & {M_{33} } & {M_{34} } & {M_{{3{5}}} } & 0 & {{\varvec{M}}_{37} } \\ 0 & 0 & {M_{34}^{{}} } & {M_{44} } & {M_{{{45}}} } & 0 & {{\varvec{M}}_{47} } \\ 0 & 0 & {M_{{3{5}}}^{{}} } & {M_{{4{5}}}^{{}} } & {M_{55} } & {0} & {{\varvec{M}}_{57} } \\ {M_{{{16}}}^{{}} } & {M_{{{26}}}^{{}} } & 0 & 0 & {0} & {M_{66} } & {{\varvec{M}}_{67} } \\ {{\varvec{M}}_{17}^{{\text{T}}} } & {{\varvec{M}}_{27}^{{\text{T}}} } & {{\varvec{M}}_{37}^{{\text{T}}} } & {{\varvec{M}}_{47}^{{\text{T}}} } & {{\varvec{M}}_{57}^{{\text{T}}} } & {{\varvec{M}}_{67}^{{\text{T}}} } & {{\varvec{M}}_{77} } \\ \end{array} } \right] $$

The elements of the mass matrix M are as follows:

$$ M_{11} = 2N \cdot 4\rho hab + m_{R} $$
$$ M_{16} = - 2\rho h\sum\limits_{i = 1}^{N} {\int_{0}^{a} {\int_{ - b}^{b} {y_{{R_{i} }} } } } {\text{d}}y_{{R_{i} }} {\text{d}}x_{{R_{i} }} - 2\rho h\sum\limits_{i = 1}^{N} {\int_{ - a}^{0} {\int_{ - b}^{b} {y_{{L_{i} }} } } } {\text{d}}y_{{L_{i} }} {\text{d}}x_{{L_{i} }} $$
$$ M_{22} = 2N \cdot 4\rho hab + m_{R} $$
$$ M_{26} = \rho \sum\limits_{i = 1}^{N} {\int_{0}^{a} {\int_{ - b}^{b} {2h} [x_{{R_{i} }} + r_{0} { + }a{(}i - 1{\text{)] d}}y_{{R_{i} }} {\text{d}}x_{{R_{i} }} } } + \rho \sum\limits_{i = 1}^{N} {\int_{ - a}^{0} {\int_{ - b}^{b} {2h} [x_{{L_{i} }} - r_{0} - a(i - 1){\text{] d}}y_{{L_{i} }} {\text{d}}x_{{L_{i} }} } } $$
$$ M_{33} = 2N \cdot 4\rho hab + m_{R} $$
$$ M_{34} = \sum\limits_{i = 1}^{N} {\int_{0}^{a} {\int_{ - b}^{b} {{2}hy_{{R_{i} }} } {\text{ d}}y_{{R_{i} }} {\text{d}}x_{{R_{i} }} } } + \rho \sum\limits_{i = 1}^{N} {\int_{ - a}^{0} {\int_{ - b}^{b} {{2}hy_{{L_{i} }} } {\text{ d}}y_{{L_{i} }} {\text{d}}x_{{L_{i} }} } } $$
$$ M_{{{35}}} = \rho \sum\limits_{i = 1}^{N} {\int_{0}^{a} {\int_{ - b}^{b} { - 2h} [x_{{R_{i} }} + r_{0} + a(i - 1)]{\text{ d}}y_{{R_{i} }} {\text{d}}x_{{R_{i} }} } } + \rho \sum\limits_{i = 1}^{N} {\int_{ - a}^{0} {\int_{ - b}^{b} { - 2h} [x_{{L_{i} }} - r_{0} - a(i - 1)]{\text{ d}}y_{{L_{i} }} {\text{d}}x_{{L_{i} }} } } $$
$$ M_{44} = \rho \sum\limits_{i = 1}^{N} {\int_{0}^{a} {\int_{ - b}^{b} {\frac{2}{3}h^{3} } { + }2hy_{{R_{i} }}^{2} {\text{d}}y_{{R_{i} }} {\text{d}}x_{{R_{i} }} } } + \rho \sum\limits_{i = 1}^{N} {\int_{ - a}^{0} {\int_{ - b}^{b} {\frac{2}{3}h^{3} } { + }2hy_{{L_{i} }}^{2} {\text{d}}y_{{L_{i} }} {\text{d}}x_{{L_{i} }} } } + J_{x} $$
$$ M_{45} = \rho \sum\limits_{i = 1}^{N} {\int_{0}^{a} {\int_{ - b}^{b} { - 2h} y_{{R_{i} }} [x_{{R_{i} }} + r_{0} + a(i - 1)]{\text{ d}}y_{{R_{i} }} {\text{d}}x_{{R_{i} }} } } + \rho \sum\limits_{i = 1}^{N} {\int_{ - a}^{0} {\int_{ - b}^{b} { - 2hy_{{L_{i} }} [x_{{L_{i} }} - r_{0} - a(i - 1)]} {\text{ d}}y_{{L_{i} }} {\text{d}}x_{{L_{i} }} } } $$
$$ \begin{aligned} M_{55} & = \rho \sum\limits_{i = 1}^{N} {\int_{0}^{a} {\int_{ - b}^{b} {\frac{2}{3}h^{3} + 2h[x_{{R_{i} }} + r_{0} + a(i - 1)]^{2} } {\text{ d}}y_{{R_{i} }} {\text{d}}x_{{R_{i} }} } } \\ & \quad + \rho \sum\limits_{i = 1}^{N} {\int_{ - a}^{0} {\int_{ - b}^{b} {\frac{2}{3}h^{3} + 2h[x_{{L_{i} }} - r_{0} - a(i - 1)]^{2} } {\text{ d}}y_{{L_{i} }} {\text{d}}x_{{L_{i} }} } } { + }J_{y} \, \\ \end{aligned} $$
$$ \begin{aligned} M_{66} & = \rho \sum\limits_{i = 1}^{N} {\int_{0}^{a} {\int_{ - b}^{b} {2h} \left\{ {[x_{{R_{i} }} + r_{0} + a(i - 1)]^{2} + y_{{R_{i} }}^{2} } \right\}{\text{d}}y_{{R_{i} }} {\text{d}}x_{{R_{i} }} } } \\ & \quad + \rho \sum\limits_{i = 1}^{N} {\int_{ - a}^{0} {\int_{ - b}^{b} {2h\left\{ {[x_{{L_{i} }} + r_{0} + a(i - 1)]^{2} + y_{{L_{i} }}^{2} } \right\}} {\text{ d}}y_{{L_{i} }} {\text{d}}x_{{L_{i} }} } } { + }J_{z} \, \\ \end{aligned} $$
$$ \begin{aligned} {\varvec{M}}_{17} & = \left( {2N \cdot 4\rho hab + m_{R} } \right){\text{X}}_{0} \\ & \quad - \left( {2\rho h\sum\limits_{i = 1}^{N} {\int_{0}^{a} {\int_{ - b}^{b} {y_{{R_{i} }} } } } {\text{d}} y_{{R_{i} }} {\text{d}} x_{{R_{i} }} + 2\rho h\sum\limits_{i = 1}^{N} {\int_{ - a}^{0} {\int_{ - b}^{b} {y_{{L_{i} }} } } } {\text{d}} y_{{L_{i} }} {\text{d}} x_{{L_{i} }} } \right){\uptheta }_{0}^{(z)} \\ \end{aligned} $$
$$ \begin{aligned} {\varvec{M}}_{27} & = \left( {2N \cdot 4\rho hab + m_{R} } \right){\text{Y}}_{0} + \left\{ {\rho \sum\limits_{i = 1}^{N} {\int_{0}^{a} {\int_{ - b}^{b} {2h} [x_{{R_{i} }} + r_{0} { + }a{(}i - 1{)] }{\text{d}} y_{{R_{i} }} {\text{d}} x_{{R_{i} }} } } } \right. \\ & \quad \left. { + \rho \sum\limits_{i = 1}^{N} {\int_{ - a}^{0} {\int_{ - b}^{b} {2h} [x_{{L_{i} }} - r_{0} - a(i - 1)] \, {\text{d}} y_{{L_{i} }} {\text{d}} x_{{L_{i} }} } } } \right\}{\uptheta }_{0}^{(z)} \\ \end{aligned} $$
$$ \begin{aligned} {\varvec{M}}_{37} & = \left( {2N \cdot 4\rho hab + m_{R} } \right){\text{Z}}_{0} \\ & \quad + \left( {\rho \sum\limits_{i = 1}^{N} {\int_{0}^{a} {\int_{ - b}^{b} {2h} y_{{R_{i} }} {\text{d}} y_{{R_{i} }} {\text{d}} x_{{R_{i} }} } } } \right.\left. { + \rho \sum\limits_{i = 1}^{N} {\int_{ - a}^{0} {\int_{ - b}^{b} {2h} y_{{L_{i} }} {\text{d}} y_{{L_{i} }} {\text{d}} x_{{L_{i} }} } } } \right){\uptheta }_{0}^{(x)} \\ & \quad - \left\{ {\rho \sum\limits_{i = 1}^{N} {\int_{0}^{a} {\int_{ - b}^{b} {2h} [x_{{R_{i} }} + r_{0} + a(i - 1)] \, {\text{d}} y_{{R_{i} }} {\text{d}} x_{{R_{i} }} } } } \right. \\ & \quad \left. { + \rho \sum\limits_{i = 1}^{N} {\int_{ - a}^{0} {\int_{ - b}^{b} {2h} [x_{{L_{i} }} - r_{0} - a(i - 1)]{\text{d}} y_{{L_{i} }} {\text{d}} x_{{L_{i} }} } } } \right\}{\uptheta }_{0}^{(y)} \\ & \quad + \rho \sum\limits_{i = 1}^{N} {\int_{0}^{a} {\int_{ - b}^{b} {2h} {\text{W}}_{{R_{i} }} {\text{d}} y_{{R_{i} }} {\text{d}} x_{{R_{i} }} } } + \rho \sum\limits_{i = 1}^{N} {\int_{ - a}^{0} {\int_{ - b}^{b} {2h} {\text{W}}_{{L_{i} }} {\text{d}} y_{{L_{i} }} {\text{d}} x_{{L_{i} }} } } \\ \end{aligned} $$
$$ \begin{aligned} {\varvec{M}}_{47} & = \left( {2N \cdot \frac{4}{3}\rho hab^{3} + 2N \cdot \frac{4}{3}\rho h^{3} ab + J_{x} } \right){\uptheta }_{0}^{(x)} \\ & \quad + \left( {\rho \sum\limits_{i = 1}^{N} {\int_{0}^{a} {\int_{ - b}^{b} {2h} y_{{R_{i} }} {\text{d}} y_{{R_{i} }} {\text{d}} x_{{R_{i} }} } } } \right.\left. { + \rho \sum\limits_{i = 1}^{N} {\int_{ - a}^{0} {\int_{ - b}^{b} {2h} y_{{L_{i} }} {\text{d}} y_{{L_{i} }} {\text{d}} x_{{L_{i} }} } } } \right){\text{Z}}_{0} \\ & \quad - \left\{ {\rho \sum\limits_{i = 1}^{N} {\int_{0}^{a} {\int_{ - b}^{b} {2h} [x_{{R_{i} }} + r_{0} + a(i - 1)] \, y_{{R_{i} }} {\text{d}} y_{{R_{i} }} {\text{d}} x_{{R_{i} }} } } } \right. \\ & \quad \left. { + \rho \sum\limits_{i = 1}^{N} {\int_{ - a}^{0} {\int_{ - b}^{b} {2h} [x_{{L_{i} }} - r_{0} - a(i - 1)]y_{{L_{i} }} {\text{d}} y_{{L_{i} }} {\text{d}} x_{{L_{i} }} } } } \right\}{\uptheta }_{0}^{(y)} \\ & \quad + \rho \sum\limits_{i = 1}^{N} {\int_{0}^{a} {\int_{ - b}^{b} {2h} y_{{R_{i} }} {\text{W}}_{{R_{i} }} {\text{d}} y_{{R_{i} }} {\text{d}} x_{{R_{i} }} } } + \rho \sum\limits_{i = 1}^{N} {\int_{ - a}^{0} {\int_{ - b}^{b} {2h} y_{{R_{i} }} {\text{W}}_{{L_{i} }} {\text{d}} y_{{L_{i} }} {\text{d}} x_{{L_{i} }} } } \\ & \quad + \rho \sum\limits_{i = 1}^{N} {\int_{0}^{a} {\int_{ - b}^{b} {\frac{2}{3}h^{3} } \frac{{\partial {\text{W}}_{{R_{i} }} }}{{\partial y_{{R_{i} }} }}{\text{d}} y_{{R_{i} }} {\text{d}} x_{{R_{i} }} } } + \rho \sum\limits_{i = 1}^{N} {\int_{ - a}^{0} {\int_{ - b}^{b} {\frac{2}{3}h^{3} } \frac{{\partial {\text{W}}_{{L_{i} }} }}{{\partial y_{{L_{i} }} }}{\text{d}} y_{{L_{i} }} {\text{d}} x_{{L_{i} }} } } \\ \end{aligned} $$
$$ \begin{aligned} {\varvec{M}}_{57} & = - \left\{ {\rho \sum\limits_{i = 1}^{N} {\int_{0}^{a} {\int_{ - b}^{b} {2h} [x_{{R_{i} }} + r_{0} + a(i - 1)]{\text{d}} y_{{R_{i} }} {\text{d}} x_{{R_{i} }} } } } \right. \\ & \quad \left. { + \rho \sum\limits_{i = 1}^{N} {\int_{ - a}^{0} {\int_{ - b}^{b} {2h} [x_{{L_{i} }} - r_{0} - a(i - 1)]{\text{d}} y_{{L_{i} }} {\text{d}} x_{{L_{i} }} } } } \right\}{\text{Z}}_{0} \\ & \quad - \left\{ {\rho \sum\limits_{i = 1}^{N} {\int_{0}^{a} {\int_{ - b}^{b} {2h} [x_{{R_{i} }} + r_{0} + a(i - 1)] \, y_{{R_{i} }} {\text{d}} y_{{R_{i} }} {\text{d}} x_{{R_{i} }} } } } \right. \\ & \quad \left. { + \rho \sum\limits_{i = 1}^{N} {\int_{ - a}^{0} {\int_{ - b}^{b} {2h} [x_{{L_{i} }} - r_{0} - a(i - 1)]y_{{L_{i} }} {\text{d}} y_{{L_{i} }} {\text{d}} x_{{L_{i} }} } } } \right\}{\uptheta }_{0}^{(x)} \\ & \quad { + }\left\{ {\rho \sum\limits_{i = 1}^{N} {\int_{0}^{a} {\int_{ - b}^{b} {2h} [x_{{R_{i} }} + r_{0} + a(i - 1)]^{2} {\text{d}} y_{{R_{i} }} {\text{d}} x_{{R_{i} }} } } } \right. \\ & \quad \left. { + \rho \sum\limits_{i = 1}^{N} {\int_{ - a}^{0} {\int_{ - b}^{b} {2h} [x_{{L_{i} }} - r_{0} - a(i - 1)]^{2} {\text{d}} y_{{L_{i} }} {\text{d}} x_{{L_{i} }} } } + 2N \cdot \frac{4}{3}\rho h^{3} ab + J_{y} } \right\}{\uptheta }_{0}^{(y)} \\ & \quad - \left\{ {\rho \sum\limits_{i = 1}^{N} {\int_{0}^{a} {\int_{ - b}^{b} {2h} [x_{{R_{i} }} + r_{0} + a(i - 1)]{\text{ W}}_{{R_{i} }} {\text{d}} y_{{R_{i} }} {\text{d}} x_{{R_{i} }} } } } \right. \\ & \quad \left. { + \rho \sum\limits_{i = 1}^{N} {\int_{ - a}^{0} {\int_{ - b}^{b} {2h} [x_{{L_{i} }} - r_{0} - a(i - 1)]{\text{W}}_{{L_{i} }} {\text{d}} y_{{L_{i} }} {\text{d}} x_{{L_{i} }} } } } \right\} \\ & \quad + \rho \sum\limits_{i = 1}^{N} {\int_{0}^{a} {\int_{ - b}^{b} {\frac{2}{3}h^{3} } \frac{{\partial {\text{W}}_{{R_{i} }} }}{{\partial x_{{R_{i} }} }}{\text{d}} y_{{R_{i} }} {\text{d}} x_{{R_{i} }} } } + \rho \sum\limits_{i = 1}^{N} {\int_{ - a}^{0} {\int_{ - b}^{b} {\frac{2}{3}h^{3} } \frac{{\partial {\text{W}}_{{L_{i} }} }}{{\partial x_{{L_{i} }} }}{\text{d}} y_{{L_{i} }} {\text{d}} x_{{L_{i} }} } } \\ \end{aligned} $$
$$ \begin{gathered} {\varvec{M}}_{67} = - \left( {\rho \sum\limits_{i = 1}^{N} {\int_{0}^{a} {\int_{ - b}^{b} {2h} \, y_{{R_{i} }} {\text{d}} y_{{R_{i} }} {\text{d}} x_{{R_{i} }} + } } \rho \sum\limits_{i = 1}^{N} {\int_{ - a}^{0} {\int_{ - b}^{b} {2h} y_{{L_{i} }} {\text{d}} y_{{L_{i} }} {\text{d}} x_{{L_{i} }} } } } \right){\text{X}}_{0} \hfill \\ \, - \left\{ {\rho \sum\limits_{i = 1}^{N} {\int_{0}^{a} {\int_{ - b}^{b} {2h} [x_{{R_{i} }} + r_{0} + a(i - 1)]{\text{d}} y_{{R_{i} }} {\text{d}} x_{{R_{i} }} } } } \right. \hfill \\ \, \left. { \, + \rho \sum\limits_{i = 1}^{N} {\int_{ - a}^{0} {\int_{ - b}^{b} {2h} [x_{{L_{i} }} - r_{0} - a(i - 1)]{\text{d}} y_{{L_{i} }} {\text{d}} x_{{L_{i} }} } } } \right\}{\text{Y}}_{0} \hfill \\ { + }\left\{ {\rho \sum\limits_{i = 1}^{N} {\int_{0}^{a} {\int_{ - b}^{b} {2h} [x_{{R_{i} }} + r_{0} + a(i - 1)]^{2} {\text{d}} y_{{R_{i} }} {\text{d}} x_{{R_{i} }} } } } \right. \hfill \\ \, \left. { \, + \rho \sum\limits_{i = 1}^{N} {\int_{ - a}^{0} {\int_{ - b}^{b} {2h} [x_{{L_{i} }} - r_{0} - a(i - 1)]^{2} {\text{d}} y_{{L_{i} }} {\text{d}} x_{{L_{i} }} } } + 2N \cdot \frac{4}{3}\rho hab^{3} + J_{z} } \right\}{\uptheta }_{0}^{(z)} \hfill \\ \end{gathered} $$
$$ \begin{aligned} {M}_{{77}} & = M_{{11}} {\text{X}}_{0}^{T} {\text{X}}_{0} + M_{{22}} {\text{Y}}_{0}^{T} {\text{Y}}_{0} + M_{{33}} {\text{Z}}_{0}^{T} {\text{Z}}_{0} + M_{{44}} {{\theta }}_{0}^{{(x)^{T} }} {{\theta }}_{0}^{{(x)}} + M_{{55}} {{\theta }}_{0}^{{(y)^{T} }} {{\theta }}_{0}^{{(y)}} + M_{{66}} {{\theta }}_{0}^{{(z)^{T} }} {{\theta }}_{0}^{{(z)}} \\ & \quad + \rho \sum\limits_{{i = 1}}^{N} {\int_{0}^{a} {\int_{{ - b}}^{b} {\frac{2}{3}h^{3} } \frac{{\partial {\text{W}}_{{R_{i} }}^{T} }}{{\partial x_{{R_{i} }} }}\frac{{\partial {\text{W}}_{{R_{i} }} }}{{\partial x_{{R_{i} }} }}\text{d} y_{{R_{i} }} \text{d} x_{{R_{i} }} } } + \rho \sum\limits_{{i = 1}}^{N} {\int_{{ - a}}^{0} {\int_{{ - b}}^{b} {\frac{2}{3}h^{3} } \frac{{\partial {\text{W}}_{{L_{i} }}^{T} }}{{\partial x_{{L_{i} }} }}\frac{{\partial {\text{W}}_{{L_{i} }} }}{{\partial x_{{L_{i} }} }}\text{d} y_{{L_{i} }} \text{d} x_{{L_{i} }} } } \\ & \quad + \rho \sum\limits_{{i = 1}}^{N} {\int_{0}^{a} {\int_{{ - b}}^{b} {\frac{2}{3}h^{3} } \frac{{\partial {\text{W}}_{{R_{i} }}^{T} }}{{\partial y_{{R_{i} }} }}\frac{{\partial {\text{W}}_{{R_{i} }} }}{{\partial y_{{R_{i} }} }}\text{d} y_{{R_{i} }} \text{d} x_{{R_{i} }} } } + \rho \sum\limits_{{i = 1}}^{N} {\int_{{ - a}}^{0} {\int_{{ - b}}^{b} {\frac{2}{3}h^{3} } \frac{{\partial {\text{W}}_{{L_{i} }}^{T} }}{{\partial y_{{L_{i} }} }}\frac{{\partial {\text{W}}_{{L_{i} }} }}{{\partial y_{{L_{i} }} }}\text{d} y_{{L_{i} }} \text{d} x_{{L_{i} }} } } \\ & \quad + \rho \sum\limits_{{i = 1}}^{N} {\int_{0}^{a} {\int_{{ - b}}^{b} {2h} {\text{W}}_{{R_{i} }}^{T} {\text{W}}_{{R_{i} }} \text{d} y_{{R_{i} }} \text{d} x_{{R_{i} }} } } + \rho \sum\limits_{{i = 1}}^{N} {\int_{{ - a}}^{0} {\int_{{ - b}}^{b} {2h} {\text{W}}_{{L_{i} }}^{T} {\text{W}}_{{L_{i} }} \text{d} y_{{L_{i} }} \text{d} x_{{L_{i} }} } } \\ & \quad + \rho \sum\limits_{{i = 1}}^{N} {\int_{0}^{a} {\int_{{ - b}}^{b} {2h} [x_{{R_{i} }} + r_{0} + a(i - 1)]\text{d} y_{{R_{i} }} \text{d} x_{{R_{i} }} } } \left( {{{\theta }}_{0}^{{(z)^{T} }} {\text{Y}}_{0} + {\text{Y}}_{0}^{T} {{\theta }}_{0}^{{(z)}} } \right) \\ & \quad + \rho \sum\limits_{{i = 1}}^{N} {\int_{{ - a}}^{0} {\int_{{ - b}}^{b} {2h} [x_{{L_{i} }} - r_{0} - a(i - 1)]\text{d} y_{{L_{i} }} \text{d} x_{{L_{i} }} } } \left( {{{\theta }}_{0}^{{(z)^{T} }} {\text{Y}}_{0} + {\text{Y}}_{0}^{T} {{\theta }}_{0}^{{(z)}} } \right) \\ & \quad + \rho \sum\limits_{{i = 1}}^{N} {\int_{0}^{a} {\int_{{ - b}}^{b} {2h{\kern 1pt} } \left( {{\text{Z}}_{0}^{T} {\text{W}}_{{R_{i} }} {\text{ + W}}_{{R_{i} }}^{T} {\text{Z}}_{0} } \right)\text{d} y_{{R_{i} }} \text{d} x_{{R_{i} }} } } + \rho \sum\limits_{{i = 1}}^{N} {\int_{{ - a}}^{0} {\int_{{ - b}}^{b} {2h{\kern 1pt} } \left( {{\text{Z}}_{0}^{T} {\text{W}}_{{L_{i} }} {\text{ + W}}_{{L_{i} }}^{T} {\text{Z}}_{0} } \right)\text{d} y_{{L_{i} }} \text{d} x_{{L_{i} }} } } \\ & \quad - \rho \sum\limits_{{i = 1}}^{N} {\int_{0}^{a} {\int_{{ - b}}^{b} {2h} [x_{{R_{i} }} + r_{0} + a(i - 1)]\text{d} y_{{R_{i} }} \text{d} x_{{R_{i} }} } } \left( {{\text{Z}}_{0}^{T} {{\theta }}_{0}^{{(y)}} + {{\theta }}_{0}^{{(y)^{T} }} {\text{Z}}_{0} } \right) \\ & \quad - \rho \sum\limits_{{i = 1}}^{N} {\int_{{ - a}}^{0} {\int_{{ - b}}^{b} {2h} [x_{{L_{i} }} - r_{0} - a(i - 1)]\text{d} y_{{L_{i} }} \text{d} x_{{L_{i} }} } } \left( {{\text{Z}}_{0}^{T} {{\theta }}_{0}^{{(y)}} + {{\theta }}_{0}^{{(y)^{T} }} {\text{Z}}_{0} } \right) \\ & \quad + \rho \sum\limits_{{i = 1}}^{N} {\int_{0}^{a} {\int_{{ - b}}^{b} {2h} y_{{R_{i} }} \text{d} y_{{R_{i} }} \text{d} x_{{R_{i} }} } } \left( {{\text{Z}}_{0}^{T} {{\theta }}_{0}^{{(x)}} + {{\theta }}_{0}^{{(x)^{T} }} {\text{Z}}_{0} } \right) + \rho \sum\limits_{{i = 1}}^{N} {\int_{{ - a}}^{0} {\int_{{ - b}}^{b} {2h} y_{{L_{i} }} \text{d} y_{{L_{i} }} \text{d} x_{{L_{i} }} } } \left( {{\text{Z}}_{0}^{T} {{\theta }}_{0}^{{(x)}} + {{\theta }}_{0}^{{(x)^{T} }} {\text{Z}}_{0} } \right) \\ & \quad - \rho \sum\limits_{{i = 1}}^{N} {\int_{0}^{a} {\int_{{ - b}}^{b} {2h} [x_{{R_{i} }} + r_{0} + a(i - 1)]y_{{R_{i} }} \text{d} y_{{R_{i} }} \text{d} x_{{R_{i} }} } } \left( {{{\theta }}_{0}^{{(x)^{T} }} {{\theta }}_{0}^{{(y)}} + {{\theta }}_{0}^{{(y)^{T} }} {{\theta }}_{0}^{{(x)}} } \right) \\ & \quad - \rho \sum\limits_{{i = 1}}^{N} {\int_{{ - a}}^{0} {\int_{{ - b}}^{b} {2h} [x_{{L_{i} }} - r_{0} - a(i - 1)]y_{{L_{i} }} \text{d} y_{{L_{i} }} \text{d} x_{{L_{i} }} } } \left( {{{\theta }}_{0}^{{(x)^{T} }} {{\theta }}_{0}^{{(y)}} + {{\theta }}_{0}^{{(y)^{T} }} {{\theta }}_{0}^{{(x)}} } \right) \\ & \quad - \rho \sum\limits_{{i = 1}}^{N} {\int_{0}^{a} {\int_{{ - b}}^{b} {2h} y_{{R_{i} }} \text{d} y_{{R_{i} }} \text{d} x_{{R_{i} }} } } \left( {{{\theta }}_{0}^{{(z)^{T} }} {\text{X}}_{0} + {\text{X}}_{0}^{T} {{\theta }}_{0}^{{(z)}} } \right) - \rho \sum\limits_{{i = 1}}^{N} {\int_{{ - a}}^{0} {\int_{{ - b}}^{b} {2h} y_{{L_{i} }} \text{d} y_{{L_{i} }} \text{d} x_{{L_{i} }} } } \left( {{{\theta }}_{0}^{{(z)^{T} }} {\text{X}}_{0} + {\text{X}}_{0}^{T} {{\theta }}_{0}^{{(z)}} } \right) \\ & \quad - \rho \sum\limits_{{i = 1}}^{N} {\int_{0}^{a} {\int_{{ - b}}^{b} {2h} [x_{{R_{i} }} + r_{0} + a(i - 1)]\left( {{\text{W}}_{{_{{R_{i} }} }}^{T} {{\theta }}_{0}^{{(y)}} + {{\theta }}_{0}^{{(y)^{T} }} {\text{W}}_{{R_{i} }} } \right)\text{d} y_{{R_{i} }} \text{d} x_{{R_{i} }} } } \\ & \quad - \rho \sum\limits_{{i = 1}}^{N} {\int_{{ - a}}^{0} {\int_{{ - b}}^{b} {2h} [x_{{L_{i} }} - r_{0} - a(i - 1)]\left( {{\text{W}}_{{L_{i} }}^{T} {{\theta }}_{0}^{{(y)}} + {{\theta }}_{0}^{{(y)^{T} }} {\text{W}}_{{L_{i} }} } \right)\text{d} y_{{L_{i} }} \text{d} x_{{L_{i} }} } } \\ & \quad + \rho \sum\limits_{{i = 1}}^{N} {\int_{0}^{a} {\int_{{ - b}}^{b} {2h} y_{{R_{i} }} \left( {{\text{W}}_{{R_{i} }}^{T} {{\theta }}_{0}^{{(x)}} + {{\theta }}_{0}^{{(x)^{T} }} {\text{W}}_{{R_{i} }} } \right)\text{d} y_{{R_{i} }} \text{d} x_{{R_{i} }} } } \\ & \quad + \rho \sum\limits_{{i = 1}}^{N} {\int_{{ - a}}^{0} {\int_{{ - b}}^{b} {2hy_{{L_{i} }} } \left( {{\text{W}}_{{L_{i} }}^{T} {{\theta }}_{0}^{{(x)}} + {{\theta }}_{0}^{{(x)^{T} }} {\text{W}}_{{L_{i} }} } \right)\text{d} y_{{L_{i} }} \text{d} x_{{L_{i} }} } } \\ & \quad - \rho \sum\limits_{{i = 1}}^{N} {\int_{0}^{a} {\int_{{ - b}}^{b} {\frac{2}{3}h^{3} } \left( {\frac{{\partial {\text{W}}_{{R_{i} }}^{T} }}{{\partial x_{{R_{i} }} }}{{\theta }}_{0}^{{(y)}} + {{\theta }}_{0}^{{(y)^{T} }} \frac{{\partial {\text{W}}_{{R_{i} }} }}{{\partial x_{{R_{i} }} }}} \right)\text{d} y_{{R_{i} }} \text{d} x_{{R_{i} }} } } \\ & \quad - \rho \sum\limits_{{i = 1}}^{N} {\int_{{ - a}}^{0} {\int_{{ - b}}^{b} {\frac{2}{3}h^{3} } \left( {\frac{{\partial {\text{W}}_{{L_{i} }}^{T} }}{{\partial x_{{L_{i} }} }}{{\theta }}_{0}^{{(y)}} + {{\theta }}_{0}^{{(y)^{T} }} \frac{{\partial {\text{W}}_{{L_{i} }} }}{{\partial x_{{L_{i} }} }}} \right)\text{d} y_{{L_{i} }} \text{d} x_{{L_{i} }} } } \\ & \quad + \rho \sum\limits_{{i = 1}}^{N} {\int_{0}^{a} {\int_{{ - b}}^{b} {\frac{2}{3}h^{3} } \left( {\frac{{\partial {\text{W}}_{{R_{i} }}^{T} }}{{\partial y_{{R_{i} }} }}{{\theta }}_{0}^{{(x)}} + {{\theta }}_{0}^{{(x)^{T} }} \frac{{\partial {\text{W}}_{{R_{i} }} }}{{\partial y_{{R_{i} }} }}} \right)\text{d} y_{{R_{i} }} \text{d} x_{{R_{i} }} } } \\ & \quad + \rho \sum\limits_{{i = 1}}^{N} {\int_{{ - a}}^{0} {\int_{{ - b}}^{b} {\frac{2}{3}h^{3} } \left( {\frac{{\partial {\text{W}}_{{L_{i} }}^{T} }}{{\partial y_{{L_{i} }} }}{{\theta }}_{0}^{{(x)}} + {{\theta }}_{0}^{{(x)^{T} }} \frac{{\partial {\text{W}}_{{L_{i} }} }}{{\partial y_{{L_{i} }} }}} \right)\text{d} y_{{L_{i} }} \text{d} x_{{L_{i} }} } } \\ \end{aligned} $$
$$ {\mathbf{W}}_{{R_{i} }} \left( {x_{{R_{i} }} ,y_{{R_{i} }} } \right) = \left[ {W_{{R_{i} ,1}} \left( {x_{{R_{i} }} ,y_{{R_{i} }} } \right), \cdots ,W_{{R_{i} ,n}} \left( {x_{{R_{i} }} ,y_{{R_{i} }} } \right)} \right] $$

where

$$ {\mathbf{W}}_{{L_{i} }} \left( {x_{{L_{i} }} ,y_{{L_{i} }} } \right) = \left[ {W_{{L_{i} ,1}} \left( {x_{{L_{i} }} ,y_{{L_{i} }} } \right), \cdots ,W_{{L_{i} ,n}} \left( {x_{{L_{i} }} ,y_{{L_{i} }} } \right)} \right] $$
$$ {\text{X}}_{0}^{{}} = \left[ {X_{0,1}^{{}} , \ldots ,X_{0,n}^{{}} } \right],\,{\text{Y}}_{0}^{{}} = \left[ {Y_{0,1}^{{}} , \ldots ,Y_{0,n}^{{}} } \right],\,{\text{Z}}_{0}^{{}} = \left[ {Z_{0,1}^{{}} , \ldots ,Z_{0,n}^{{}} } \right] $$
$$ {\uptheta }_{0}^{(x)} = \left[ {\theta_{0,1}^{(x)} , \ldots ,\theta_{0,n}^{(x)} } \right],\,{\uptheta }_{0}^{(y)} = \left[ {\theta_{0,1}^{(y)} , \ldots ,\theta_{0,n}^{(y)} } \right],\,{\uptheta }_{1}^{(z)} = \left[ {\theta_{0,1}^{(z)} , \ldots ,\theta_{0,n}^{(z)} } \right] $$

Appendix 2

The stiffness and damping matrices K and C are as follows:

$$ {\varvec{K}} = \left[ {\begin{array}{*{20}c} {{\mathbf{0}}_{{{6} \times {6}}} } & {{\mathbf{0}}_{{{6} \times n}} } \\ {{\mathbf{0}}_{{n \times {6}}} } & {{\varvec{K}}_{77} } \\ \end{array} } \right], \, {\varvec{C}} = \left[ {\begin{array}{*{20}c} {{\mathbf{0}}_{{{6} \times {6}}} } & {{\mathbf{0}}_{{{6} \times n}} } \\ {{\mathbf{0}}_{{n \times {6}}} } & {{\varvec{C}}_{77} } \\ \end{array} } \right] $$

where

$$ \begin{gathered} {\varvec{K}}_{77} = \Re + \ell \hfill \\ \Re = D\sum\limits_{i = 1}^{N} {\int_{0}^{a} {\int_{ - b}^{b} {\frac{{\partial^{2} {\text{W}}_{{R_{i} }}^{T} }}{{\partial x_{{R_{i} }}^{2} }}\frac{{\partial^{2} {\text{W}}_{{R_{i} }} }}{{\partial x_{{R_{i} }}^{2} }}} {\text{d}} y_{{R_{i} }} {\text{d}} x_{{R_{i} }} } } \hfill \\ \, + vD\sum\limits_{i = 1}^{N} {\int_{0}^{a} {\int_{ - b}^{b} {\frac{{\partial^{2} {\text{W}}_{{R_{i} }}^{T} }}{{\partial x_{{R_{i} }}^{2} }}\frac{{\partial^{2} {\text{W}}_{{R_{i} }} }}{{\partial y_{{R_{i} }}^{2} }}} + \frac{{\partial^{2} {\text{W}}_{{R_{i} }}^{T} }}{{\partial y_{{R_{i} }}^{2} }}\frac{{\partial^{2} {\text{W}}_{{R_{i} }} }}{{\partial x_{{R_{i} }}^{2} }}{\text{d}} y_{{R_{i} }} {\text{d}} x_{{R_{i} }} } } \hfill \\ \, + 2\left( {1 - v} \right)D\sum\limits_{i = 1}^{N} {\int_{0}^{a} {\int_{ - b}^{b} {\frac{{\partial^{2} {\text{W}}_{{R_{i} }}^{T} }}{{\partial x_{{R_{i} }} \partial y_{{R_{i} }} }}\frac{{\partial^{2} {\text{W}}_{{R_{i} }} }}{{\partial x_{{R_{i} }} \partial y_{{R_{i} }} }}} {\text{d}} y_{{R_{i} }} {\text{d}} x_{{R_{i} }} } } \hfill \\ \, + D\sum\limits_{i = 1}^{N} {\int_{0}^{a} {\int_{ - b}^{b} {\frac{{\partial^{2} {\text{W}}_{{R_{i} }}^{T} }}{{\partial y_{{R_{i} }}^{2} }}\frac{{\partial^{2} {\text{W}}_{{R_{i} }} }}{{\partial y_{{R_{i} }}^{2} }}} {\text{d}} y_{{R_{i} }} {\text{d}} x_{{R_{i} }} } } \hfill \\ \, + k\sum\limits_{i = 1}^{N} {\left( {\Delta \Theta_{{R_{{A_{i} }} }} } \right)^{T} \Delta \Theta_{{R_{{A_{i} }} }} } + k\sum\limits_{i = 1}^{N} {\left( {\Delta \Theta_{{R_{{B_{i} }} }} } \right)^{T} \Delta \Theta_{{R_{{B_{i} }} }} } \hfill \\ \end{gathered} $$

where \(\Delta \Theta_{{R_{{A_{1} }} }} = \left. {\frac{{\partial {\text{W}}_{{R_{1} }}^{T} }}{{\partial x_{{R_{1} }} }}} \right|_{\begin{subarray}{l} x_{{R_{1} }} = 0 \\ y_{{R_{1} }} = y{}_{a} \end{subarray} } \left. {\frac{{\partial {\text{W}}_{{R_{1} }} }}{{\partial x_{{R_{1} }} }}} \right|_{\begin{subarray}{l} x_{{R_{1} }} = 0 \\ y_{{R_{1} }} = y{}_{a} \end{subarray} }\), \(\Delta \Theta_{{R_{{B_{1} }} }} = \left. {\frac{{\partial {\text{W}}_{{R_{1} }}^{T} }}{{\partial x_{{R_{1} }} }}} \right|_{\begin{subarray}{l} x_{{R_{1} }} = 0 \\ y_{{R_{1} }} = y{}_{b} \end{subarray} } \left. {\frac{{\partial {\text{W}}_{{R_{1} }} }}{{\partial x_{{R_{1} }} }}} \right|_{\begin{subarray}{l} x_{{R_{1} }} = 0 \\ y_{{R_{1} }} = y{}_{b} \end{subarray} }\),

\(\Delta \Theta_{{L_{{A_{1} }} }} = \left. {\frac{{\partial {\text{W}}_{{L_{1} }}^{T} }}{{\partial x_{{L_{1} }} }}} \right|_{\begin{subarray}{l} x_{{L_{1} }} = 0 \\ y_{{L_{1} }} = y{}_{a} \end{subarray} } \left. {\frac{{\partial {\text{W}}_{{L_{1} }} }}{{\partial x_{{L_{1} }} }}} \right|_{\begin{subarray}{l} x_{{L_{1} }} = 0 \\ y_{{L_{1} }} = y{}_{a} \end{subarray} }\), \(\Delta \Theta_{{L_{{B_{1} }} }} = \left. {\frac{{\partial {\text{W}}_{{L_{1} }}^{T} }}{{\partial x_{{L_{1} }} }}} \right|_{\begin{subarray}{l} x_{{L_{1} }} = 0 \\ y_{{L_{1} }} = y{}_{b} \end{subarray} } \left. {\frac{{\partial {\text{W}}_{{L_{1} }} }}{{\partial x_{{L_{1} }} }}} \right|_{\begin{subarray}{l} x_{{L_{1} }} = 0 \\ y_{{L_{1} }} = y{}_{b} \end{subarray} }\), and when \(i = 2,3, \ldots ,N\),

\(\Delta \Theta_{{R_{{A_{i} }} }} = \left. {\frac{{\partial {\mathbf{W}}_{{R_{i} }} }}{{\partial x_{{R_{i} }} }}} \right|_{\begin{subarray}{l} x_{{R_{i} }} = 0 \\ y_{{R_{i} }} = y_{a} \end{subarray} } - \left. {\frac{{\partial {\mathbf{W}}_{{R_{i - 1} }} }}{{\partial x_{{R_{i - 1} }} }}} \right|_{\begin{subarray}{l} x_{{R_{i - 1} }} = a \\ y_{{R_{i - 1} }} = y_{a} \end{subarray} }\), \(\Delta \Theta_{{R_{{B_{i} }} }} = \left. {\frac{{\partial {\mathbf{W}}_{{R_{i} }} }}{{\partial x_{{R_{i} }} }}} \right|_{\begin{subarray}{l} x_{{R_{i} }} = 0 \\ y_{{R_{i} }} = y_{b} \end{subarray} } - \left. {\frac{{\partial {\mathbf{W}}_{{R_{i - 1} }} }}{{\partial x_{{R_{i - 1} }} }}} \right|_{\begin{subarray}{l} x_{{R_{i - 1} }} = a \\ y_{{R_{i - 1} }} = y_{b} \end{subarray} }\),

\(\Delta \Theta_{{L_{{A_{i} }} }} = \left. {\frac{{\partial {\mathbf{W}}_{{L_{i} }} }}{{\partial x_{{L_{i} }} }}} \right|_{\begin{subarray}{l} x_{{L_{i} }} = 0 \\ y_{{L_{i} }} = y_{a} \end{subarray} } - \left. {\frac{{\partial {\mathbf{W}}_{{L_{i - 1} }} }}{{\partial x_{{L_{i - 1} }} }}} \right|_{\begin{subarray}{l} x_{{L_{i - 1} }} = a \\ y_{{L_{i - 1} }} = y_{a} \end{subarray} }\), \(\Delta \Theta_{{L_{{B_{i} }} }} = \left. {\frac{{\partial {\mathbf{W}}_{{L_{i} }} }}{{\partial x_{{L_{i} }} }}} \right|_{\begin{subarray}{l} x_{{L_{i} }} = 0 \\ y_{{L_{i} }} = y_{b} \end{subarray} } - \left. {\frac{{\partial {\mathbf{W}}_{{L_{i - 1} }} }}{{\partial x_{{L_{i - 1} }} }}} \right|_{\begin{subarray}{l} x_{{L_{i - 1} }} = a \\ y_{{L_{i - 1} }} = y_{b} \end{subarray} }\).

The expression for \(\ell\) can be obtained from \(\Re\) by replacing all instances of \(R_{i}\) with \(L_{i}\).

The damping matrix C77 is as follows

$$ {\varvec{C}}_{77} = \kappa_{M} {\varvec{M}} + \kappa_{K} {\varvec{K}}_{p} + c{\varvec{C}}_{j} $$

where the coefficients \(\kappa_{M}\) and \(\kappa_{K}\) are proportionality constants and

$$ \begin{aligned} {\varvec{K}}_{p} & = \Re_{p} + \ell_{p} \\ \Re_{p} & = D\sum\limits_{i = 1}^{N} {\int_{0}^{a} {\int_{ - b}^{b} {\frac{{\partial^{2} {\text{W}}_{{R_{i} }}^{T} }}{{\partial x_{{R_{i} }}^{2} }}\frac{{\partial^{2} {\text{W}}_{{R_{i} }} }}{{\partial x_{{R_{i} }}^{2} }}} {\text{d}} y_{{R_{i} }} {\text{d}} x_{{R_{i} }} } } \\ & \quad + vD\sum\limits_{i = 1}^{N} {\int_{0}^{a} {\int_{ - b}^{b} {\frac{{\partial^{2} {\text{W}}_{{R_{i} }}^{T} }}{{\partial x_{{R_{i} }}^{2} }}\frac{{\partial^{2} {\text{W}}_{{R_{i} }} }}{{\partial y_{{R_{i} }}^{2} }}} + \frac{{\partial^{2} {\text{W}}_{{R_{i} }}^{T} }}{{\partial y_{{R_{i} }}^{2} }}\frac{{\partial^{2} {\text{W}}_{{R_{i} }} }}{{\partial x_{{R_{i} }}^{2} }}{\text{d}} y_{{R_{i} }} {\text{d}} x_{{R_{i} }} } } \\ & \quad + 2\left( {1 - v} \right)D\sum\limits_{i = 1}^{N} {\int_{0}^{a} {\int_{ - b}^{b} {\frac{{\partial^{2} {\text{W}}_{{R_{i} }}^{T} }}{{\partial x_{{R_{i} }} \partial y_{{R_{i} }} }}\frac{{\partial^{2} {\text{W}}_{{R_{i} }} }}{{\partial x_{{R_{i} }} \partial y_{{R_{i} }} }}} {\text{d}} y_{{R_{i} }} {\text{d}} x_{{R_{i} }} } } \\ & \quad + D\sum\limits_{i = 1}^{N} {\int_{0}^{a} {\int_{ - b}^{b} {\frac{{\partial^{2} {\text{W}}_{{R_{i} }}^{T} }}{{\partial y_{{R_{i} }}^{2} }}\frac{{\partial^{2} {\text{W}}_{{R_{i} }} }}{{\partial y_{{R_{i} }}^{2} }}} {\text{d}} y_{{R_{i} }} {\text{d}} x_{{R_{i} }} } } \\ \end{aligned} $$

The expression for \(\ell_{p}\) can be obtained from \(\Re_{p}\) by replacing \(R_{i}\) with \(L_{i}\).

$$ \begin{aligned} C_{j} & = \sum\limits_{i = 1}^{N} {\left( {\Delta \Theta_{{R_{{A_{i} }} }} } \right)^{T} \Delta \Theta_{{R_{{A_{i} }} }} } + \sum\limits_{i = 1}^{N} {\left( {\Delta \Theta_{{R_{{B_{i} }} }} } \right)^{T} \Delta \Theta_{{R_{{B_{i} }} }} } \\ & \quad + \sum\limits_{i = 1}^{N} {\left( {\Delta \Theta_{{L_{{A_{i} }} }} } \right)^{T} \Delta \Theta_{{L_{{A_{i} }} }} } + \sum\limits_{i = 1}^{N} {\left( {\Delta \Theta_{{L_{{B_{i} }} }} } \right)^{T} \Delta \Theta_{{L_{{B_{i} }} }} } \\ \end{aligned} $$

Appendix 3

The nonlinear stiffness \({\varvec{K}}_{n} \left( {\varvec{q}} \right)\) is as follows:

$$ {\varvec{K}}_{n} ({\varvec{q}}) = \Re_{n} + \ell_{n} $$
$$ \begin{aligned} \Re_{n} & = k_{n} \left. {\frac{{\partial {\text{W}}_{{R_{1} }}^{T} }}{{\partial x_{{R_{1} }} }}} \right|_{\begin{subarray}{l} x_{{R_{1} }} = 0 \\ y_{{R_{1} }} = y{}_{a} \end{subarray} } \left( {\left. {\frac{{\partial w_{{R_{1} }} }}{{\partial x_{{R_{1} }} }}} \right|_{\begin{subarray}{l} x_{{R_{1} }} = 0 \\ y_{{R_{1} }} = y{}_{a} \end{subarray} } } \right)^{3} + k_{n} \left. {\frac{{\partial {\text{W}}_{{R_{1} }}^{T} }}{{\partial x_{{R_{1} }} }}} \right|_{\begin{subarray}{l} x_{{R_{1} }} = 0 \\ y_{{R_{1} }} = y{}_{b} \end{subarray} } \left( {\left. {\frac{{\partial w_{{R_{1} }} }}{{\partial x_{{R_{1} }} }}} \right|_{\begin{subarray}{l} x_{{R_{1} }} = 0 \\ y_{{R_{1} }} = y{}_{b} \end{subarray} } } \right)^{3} \\ & \quad + k_{n} \sum\limits_{i = 2}^{N} {\left( {\left. {\frac{{\partial {\text{W}}_{{R_{i} }} }}{{\partial x_{{R_{i} }} }}} \right|_{\begin{subarray}{l} x_{{R_{i} }} = 0 \\ y_{{R_{i} }} = y_{a} \end{subarray} } - \left. {\frac{{\partial {\text{W}}_{{R_{i - 1} }} }}{{\partial x_{{R_{i - 1} }} }}} \right|_{\begin{subarray}{l} x_{{R_{i - 1} }} = a \\ y_{{R_{i - 1} }} = y_{a} \end{subarray} } } \right)^{T} \left( {\left. {\frac{{\partial w_{{R_{i} }} }}{{\partial x_{{R_{i} }} }}} \right|_{\begin{subarray}{l} x_{{R_{i} }} = 0 \\ y_{{R_{i} }} = y_{a} \end{subarray} } - \left. {\frac{{\partial w_{{R_{i - 1} }} }}{{\partial x_{{R_{i - 1} }} }}} \right|_{\begin{subarray}{l} x_{{R_{i - 1} }} = a \\ y_{{R_{i - 1} }} = y_{a} \end{subarray} } } \right)^{3} } \\ & \quad + k_{n} \sum\limits_{i = 2}^{N} {\left( {\left. {\frac{{\partial {\text{W}}_{{R_{i} }} }}{{\partial x_{{R_{i} }} }}} \right|_{\begin{subarray}{l} x_{{R_{i} }} = 0 \\ y_{{R_{i} }} = y_{b} \end{subarray} } - \left. {\frac{{\partial {\text{W}}_{{R_{i - 1} }} }}{{\partial x_{{R_{i - 1} }} }}} \right|_{\begin{subarray}{l} x_{{R_{i - 1} }} = a \\ y_{{R_{i - 1} }} = y_{b} \end{subarray} } } \right)^{T} \left( {\left. {\frac{{\partial w_{{R_{i} }} }}{{\partial x_{{R_{i} }} }}} \right|_{\begin{subarray}{l} x_{{R_{i} }} = 0 \\ y_{{R_{i} }} = y_{a} \end{subarray} } - \left. {\frac{{\partial w_{{R_{i - 1} }} }}{{\partial x_{{R_{i - 1} }} }}} \right|_{\begin{subarray}{l} x_{{R_{i - 1} }} = a \\ y_{{R_{i - 1} }} = y_{b} \end{subarray} } } \right)^{3} } \\ \end{aligned} $$

The expression for \(\ell_{n}\) can be obtained from \(\Re_{n}\) by replacing \(R_{i}\) with \(L_{i}\).

Appendix 4

The Coulomb friction matrix is as follows:

$$ {{\varvec{\upmu}}}(\dot{\user2{q}}) = \left[ {\begin{array}{*{20}c} {{0}_{6 \times 1} } \\ {{{\varvec{\upmu}}}(\dot{\user2{p}})} \\ \end{array} } \right] $$

where

$$ \begin{aligned} {{\varvec{\upmu}}}(\dot{\user2{p}}) & = \mu \sum\limits_{i = 1}^{N} {\left\{ {{\text{sign}} \left( {\Delta \Theta_{{R_{{A_{i} }} }} \dot{\user2{p}}} \right)\left( {\Delta \Theta_{{R_{{A_{i} }} }} } \right)^{\text{T}} } \right.} + {\text{sign}} \left( {\Delta \Theta_{{R_{{B_{i} }} }} \dot{\user2{p}}} \right)\left( {\Delta \Theta_{{R_{{B_{i} }} }} } \right)^{\text{T}} \\ & \quad + {\text{sign}} \left( {\Delta \Theta_{{L_{{A_{i} }} }} \dot{\user2{p}}} \right)\left( {\Delta \Theta_{{L_{{A_{i} }} }} } \right)^{\text{T}} \left. { + {\text{sign}} \left( {\Delta \Theta_{{L_{{B_{i} }} }} \dot{\user2{p}}} \right)\left( {\Delta \Theta_{{L_{{B_{i} }} }} } \right)^{\text{T}} } \right\} \\ \end{aligned} $$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, G., Cao, D. & van der Heijden, G.H.M. Complicated nonlinear oscillations caused by maneuvering of a flexible spacecraft equipped with hinged solar arrays. Nonlinear Dyn 111, 6261–6293 (2023). https://doi.org/10.1007/s11071-022-08173-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08173-0

Keywords

Navigation