Skip to main content
Log in

Studies on global analytical mode for a three-axis attitude stabilized spacecraft by using the Rayleigh–Ritz method

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

With extending the Rayleigh–Ritz procedure to study the hub-plate system, the characteristics of global analytical modes are addressed for a typical rigid–flexible coupling dynamic system, i.e., a three-axis attitude stabilized spacecraft installed with a pair of solar arrays. The displacement field of the solar arrays is expressed as a series of admissible functions which is a set of characteristic orthogonal polynomials generated directly by employing Gram–Schmidt process. The rigid body motion of spacecraft is represented by the product of constant and generalized coordinate. Then, through Rayleigh–Ritz procedure, the eigenvalue equation of the three-axis attitude stabilized spacecraft installed with a pair of solar arrays is derived. Solving this eigenvalue equation, the frequencies and analytical expressions of global modes for the flexible spacecraft are obtained. To validate the present analysis, comparisons between the results of the present method and ANSYS software are performed and very good agreement is achieved. The convergence studies demonstrate the high accuracy, excellent convergence and high efficiency of the present approach. Finally, the method is applied to study the characteristics of global modes of the flexible spacecraft.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Li, J., Yan, S., Cai, R.: Thermal analysis of composite solar array subjected to space heat flux. Aerosp. Sci. Technol. 27, 84–94 (2013)

    Article  Google Scholar 

  2. Foster, C.L., Tinker, M.L., Nurre, G.S., Till, W.A.: Solar-array-induced disturbance of the Hubble Space Telescope pointing system. J. Spacecr. Rockets 32, 634–644 (1995)

    Article  Google Scholar 

  3. Hu, Q., Shi, P., Gao, H.: Adaptive variable structure and commanding shaped vibration control of flexible spacecraft. J. Guid. Control Dyn. 30, 804–815 (2007)

    Article  Google Scholar 

  4. Bang, H., Ha, C.K., Kim, J.H.: Flexible spacecraft attitude maneuver by application of sliding mode control. Acta Astronaut. 57, 841–850 (2005)

    Article  Google Scholar 

  5. Sales, T.P., Rade, D.A., de Souza, L.C.G.: Passive vibration control of flexible spacecraft using shunted piezoelectric transducers. Aerosp. Sci. Technol. 29, 403–412 (2013)

    Article  Google Scholar 

  6. Hu, Q., Ma, G.: Variable structure control and active vibration suppression of flexible spacecraft during attitude maneuver. Aerosp. Sci. Technol. 9, 307–317 (2005)

    Article  MATH  Google Scholar 

  7. Lee, K.W., Singh, S.N.: L1 adaptive control of flexible spacecraft despite disturbances. Acta Astronaut. 80, 24–35 (2012)

    Article  Google Scholar 

  8. Karray, F., Grewal, A., Glaum, M., Modi, V.: Stiffening control of a class of nonlinear affine systems. IEEE Trans. Aerosp. Electron. Syst. 33, 473–484 (1997)

    Article  Google Scholar 

  9. Cai, G.P., Lim, C.W.: Dynamics studies of a flexible hub-beam system with significant damping effect. J. Sound Vib. 318, 1–17 (2008)

    Article  Google Scholar 

  10. Dietz, S., Wallrapp, O., Wiedemann, S.: Nodal vs. modal representation in flexible multibody system dynamics. In: Ambrósio JAC (ed.) Multibody Dynamics. IDMEC/IST, Lisbon, Portugal (2003)

  11. Pan, K.Q., Liu, J.Y.: Investigation on the choice of boundary conditions and shape functions for flexible multi-body system. Acta Mech. Sin. 28, 180–189 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Schwertassek, R., Wallrapp, O., Shabana, A.A.: Flexible multibody simulation and choice of shape functions. Nonlinear Dyn. 20, 361–380 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Johnston, J.D., Thornton, E.A.: Thermally induced attitude dynamics of a spacecraft with a flexible appendage. J. Guid. Control Dyn. 21, 581–587 (1998)

    Article  Google Scholar 

  14. Hughes, P.C.: Dynamics of flexible space vehicles with active attitude control. Celest. Mech. Dyn. Astron. 9, 21–39 (1974)

    Article  MATH  Google Scholar 

  15. Hughes, P.C.: Modal identities for elastic bodies, with application to vehicle dynamics and control. J. Appl. Mech. 47, 177–184 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  16. Deleuterio, G.M.T., Hughes, P.C: General motion of gyroelastic vehicles in terms of constrained modes. In: 26th Structures, Structural Dynamics, and Materials Conference, Orlando, FL, USA (1985)

  17. Hablani, H: Rotating unconstrained modes: a more appropriate dynamic analysis of flexible spinning spacecraft. In: 22nd Structures, Structural Dynamics and Materials Conference, Atlanta, GA, USA (1981)

  18. Hablani, H.B.: Constrained and unconstrained modes: some modeling aspects of flexible spacecraft. J. Guid. Control Dyn. 5, 164–173 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hablani, H.B.: Modal analysis of gyroscopic flexible spacecraft: a continuum approach. J. Guid. Control Dyn. 5, 448–457 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hablani, H.B.: Hinges-free and hinges-locked modes of a deformable multibody space station—a continuum analysis. J. Guid. Control Dyn. 13, 286–296 (1990)

    Article  MATH  Google Scholar 

  21. Zhang, J., Wang, T.: Coupled attitude-orbit control of flexible solar sail for displaced solar orbit. J. Spacecr. Rockets 50, 675–685 (2013)

    Article  Google Scholar 

  22. Hurty, W.C.: Dynamic analysis of structural systems using component modes. AIAA J. 3, 678–685 (1965)

    Article  Google Scholar 

  23. Craig, R.R., Bampton, M.C.C.: Coupling of substructures for dynamic analyses. AIAA J. 6, 1313–1319 (1968)

    Article  MATH  Google Scholar 

  24. Yang, H., Hong, J.Z., Yu, Z.Y.: Vibration analysis and experimental investigation for a typical rigid-flexible coupling system. J. Astronaut. 23, 67–72 (2002)

    Google Scholar 

  25. Liu, L., Cao, D.: Dynamic modeling for a flexible spacecraft with solar arrays composed of honeycomb panels and its proportional-derivative control with input shaper. J. Dyn. Syst. Meas. Control (2016). doi:10.1115/1.4033020

    Google Scholar 

  26. Barbieri, E., Özgüner, U.: Unconstrained and constrained mode expansions for a flexible slewing link. J. Dyn. Syst. Meas. Control 110, 416–421 (1988)

    Article  Google Scholar 

  27. Bellezza, F., Lanari, L., Ulivi, G.: Exact modeling of the flexible slewing link. In: IEEE International Conference on Robotics and Automation, Cincinnati, OH, May 1990. IEEE, pp. 734–739

  28. Kuo, C.F.J., Lin, S.C.: Modal analysis and control of a rotating Euler–Bernoulli beam part I: control system analysis and controller design. Math. Comput. Model. 27, 75–92 (1998)

    MathSciNet  MATH  Google Scholar 

  29. Bhat, R.B.: Natural frequencies of rectangular plates using characteristic orthogonal polynomials in Rayleigh–Ritz method. J. Sound Vib. 102, 493–499 (1985)

    Article  Google Scholar 

  30. Sun, S., Cao, D., Han, Q.: Vibration studies of rotating cylindrical shells with arbitrary edges using characteristic orthogonal polynomials in the Rayleigh–Ritz method. Int. J. Mech. Sci. 68, 180–189 (2013)

    Article  Google Scholar 

  31. Liu, L., Cao, D., Sun, S.: Vibration analysis for rotating ring-stiffened cylindrical shells with arbitrary boundary conditions. J. Vib. Acoust. 135, 061010 (2013)

    Article  Google Scholar 

  32. Paik, J.K., Thayamballi, A.K., Kim, G.S.: The strength characteristics of aluminum honeycomb sandwich panels. Thin Wall. Struct. 35, 205–231 (1999)

    Article  Google Scholar 

  33. Lachiver, J.M.: Pléiades: operational programming first results. In: SpaceOps 2012 Conference, Stockholm, Sweden, 2012. doi:10.2514/2516.2012-1275526

  34. Hu, Z., Hong, J.: Modeling and analysis of a coupled rigid-flexible system. Appl. Math. Mech. 20, 1167–1174 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  35. So, J., Leissa, A.W.: Free vibrations of thick hollow circular cylinders from three-dimensional analysis. J. Vib. Acoust. 119, 89–95 (1997)

    Article  Google Scholar 

  36. Zhou, D., Cheung, Y.K., Lo, S.H., Au, F.T.K.: 3D vibration analysis of solid and hollow circular cylinders via Chebyshev–Ritz method. Comput. Meth. Appl. Mech. Eng. 192, 1575–1589 (2003)

    Article  MATH  Google Scholar 

  37. Liang, C.C., Liao, C.C., Tai, Y.S., Lai, W.H.: The free vibration analysis of submerged cantilever plates. Ocean Eng. 28, 1225–1245 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

This research has been supported by the National Natural Science Foundation of China (Grant No. 11472089).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dengqing Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Cao, D. & Tan, X. Studies on global analytical mode for a three-axis attitude stabilized spacecraft by using the Rayleigh–Ritz method. Arch Appl Mech 86, 1927–1946 (2016). https://doi.org/10.1007/s00419-016-1155-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-016-1155-3

Keywords

Navigation