Skip to main content
Log in

Traveling pulses and its wave solution scheme in a diffusively coupled 2D Hindmarsh-Rose excitable systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this article, an analytical approach is demonstrated to show the emerging traveling pulses for the local evolution of a set of diffusively coupled dynamical equations representing neuronal impulses. The derived dynamics governing the traveling pulses solution is described in a space-time reference frame with a two-dimensional excitable Hindmarsh-Rose (H-R) type oscillator. We deduce the conditions that allow us to describe explicitly the nature of propagating traveling pulses. We have constructed the detailed analytical results using semi-discrete approximation method with numerical simulations illuminating possible traveling pulses that include dispersion relations and group velocity equations. We show that the diffusive network can be expressed by the complex Ginzburg-Landau equation. The extended excitable medium with a homogeneous diffusive connection exhibits envelope solitons and multipulses. We observe how the series expansion parameter and coupling play key roles for the appearance of different traveling pulses. The transition phases and amplitude modulations are reported. The obtained results in the form of single solitary pulses and multipulses, reveal the possibility of collective behavior for information processing in excitable system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Ambrosio, B., Aziz-Alaoui, M.A.: Synchronization and control of coupled reaction-diffusion systems of the FitzHugh-Nagumo type. Comput. Math. Appl. 64, 934–943 (2012)

    Article  MATH  Google Scholar 

  2. Bayati, M., Valizadeh, A., Abbassian, A., Cheng, S.: Self-organization of synchronous activity propagation in neuronal networks driven by local excitation. Front. Computat. Neurosci. 9, 69 (2015)

    Google Scholar 

  3. Belykh, I., De Lange, E., Hasler, M.: Synchronization of bursting neurons: what matters in the network topology. Phys. Rev. lett. 94(18), 188101 (2005)

    Article  Google Scholar 

  4. Bressloff, P.C.: Traveling waves and pulses in a one-dimensional network of excitable integrate-and-fire neurons. J. Math. Biol. 40(2), 169–198 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, S.S., Cheng, C.Y., Lin, Y.R.: Application of a two-dimensional hindmarsh-rose type model for bifurcation analysis. Int. J. Bifurcat. Chaos 23(03), 1350055 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Diesmann, M., Gewaltig, M.O., Aertsen, A.: Stable propagation of synchronous spiking in cortical neural networks. Nature 402(6761), 529–533 (1999)

    Article  Google Scholar 

  7. Ermakova, E.A., Shnol, E.E., Panteleev, M.A., Butylin, A.A., Volpert, V., Ataullakhanov, F.I.: On propagation of excitation waves in moving media: The fitzhugh-nagumo model. PloS One 4(2), e4454 (2009)

    Article  Google Scholar 

  8. Ermentrout, B., Terman, D.H.: Mathematical Foundations of Neuroscience, p. 35. Springer, Singapore (2010)

    Book  MATH  Google Scholar 

  9. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1(6), 445–466 (1961)

    Article  Google Scholar 

  10. Folias, S.E., Bressloff, P.C.: Breathing pulses in an excitatory neural network. SIAM J. Appl. Dyn. Syst. 3(3), 378–407 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Folias, S.E., Bressloff, P.C.: Stimulus-locked traveling waves and breathers in an excitatory neural network. SIAM J. Appl. Math. 65(6), 2067–2092 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gani, M.O., Ogawa, T.: Instability of periodic traveling wave solutions in a modified fitzhugh-nagumo model for excitable media. Appl. Math. Computat. 256, 968–984 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Guo, Y., Zhang, A.: Existence and nonexistence of traveling pulses in a lateral inhibition neural network. Disc. Contin. Dyn. Syst. B 21(6), 1729 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hindmarsh, J., Rose, R.: A model of the nerve impulse using two first-order differential equations. Nature 296(5853), 162–164 (1982)

    Article  Google Scholar 

  15. Hindmarsh, J.L., Rose, R.: A model of neuronal bursting using three coupled first order differential equations. Proc. Royal Soc. London Ser. B Biolog. Sci. 221(1222), 87–102 (1984)

    Google Scholar 

  16. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Networks 14(6), 1569–1572 (2003)

    Article  MathSciNet  Google Scholar 

  17. Izhikevich, E.M.: Which model to use for cortical spiking neurons? IEEE Trans. Neural Networks 15(5), 1063–1070 (2004)

    Article  Google Scholar 

  18. Izhikevich, E.M.: Dynamical Systems in Neuroscience. MIT press, New York (2007)

    Google Scholar 

  19. Kakmeni, F.M., Inack, E.M., Yamakou, E.: Localized nonlinear excitations in diffusive hindmarsh-rose neural networks. Phys. Rev. E 89(5), 052919 (2014)

    Article  Google Scholar 

  20. Kilpatrick, Z.P., Folias, S.E., Bressloff, P.C.: Traveling pulses and wave propagation failure in inhomogeneous neural media. SIAM J. Appl. Dyn. Syst. 7(1), 161–185 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kondo, S.: Miura, T: Reaction-diffusion model as a framework for understanding biological pattern formation. science 329(5999), 1616–1620 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu, X., Liu, S.: Codimension-two bifurcation analysis in two-dimensional hindmarsh-rose model. Nonlinear Dyn. 67(1), 847–857 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ma, J., Tang, J.: A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 89(3), 1569–1578 (2017)

    Article  MathSciNet  Google Scholar 

  24. Madadi Asl, M., Asadi, A., Enayati, J., Valizadeh, A.: Inhibitory spike-timing-dependent plasticity can account for pathological strengthening of pallido-subthalamic synapses in parkinson’s disease. front. physiol. 13: 915626. https://doi.org/10.3389/fphys.2022.915626. Frontiers in Physiology| www. frontiersin. org 13 (2022)

  25. Malfliet, W.: The tanh method: a tool for solving certain classes of non-linear pdes. Math. Methods Appl. Sci. 28(17), 2031–2035 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Meier, S.R., Lancaster, J.L., Starobin, J.M.: Bursting regimes in a reaction-diffusion system with action potential-dependent equilibrium. PloS one 10(3), e0122401 (2015)

    Article  Google Scholar 

  27. Meijer, H.G., Coombes, S.: Travelling waves in models of neural tissue: from localised structures to periodic waves. EPJ Nonlinear Biomed. Phys. 2(1), 1–18 (2014)

    Article  Google Scholar 

  28. Mondal, A., Mondal, A., Aziz-Alaoui, M., Upadhyay, R.K., Sharma, S.K., Antonopoulos, C.G.: The generation of diverse traveling pulses and its solution scheme in an excitable slow-fast dynamics. Chaos Interdiscip. J. Nonlinear Sci. 32(8), 083121 (2022)

    Article  MathSciNet  Google Scholar 

  29. Mondal, A., Upadhyay, R.K., Mondal, A., Sharma, S.K.: Dynamics of a modified excitable neuron model: diffusive instabilities and traveling wave solutions. Chaos Interdiscip. J. Nonlinear Sci. 28(11), 113104 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mondal, A., Upadhyay, R.K., Mondal, A., Sharma, S.K.: Emergence of turing patterns and dynamic visualization in excitable neuron model. Appl. Math. Computat. 423, 127010 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  31. O’Dea, R., Crofts, J.J., Kaiser, M.: Spreading dynamics on spatially constrained complex brain networks. J. Royal Soc. Interf. 10(81), 20130016 (2013)

    Article  Google Scholar 

  32. Pariz, A., Esfahani, Z.G., Parsi, S.S., Valizadeh, A., Canals, S., Mirasso, C.R.: High frequency neurons determine effective connectivity in neuronal networks. NeuroImage 166, 349–359 (2018)

    Article  Google Scholar 

  33. Pinto, D.J., Ermentrout, G.B.: Spatially structured activity in synaptically coupled neuronal networks: I traveling fronts and pulses. SIAM J. Appl. Math. 62(1), 206–225 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Raghavachari, S., Glazier, J.A.: Waves in diffusively coupled bursting cells. Phys. Rev. Lett. 82(14), 2991 (1999)

    Article  Google Scholar 

  35. Ratas, I., Pyragas, K.: Effect of high-frequency stimulation on nerve pulse propagation in the fitzhugh-nagumo model. Nonlinear Dyn. 67(4), 2899–2908 (2012)

  36. Rezaei, H., Aertsen, A., Kumar, A., Valizadeh, A.: Facilitating the propagation of spiking activity in feedforward networks by including feedback. PLoS Computat. Biol. 16(8), e1008033 (2020)

    Article  Google Scholar 

  37. Sherratt, J.A., Smith, M.J.: Periodic travelling waves in cyclic populations: field studies and reaction-diffusion models. J. Royal Soc. Interf. 5(22), 483–505 (2008)

  38. Stefanescu, R.A., Jirsa, V.K.: A low dimensional description of globally coupled heterogeneous neural networks of excitatory and inhibitory neurons. PLoS computat. Biol. 4(11), e1000219 (2008)

    Article  MathSciNet  Google Scholar 

  39. Tankou Tagne, A., Takembo, C., Ben-Bolie, H., Owona Ateba, P.: Localized nonlinear excitations in diffusive memristor-based neuronal networks. PLOS ONE 14(6), e0214989 (2019)

    Article  Google Scholar 

  40. Tsuji, S., Ueta, T., Kawakami, H., Fujii, H., Aihara, K.: Bifurcations in two-dimensional hindmarsh-rose type model. Int. J. Bifurcat. Chaos 17(03), 985–998 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Villacorta-Atienza, J.A., Makarov, V.A.: Wave-processing of long-scale information by neuronal chains. Plos One 8(2), e57440 (2013)

    Article  Google Scholar 

  42. Wazwaz, A.M.: The tanh method: exact solutions of the sine-gordon and the sinh-gordon equations. Appl. Math. Computat. 167(2), 1196–1210 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  43. Yafia, R., Aziz-Alaoui, M.: Existence of periodic travelling waves solutions in predator prey model with diffusion. Appl. Math. Modell. 37(6), 3635–3644 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Board for Higher Mathematics (NBHM), Department of Atomic Energy, Govt. of India under Grant No. 02011/11/2022NBHM(R.P)/R & D-II/10217 to the author Argha Mondal.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Argha Mondal or M. A. Aziz-Alaoui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts to disclose regarding the publication of this article.

Ethical standard

The authors state that this research complies with ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Equation 6 can be written in the following form

$$\begin{aligned}{} & {} \left( {\mathop \epsilon \nolimits ^2 \frac{{\mathop \partial \nolimits ^2 P}}{{\partial \mathop T\nolimits _1^2 }} - \epsilon 2i\omega \frac{{\partial P}}{{\partial \mathop T\nolimits _1 }} - \mathop \epsilon \nolimits ^2 2i\omega \frac{{\partial P}}{{\partial \mathop T\nolimits _2 }} - \mathop \omega \nolimits ^2 P} \right) \mathop e\nolimits ^{i\mathop \Omega \nolimits _k } \\{} & {} \quad + \left( {\mathop \epsilon \nolimits ^2 \frac{{\mathop \partial \nolimits ^2 \mathop P\nolimits ^* }}{{\partial \mathop T\nolimits _1^2 }} + \epsilon 2i\omega \frac{{\partial \mathop P\nolimits ^* }}{{\partial \mathop T\nolimits _1 }} + \mathop \epsilon \nolimits ^2 2i\omega \frac{{\partial \mathop P\nolimits ^* }}{{\partial \mathop T\nolimits _2 }} - \mathop \omega \nolimits ^2 \mathop P\nolimits ^* } \right) \\{} & {} \quad \mathop e\nolimits ^{ - i\mathop \Omega \nolimits _k } +\left( { - \mathop \epsilon \nolimits ^2 4i\omega \frac{{\partial R}}{{\partial \mathop T\nolimits _1 }} - \epsilon 4\mathop \omega \nolimits ^2 R} \right) \mathop e\nolimits ^{2i\mathop \Omega \nolimits _k } \\{} & {} \quad + \left( {\mathop \epsilon \nolimits ^2 4i\omega \frac{{\partial \mathop R\nolimits ^* }}{{\partial \mathop T\nolimits _1 }} - \epsilon 4\mathop \omega \nolimits ^2 \mathop R\nolimits ^* } \right) \mathop e\nolimits ^{ - 2i\mathop \Omega \nolimits _k } \\{} & {} \quad +\mathop \epsilon \nolimits ^2 \left[ {\left( {\frac{b}{c} - c} \right) + c\left( {\mathop P\nolimits ^2 \mathop e\nolimits ^{2i\mathop \Omega \nolimits _k } + \mathop P\nolimits ^{*2} \mathop e\nolimits ^{ - 2i\mathop \Omega \nolimits _k } + 2P\mathop P\nolimits ^* } \right) } \right] \\{} & {} \quad \left( { - i\omega P\mathop e\nolimits ^{i\mathop \Omega \nolimits _k } + i\omega \mathop P\nolimits ^* \mathop e\nolimits ^{ - i\mathop \Omega \nolimits _k } } \right) + \left( {d - b} \right) \\{} & {} \quad \left[ {P\mathop e\nolimits ^{i\mathop \Omega \nolimits _k } + \mathop P\nolimits ^* \mathop e\nolimits ^{ - i\mathop \Omega \nolimits _k } + \epsilon \left( {Q + R\mathop e\nolimits ^{2i\mathop \Omega \nolimits _k } + \mathop R\nolimits ^* \mathop e\nolimits ^{ - 2i\mathop \Omega \nolimits _k } } \right) } \right] \\{} & {} \quad +\epsilon \left( {\mathop P\nolimits ^2 \mathop e\nolimits ^{2i\mathop \Omega \nolimits _k } + \mathop P\nolimits ^{*2} \mathop e\nolimits ^{ - 2i\mathop \Omega \nolimits _k } + 2P\mathop P\nolimits ^* } \right) \\{} & {} \quad + 2\mathop \epsilon \nolimits ^2 \left( {P\mathop e\nolimits ^{i\mathop \Omega \nolimits _k } + \mathop P\nolimits ^* \mathop e\nolimits ^{ - i\mathop \Omega \nolimits _k } } \right) \left( {Q + R\mathop e\nolimits ^{2i\mathop \Omega \nolimits _k } + \mathop R\nolimits ^* \mathop e\nolimits ^{ - 2i\mathop \Omega \nolimits _k } } \right) \\{} & {} \quad +\frac{b}{3}\mathop \epsilon \nolimits ^2 \left( \mathop P\nolimits ^3 \mathop e\nolimits ^{3i\mathop \Omega \nolimits _k } + \mathop P\nolimits ^{*3} \mathop e\nolimits ^{ - 3i\mathop \Omega \nolimits _k }\right. \\{} & {} \quad \left. + 3\mathop P\nolimits ^2 \mathop P\nolimits ^* \mathop e\nolimits ^{i\mathop \Omega \nolimits _k } + 3P\mathop P\nolimits ^{*2} \mathop e\nolimits ^{ - 2i\mathop \Omega \nolimits _k } \right) + o\left( {\mathop \epsilon \nolimits ^3 } \right) \\{} & {} = \frac{b}{c}D\,( \left( {P + \epsilon \frac{{\partial P}}{{\partial \mathop X\nolimits _1 }} + \mathop \epsilon \nolimits ^2 \frac{{\partial P}}{{\partial \mathop X\nolimits _2 }} + \frac{{\mathop \epsilon \nolimits ^2 }}{2}\frac{{\mathop \partial \nolimits ^2 P}}{{\partial \mathop X\nolimits _1^2 }}} \right) \mathop e\nolimits ^{iq} \mathop e\nolimits ^{i\mathop \Omega \nolimits _k }\\{} & {} \quad +\left( {\mathop P\nolimits ^* + \epsilon \frac{{\partial \mathop P\nolimits ^* }}{{\partial \mathop X\nolimits _1 }} + \mathop \epsilon \nolimits ^2 \frac{{\partial \mathop P\nolimits ^* }}{{\partial \mathop X\nolimits _2 }} + \frac{{\mathop \epsilon \nolimits ^2 }}{2}\frac{{\mathop \partial \nolimits ^2 \mathop P\nolimits ^* }}{{\partial \mathop X\nolimits _1^2 }}} \right) \mathop e\nolimits ^{ - iq} \mathop e\nolimits ^{ - i\mathop \Omega \nolimits _k } \\{} & {} \quad +\epsilon \left( Q + \epsilon \frac{{\partial Q}}{{\partial \mathop X\nolimits _1 }} +\left( {R + \epsilon \frac{{\partial R}}{{\partial \mathop X\nolimits _1 }}} \right) \mathop e\nolimits ^{2iq} \mathop e\nolimits ^{2i\mathop \Omega \nolimits _k }\right. \\{} & {} \quad \left. + \left( {\mathop R\nolimits ^* + \epsilon \frac{{\partial \mathop R\nolimits ^* }}{{\partial \mathop X\nolimits _1 }}} \right) \mathop e\nolimits ^{ - 2iq} \mathop e\nolimits ^{ - 2i\mathop \Omega \nolimits _k } \right) \\{} & {} \quad -2\left( {P\mathop e\nolimits ^{i\mathop \Omega \nolimits _k } + \mathop P\nolimits ^* \mathop e\nolimits ^{ - i\mathop \Omega \nolimits _k } + \epsilon \left( {Q + R\mathop e\nolimits ^{2i\mathop \Omega \nolimits _k } + \mathop R\nolimits ^* \mathop e\nolimits ^{ - 2i\mathop \Omega \nolimits _k } } \right) } \right) \\{} & {} \quad +\left( {P - \epsilon \frac{{\partial P}}{{\partial \mathop X\nolimits _1 }} - \mathop \epsilon \nolimits ^2 \frac{{\partial P}}{{\partial \mathop X\nolimits _2 }} + \frac{{\mathop \epsilon \nolimits ^2 }}{2}\frac{{\mathop \partial \nolimits ^2 P}}{{\partial \mathop X\nolimits _1^2 }}} \right) \mathop e\nolimits ^{ - iq} \mathop e\nolimits ^{i\mathop \Omega \nolimits _k } \\{} & {} \quad +\left( {\mathop P\nolimits ^* - \epsilon \frac{{\partial \mathop P\nolimits ^* }}{{\partial \mathop X\nolimits _1 }} - \mathop \epsilon \nolimits ^2 \frac{{\partial \mathop P\nolimits ^* }}{{\partial \mathop X\nolimits _2 }} + \frac{{\mathop \epsilon \nolimits ^2 }}{2}\frac{{\mathop \partial \nolimits ^2 \mathop P\nolimits ^* }}{{\partial \mathop X\nolimits _1^2 }}} \right) \mathop e\nolimits ^{iq} \mathop e\nolimits ^{ - i\mathop \Omega \nolimits _k } \\{} & {} \quad +\epsilon \Bigg ( {Q - \epsilon \frac{{\partial Q}}{{\partial \mathop X\nolimits _1 }} + \Bigg ( {R - \epsilon \frac{{\partial R}}{{\partial \mathop X\nolimits _1 }}} \Bigg )\mathop e\nolimits ^{ - 2iq} \mathop e\nolimits ^{2i\mathop \Omega \nolimits _k }} \\{} & {} \quad + \Bigg ( {\mathop R\nolimits ^* - \epsilon \frac{{\partial \mathop R\nolimits ^* }}{{\partial \mathop X\nolimits _1 }}} \Bigg )\mathop e\nolimits ^{2iq} \mathop e\nolimits ^{ - 2i\mathop \Omega \nolimits _k} \Bigg ) \Bigg ) \\{} & {} \quad +i\omega \mathop \epsilon \nolimits ^2 D( - P\mathop e\nolimits ^{iq} \mathop e\nolimits ^{i\mathop \Omega \nolimits _k } + \mathop P\nolimits ^* \mathop e\nolimits ^{ - iq} \mathop e\nolimits ^{ - i\mathop \Omega \nolimits _k }\\{} & {} \quad - P\mathop e\nolimits ^{ - iq} \mathop e\nolimits ^{i\mathop \Omega \nolimits _k } + \mathop P\nolimits ^* \mathop e\nolimits ^{iq} \mathop e\nolimits ^{ - i\mathop \Omega \nolimits _k } )\\{} & {} \quad -2i\omega \mathop \epsilon \nolimits ^2 D\left( { - P\mathop e\nolimits ^{i\mathop \Omega \nolimits _k } + \mathop P\nolimits ^* \mathop e\nolimits ^{ - i\mathop \Omega \nolimits _k } } \right) + o\left( {\mathop \epsilon \nolimits ^3 } \right) , \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Mukherjee, M., Mondal, A. et al. Traveling pulses and its wave solution scheme in a diffusively coupled 2D Hindmarsh-Rose excitable systems. Nonlinear Dyn 111, 6745–6755 (2023). https://doi.org/10.1007/s11071-022-08168-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08168-x

Keywords

Navigation