Skip to main content
Log in

Control of vibration nonlinearity and quality factor for a carbon nanotube mass sensor

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Carbon nanotube (CNT) resonant sensors are small in size and have high sensitivity. However, the CNT resonators are susceptible to nonlinear effect. The existing methods to avoid the nonlinearity would decrease the quality factor of the resonator. Here, a novel method for reducing nonlinear effect and increasing quality factor for a CNT resonant mass sensor is proposed. Based on the circuit model and mechanics model of the CNT resonant mass sensor with two feedback loops, the nonlinear vibration equation of the CNT resonant mass sensor is deduced which includes the non-local effect and the feedback control effects. Using this equation, the amplitude–frequency characteristics of the CNT and its variation with size parameters and feedback gain are studied. A method of simulating the nonlinear effect and quality factor of the sensor through the VAR module of ADS is proposed, which provides a reference for simulating nonlinear effect of field effect transistor sensors by using computer-aided design tools. Results show that by tuning feedback gain, the nonlinear effect of the CNT resonant mass sensor could be reduced and its quality factor could be increased. Using the feedback control strategy provided in this paper, the CNT sensor can be in a linear vibration state with high quality factor in a low-vacuum environment by only adjusting the feedback modulation gain, avoiding the expensive and complex ultra-low-temperature system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Tarasov, A.E., Badamshina, E.R., Anokhin, D.V.: The effect of small additions of carbon nanotubes on the mechanical properties of epoxy polymers under static and dynamic loads. Tech. Phys. 63, 32–40 (2018). https://doi.org/10.1134/S1063784218010267

    Article  Google Scholar 

  2. Banna, A.H., Kayang, K.W., Volkov, A.N.: Effects of the nanotube length and network morphology on the deformation mechanisms and mechanical properties of cross-linked carbon nanotube films. J. Appl. Phys. 129, 105101 (2021). https://doi.org/10.1063/5.0033442

    Article  Google Scholar 

  3. Cai, X., Xu, L.: Multifield coupled dynamics model of resonant carbon nanotube mass sensor based on nonlocal elastic and electromagnetic effects. IEEE. Trans. Ind. Electron. 68, 11511–11522 (2021). https://doi.org/10.1109/TIE.2020.3038090

    Article  Google Scholar 

  4. Craighead, H.G.: Nanoelectromechanical systems. Science 290, 1532–1536 (2000). https://doi.org/10.1063/1.1927327

    Article  Google Scholar 

  5. Ekinci, K.L., Roukes, M.L.: Nanoelectromechanical systems. Rev. Sci. Instrum. (2005). https://doi.org/10.1063/1.1927327

    Article  Google Scholar 

  6. Midolo, L., Schliesser, A., Fiore, A.: Nano-opto-electro-mechanical systems. Nat. Nanotechnol. 13, 11–18 (2018). https://doi.org/10.1038/s41565-017-0039-1

    Article  Google Scholar 

  7. Yang, Y.T., Callegari, C., Feng, X.L.: Zeptogram-scale nanomechanical mass sensing. Nano. Lett. 6, 583–586 (2006). https://doi.org/10.1021/nl052134m

    Article  Google Scholar 

  8. Chaste, J., Eichler, A., Moser, J.: A nanomechanical mass sensor with yoctogram resolution. Nat. Nanotechnol. 7, 300–303 (2012). https://doi.org/10.1038/nnano.2012.42

    Article  Google Scholar 

  9. Moser, J., Guettinger, J., Eichler, A.: Ultrasensitive force detection with a nanotube mechanical resonator. Nat. Nanotechnol. 8, 493–496 (2013). https://doi.org/10.1038/nnano.2013.97

    Article  Google Scholar 

  10. Losby, J.E., Sani, F.F., Grandmont, D.T.: Torque-mixing magnetic resonance spectroscopy. Science 350, 798–801 (2015). https://doi.org/10.1126/science.aad2449

    Article  Google Scholar 

  11. O’connell, A.D., Hofheinz, M., Ansmann, M.: Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010). https://doi.org/10.1038/nature08967

    Article  Google Scholar 

  12. Rossi, M., Mason, D., Chen, J.: Measurement-based quantum control of mechanical motion. Nature 563, 53–54 (2018). https://doi.org/10.1038/s41586-018-0643-8

    Article  Google Scholar 

  13. Wang, Z.L., Poncharal, P., Heer, W.A.: Measuring physical and mechanical properties of individual carbon nanotubes by in situ TEM. J. Phys. Chem. Solids. 61, 1025–1030 (2000). https://doi.org/10.1016/S0022-3697(99)00350-9

    Article  Google Scholar 

  14. Li, H., Wang, X.A., Wang, H.B.: The nonlocal frequency behavior of nanomechanical mass sensors based on the multi-directional vibrations of a buckled nanoribbon. Appl. Math. Model. 77, 1780–1796 (2020). https://doi.org/10.1016/j.apm.2019.09.023

    Article  MathSciNet  MATH  Google Scholar 

  15. Schwab, K.: Spring constant and damping constant tuning of nanomechanical resonators using a single-electron transistor. Appl. Phys. Lett. 80, 1276–1278 (2002). https://doi.org/10.1063/1.1449533

    Article  Google Scholar 

  16. Tamayo, J., Humphris, A.D.L., Owen, R.J.: High-Q dynamic force microscopy in liquid and its application to living cells. Biophys. J. 81, 526–537 (2001). https://doi.org/10.1016/S0006-3495(01)75719-0

    Article  Google Scholar 

  17. Wang, X., Ma, S.: A celestial analytic positioning method by stellar horizon atmospheric refraction. Chinese. J. Aeronaut. 22, 293–300 (2009). https://doi.org/10.1016/S1000-9361(08)60102-8

    Article  Google Scholar 

  18. Alex, T.K., Shrivastava, S.K.: On-board correction of systematic error of Earth sensors. IEEE Trans. Aerosp. Electron. Syst. 25, 373–379 (1989). https://doi.org/10.1109/7.30792

    Article  Google Scholar 

  19. Tekawy, J.A., Wang, P., Gray, C.W.: Scanning horizon sensor attitude correction for Earth oblateness. J. Guid. Control. Dynam. 19, 706–708 (1996). https://doi.org/10.2514/3.21679

    Article  MATH  Google Scholar 

  20. Li, J.: Simple correction algorithm of scanning horizon sensor measurement for Earth oblateness. J. Guid. Control. Dynam. 22, 187–190 (1996). https://doi.org/10.2514/2.7628

    Article  Google Scholar 

  21. Wang, Q., Liew, K.M.: Application of nonlocal continuum mechanics to static analysis of micro- and nano-structures. Phys Lett A. 363, 236–242 (2007). https://doi.org/10.1016/j.physleta.2006.10.093

    Article  Google Scholar 

  22. Kiani, K.: Non local continuous models for forced vibration analysis of two- and three-dimensional ensembles of single-walled carbon nanotubes. Physica E. 60, 229–245 (2014). https://doi.org/10.1016/j.physe.2014.01.033

    Article  Google Scholar 

  23. Kiani, K.: In- and out-of-plane dynamic flexural behaviors of two-dimensional ensembles of vertically aligned single-walled carbon nanotubes. Physica B. 449, 164–180 (2014). https://doi.org/10.1016/j.physb.2014.04.044

    Article  Google Scholar 

  24. Kiani, K.: Non local discrete and continuous modeling of free vibration of stocky ensembles of vertically aligned single-walled carbon nanotubes. Curr. Appl. Phys. 14, 1116–1139 (2014). https://doi.org/10.1016/j.cap.2014.05.018

    Article  Google Scholar 

  25. Kiani, K.: Free vibration of in-plane-aligned membranes of single-walled carbon nanotubes in the presence of in-plane-unidirectional magnetic fields. J. Vib. Control. 22, 3736–3766 (2016). https://doi.org/10.1177/1077546314565684

    Article  MathSciNet  MATH  Google Scholar 

  26. Sazonova, V., Yaish, Y., Ustunel, H.: A tunable carbon nanotube electromechanical oscillator. Nature 431, 284–287 (2004). https://doi.org/10.48550/arXiv.cond-mat/0409407

    Article  Google Scholar 

  27. Mei, J., Li, L.J.: Frequency self-tuning of carbon nanotube resonator with application in mass sensors. Sensor Actuat. B-Chem. 188, 661–668 (2013). https://doi.org/10.1016/j.snb.2013.07.030

    Article  Google Scholar 

  28. Sidhardh, S., Patnaik, S., Semperlotti, F.: Fractional-order shell theory: formulation and application to the analysis of nonlocal cylindrical panels. J. Appl. Mech.-T Asme. (2022). https://doi.org/10.1115/1.4054677

    Article  MATH  Google Scholar 

  29. Patnaik, S., Sidhardh, S., Semperlotti, F.: Displacement-driven approach to nonlocal elasticity. Eur. J. Mech. A-Solid. (2022). https://doi.org/10.1016/j.euromechsol.2021.104434

    Article  MathSciNet  MATH  Google Scholar 

  30. Patnaik, S., Sidhardh, S., Semperlotti, F.: Fractional-Order models for the static and dynamic analysis of nonlocal plates. Commun. Nonlinear Sci. (2021). https://doi.org/10.1016/j.cnsns.2020.105601

    Article  MATH  Google Scholar 

  31. Patnaik, S., Sidhardh, S., Semperlotti, F.: Towards a unified approach to nonlocal elasticity via fractional-order mechanics. Int. J. Mech. Sci. (2021). https://doi.org/10.1016/j.ijmecsci.2020.105992

    Article  MATH  Google Scholar 

  32. Patnaik, S., Semperlotti, F.: Modeling contacts and hysteretic behavior in discrete systems via variable-order fractional operators. J. Comput. Nonlinear Dyn. (2020). https://doi.org/10.1115/1.4046831

    Article  MATH  Google Scholar 

  33. Patnaik, S., Semperlotti, F.: Variable-order fracture mechanics and its application to dynamic fracture. npj Comput. Mater. (2021). https://doi.org/10.1038/s41524-021-00492-x

    Article  MATH  Google Scholar 

  34. Djebali, R., Mebarek-Oudina, F., Rajashekhar, C.: Similarity solution analysis of dynamic and thermal boundary layers: further formulation along a vertical flat plate. Phys. Scripta. (2021). https://doi.org/10.1088/1402-4896/abfe31

    Article  Google Scholar 

  35. Farhan, M., Omar, Z., Mebarek-Oudina, F.: Implementation of the one-step one-hybrid block method on the nonlinear equation of a circular sector oscillator. Comput. Math. Model. 31, 116–132 (2020). https://doi.org/10.1007/s10598-020-09480-0

    Article  MathSciNet  MATH  Google Scholar 

  36. Warke, A.S., Ramesh, K., Mebarek-Oudina, F.: Numerical investigation of the stagnation point flow of radiative magnetomicropolar liquid past a heated porous stretching sheet. J. Therm. Anal. Calorim. 147, 6901–6912 (2022). https://doi.org/10.1007/s10973-021-10976-z

    Article  Google Scholar 

  37. Liu, C.C., Ding, Q., Gong, Q.M., Ma, C.C., Yue, S.C.: Axial control for nonlinear resonances of electrostatically actuated nanobeam with graphene sensor. Appl Math Mech-Engl. 38, 527–542 (2017). https://doi.org/10.1007/s10483-017-2184-6

    Article  MathSciNet  MATH  Google Scholar 

  38. Ke, L.L., Wang, Y.S., Wang, Z.D.: Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory. Compos Struct. 94, 2038–2047 (2012). https://doi.org/10.1016/j.compstruct.2012.01.023

    Article  Google Scholar 

  39. Comi, C., Corigliano, A., Zega, V.: Non-linear response and optimization of a new z-axis resonant micro-accelerometer. Mechatronics 40, 235–243 (2016). https://doi.org/10.1016/j.mechatronics.2016.05.013

    Article  Google Scholar 

  40. Cho, H., Lee, H., Oh, E.: Hierarchical structure of carbon nanotube fibers, and the change of structure during densification by wet stretching. Carbon 136, 409–416 (2018). https://doi.org/10.1016/j.carbon.2018.04.071

    Article  Google Scholar 

  41. Sun, Y.G., Yao, X.H., Liang, Y.J., Han, Q.: Nonlocal beam model for axial buckling of carbon nanotubes with surface effect. EPL (2012). https://doi.org/10.1209/0295-5075/99/56007

    Article  Google Scholar 

  42. Wu, J.X., Li, X.F., Tang, G.J.: Bending wave propagation of carbon nanotubes in a bi-parameter elastic matrix. PHYSICA B. 407, 684–688 (2012). https://doi.org/10.1016/j.physb.2011.11.057

    Article  Google Scholar 

  43. Gunay, M.G.: Free transverse vibration of nickel coated carbon nanotubes. Int. J. Struct. Stab. Dyn. (2021). https://doi.org/10.1142/s0219455421500851

    Article  MathSciNet  Google Scholar 

  44. Sahmani, S., Ansari, R.: Nonlocal beam models for buckling of nanobeams using state-space method regarding different boundary conditions. J. Mech. Sci. Technol. 25, 2365–2375 (2011). https://doi.org/10.1007/s12206-011-0711-6

    Article  Google Scholar 

  45. Darban, H., Luciano, R., Basista, M.: Calibration of the length scale parameter for the stress-driven nonlocal elasticity model from quasi-static and dynamic experiments. Mech. Adv. Mater. Struct. (2022). https://doi.org/10.1080/15376494.2022.2077488

    Article  MATH  Google Scholar 

  46. Ouakad, H.M., Sedighi, H.M.: Rippling effect on the structural response of electrostatically actuated single-walled carbon nanotube based NEMS actuators. Int. J. Nonlinear Mech. 87, 97–108 (2016). https://doi.org/10.1016/j.ijnonlinmec.2016.09.009

    Article  Google Scholar 

  47. Moradweysi, P., Ansari, R., Hosseini, K., Sadeghi, F.: Application of modified Adomian decomposition method to pull-in instability of nano-switches using nonlocal Timoshenko beam theory. Appl. Math. Model. 54, 594–604 (2018). https://doi.org/10.1016/j.apm.2017.10.011

    Article  MathSciNet  MATH  Google Scholar 

  48. Yang, J., Ke, L.L., Kitipornchai, S.: Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory. Physica E. 42, 1727–1735 (2010). https://doi.org/10.1016/j.physe.2010.01.035

    Article  Google Scholar 

  49. Ke, L.L., Xiang, Y., Yang, J., Kitipornchai, S.: Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory. Comp. Mater. Sci. 47, 409–417 (2009). https://doi.org/10.1016/j.commatsci.2009.09.002

    Article  Google Scholar 

  50. Wang, X., Yang, H.K.: Bending stability of multiwalled carbon nanotubes. Phys. Rev. B (2006). https://doi.org/10.1103/PhysRevB.73.085409

    Article  Google Scholar 

  51. Wang, C.Y., Ru, C.Q., Mioduchowski, A.: Pressure effect on radial breathing modes of multiwall carbon nanotubes. J. Appl. Phys. (2005). https://doi.org/10.1063/1.1836007

    Article  Google Scholar 

  52. Talebian, S.T., Tahani, M., Abolbashari, M.H.: An analytical solution for thermal shock analysis of multiwall carbon nanotubes. Comp. Mater. Sci. 61, 291–297 (2012). https://doi.org/10.1016/j.commatsci.2012.04.041

    Article  Google Scholar 

  53. Parker, G.W.: Electric field outside a parallel plate capacitor. Am. J. Phys. 70, 751–754 (2002). https://doi.org/10.1119/1.1463738

    Article  Google Scholar 

  54. Witkamp, B., Poot, M., Van, D.: Bending-mode vibration of a suspended nanotube resonator. Nano Lett. 6, 2904–2908 (2006). https://doi.org/10.1021/nl062206p

    Article  Google Scholar 

  55. Ning, Z.Y., Fu, M., Wu, G.: Remarkable influence of slack on the vibration of a single-walled carbon nanotube resonator. Nanoscale 8, 8658–8665 (2016). https://doi.org/10.1039/c6nr00713a

    Article  Google Scholar 

  56. Conley, W.G., Raman, A., Krousgrill, C.M., Mohammadi, S.: Nonlinear and nonplanar dynamics of suspended nanotube and nanowire resonators. Nano Lett. 8, 1590–1595 (2008). https://doi.org/10.1021/nl073406j

    Article  Google Scholar 

  57. Xia, X., Li, X.: Resonance-mode effect on microcantilever mass-sensing performance in air. Rev. Sci. Instrum. (2008). https://doi.org/10.1063/1.2949390

    Article  Google Scholar 

  58. Yao, Z., Zhu, C.C., Min, C.: Mechanical properties of carbon nanotube by molecular dynamics simulation. Comp. Mater. Sci. 22, 180–184 (2001). https://doi.org/10.1016/S0927-0256(01)00187-2

    Article  Google Scholar 

  59. Gil-Santos, E., Baker, C., Nguyen, D.T.: High-frequency nano-optomechanical disk resonators in liquids. Nat. Nanotechnol. 10, 810–812 (2015). https://doi.org/10.1038/nnano.2015.160

    Article  Google Scholar 

  60. Wang, G.S., Wen, B., He, S.: Multiple nonlinear dielectric resonance of ultra-long silver trimolybdate nanowire. J. Solid. State. Chem. 202, 320–323 (2013). https://doi.org/10.1016/j.jssc.2013.01.033

    Article  Google Scholar 

  61. Qian, X., Fan, W., Wang, S.: Nonlinear effect of forced harmonic oscillator subject to sliding friction and simulation by a simple nonlinear circuit. Am. J. Phys. (2018). https://doi.org/10.1119/1.5082534

    Article  Google Scholar 

  62. Photiadis, D.M., Judge, J.A.: Attachment losses of high Q oscillators. Appl. Phys. Lett. 85, 482 (2004). https://doi.org/10.1063/1.1773928

    Article  Google Scholar 

  63. Wilson-Rae, I.: Intrinsic dissipation in nanomechanical resonators due to phonon tunneling. Phys. Rev. B (2008). https://doi.org/10.1103/PhysRevB.77.245418

    Article  Google Scholar 

  64. Cross, M.C., Lifshitz, R.: Elastic wave transmission at an abrupt junction in a thin plate with application to heat transport and vibrations in mesoscopic systems. Phys. Rev. B. 46, 69–71 (2001). https://doi.org/10.1103/PhysRevB.64.085324

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank helps from MEMS Research center of Yanshan University.

Funding

This research was funded by the National key R & D Program of China, 2018YFB1304800.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lizhong Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval and consent to participate

The research in this paper does not involve any ethical research.

Consent for publication

All authors agree to publish this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

The static displacement and modal function of the CNT vibration are solved as follows:

The CNT has an initial deformation under the action of bias voltage and molecular force [4], and the forced vibration occurs on this basis. The average displacement of the CNT under static deformation is:

$$ \overline{{w_{0} }} = \frac{{16L^{4} {\text{BV}}_{g} }}{{\pi^{6} {\text{EIR}}}} $$
(27)

When a concentrated mass (adsorbed particles) is attached to an arbitrary position (x = d) at the CNT, the CNT resonator can be considered to consist of two parts (w1 (0 ≤ x ≤ d) and w2 (d ≤ x ≤ L)). The mode function can be given by:

$$ \phi (x) = \left\{ {\begin{array}{*{20}c} {\phi_{1} (x) = C_{1} {\text{ch}}\uplambda _{2} x + C_{2} {\text{sh}}\uplambda _{2} x + C_{3} \cos\uplambda _{1} x + C_{4} \sin\uplambda _{1} x} \\ {\phi_{2} (x) = C_{5} {\text{ch}}\uplambda _{2} x + C_{6} {\text{sh}}\uplambda _{2} x + C_{7} \cos\uplambda _{1} x + C_{8} \sin\uplambda _{1} x} \\ \end{array} } \right.\begin{array}{*{20}c} {(0 \le x \le d)} \\ {(d \le x \le L)} \\ \end{array} $$
(28)

where the constants C1, C2, C3, C4, C5, C6, C7, and C8 are determined by boundary conditions and continuity conditions [4, 23].

The CNT is fixed at both ends. The boundary conditions are:

$$ \left\{ \begin{gathered} \phi_{1} (0) = \phi_{2} (L) = 0 \hfill \\ \phi_{1}^{\prime } (0) = \phi_{2}^{\prime } (L) = 0 \hfill \\ \end{gathered} \right. $$
(29)

When the mass and position of the adsorbed particles are given, the continuity conditions are:

$$ \left\{ \begin{gathered} \phi_{1} (d) = \phi_{2} (d) \hfill \\ \begin{array}{*{20}l} {\phi_{1}^{\prime } (d) = \phi_{2}^{\prime } (d)} \hfill \\ {\begin{array}{*{20}l} {\phi_{1}^{\prime \prime } (d) = \phi_{2}^{\prime \prime } (d)} \hfill \\ {EI\left. {\frac{{\partial^{3}\Delta w_{1} \left( {x,t} \right)}}{{\partial x^{3} }}} \right|_{x = d} - EI\left. {\frac{{\partial^{3}\Delta w_{2} \left( {x,t} \right)}}{{\partial x^{3} }}} \right|_{x = d} = m\frac{{\partial^{2}\Delta w_{1} \left( {d,t} \right)}}{{\partial t^{2} }}} \hfill \\ \end{array} } \hfill \\ \end{array} \hfill \\ \end{gathered} \right. $$
(30)

Substituting these conditions into Eq. (28) yields:

$$ \left[ G \right]\left[ C \right] = \left[ 0 \right] $$
(31)

where

$$\left[G\right]=\left[\begin{array}{cccccccc}1& 0& 1& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& {a}_{9}& {a}_{8}& {a}_{6}& {a}_{7}\\ 0& {\lambda }_{2}& 0& {\lambda }_{1}& 0& 0& 0& 0\\ 0& 0& 0& 0& {\lambda }_{2}{a}_{8}& {\lambda }_{2}{a}_{9}& -{\lambda }_{1}{a}_{7}& {\lambda }_{1}{a}_{6}\\ {a}_{4}& {a}_{5}& {a}_{3}& {a}_{1}& -{a}_{4}& - {a}_{5}& -{a}_{3}& -{a}_{1}\\ {\lambda }_{2}{a}_{5}& {\lambda }_{2}{a}_{4}& -{\lambda }_{1}{a}_{1}& {\lambda }_{1}{a}_{3}& -{\lambda }_{2}{a}_{5}& -{\lambda }_{2}{a}_{4}& {\lambda }_{1}{a}_{1}& -{\lambda }_{1}{a}_{3}\\ {{\lambda }_{2}}^{2}{a}_{4}& {{\lambda }_{2}}^{2}{a}_{5}& -{{\lambda }_{1}}^{2}{a}_{3}& -{{\lambda }_{1}}^{2}{a}_{1}& -{{\lambda }_{2}}^{2}{a}_{4}& -{{\lambda }_{2}}^{2}{a}_{5}& {{\lambda }_{1}}^{2}{a}_{3}& {{\lambda }_{1}}^{2}{a}_{1}\\ \begin{array}{c}{{\lambda }_{2}}^{3}{a}_{5}\\ +{a}_{10}{a}_{4}\end{array}& \begin{array}{c}{{\lambda }_{2}}^{3}{a}_{4}\\ +{a}_{10}{a}_{5}\end{array}& \begin{array}{c}{{\lambda }_{1}}^{3}{a}_{1}\\ +{a}_{10}{a}_{3}\end{array}& \begin{array}{c}-{{\lambda }_{1}}^{3}{a}_{3}\\ +{a}_{10}{a}_{1}\end{array}& -{{\lambda }_{2}}^{3}{a}_{5}& -{{\lambda }_{2}}^{3}{a}_{4}& -{{\lambda }_{1}}^{3}{a}_{1}& {{\lambda }_{1}}^{3}{a}_{3}\end{array}\right]$$
(32)
$$\left[C\right]={\left[\begin{array}{cccccccc}{C}_{1}& {C}_{2}& {C}_{3}& {C}_{4}& {C}_{5}& {C}_{6}& {C}_{7}& {C}_{8}\end{array}\right]}^{T}$$

where \({a}_{1}=\mathrm{sin}{\lambda }_{1}d , {a}_{2}=\mathrm{sin}{\lambda }_{2}d , {a}_{3}=\mathrm{cos}{\lambda }_{1}d , {a}_{4}=\mathrm{ch}{\lambda }_{2}d, {a}_{5}=\mathrm{sh}{\lambda }_{2}d ,{a}_{6}=\mathrm{cos}{\lambda }_{1}L , {a}_{7}=\mathrm{sin}{\lambda }_{1}L , {a}_{8}=\mathrm{sh}{\lambda }_{2}L ,{a}_{9}=\mathrm{ch}{\lambda }_{2}L ,{a}_{10}=m{\left(2\pi f\right)}^{2} /EI\)

$$ \left\{ {\begin{array}{*{20}c} {\lambda_{1} = \sqrt {\sqrt {\alpha^{4} /4 + \beta^{4} } - \alpha^{2} /2} } \\ {\lambda_{2} = \sqrt {\sqrt {\alpha^{4} /4 + \beta^{4} } + \alpha^{2} /2} } \\ {\upalpha ^{2} = \frac{N}{{{\text{EI}}}} - \frac{\rho A}{{{\text{EI}}}}\left( {e_{0} a} \right)^{2} \left( {2\pi f} \right)^{2} } \\ {\beta^{4} = \left( {2\pi f} \right)^{2} \frac{\rho A}{{{\text{EI}}}} + \frac{1}{{{\text{EI}}}}\frac{{H_{v} \sqrt {2r} }}{{8(h - \overline{{w_{0} }} - r)^{3} }}} \\ \end{array} } \right. $$
(33)

Equation (31) has a nonzero solution if and only if the coefficient determinant equals zero, that is:

$$\left|G\right|=0$$
(34)

Using Eq. (34), the natural frequencies of the carbon nanotube resonator can be obtained. Substituting the natural frequencies into Eq. (31), constants C1, C2, C3, C4, C5, C6, C7, and C8 can be determined. Substituting them into Eq. (28), the mode function can be given.

Appendix 2

ADS is a special software for microwave RF circuit and system design developed by Aglient, with powerful circuit simulation function. The nonlinear capacitance Cs in the equivalent circuit changes with the excitation frequency, so the S1P_Eqn to S6P_Eqn module for S-parameter simulation is used to simulate it. For single-port- or multi-port-based components, the S1P_Eqn to S6P_Eqn blocks can be used to simulate frequency-dependent impedance components such as resistors, capacitors, and inductors. It has up to six ports, and the impedance between each port and each port can be defined. The S1P_Eqn single port has ± two interfaces, and the + interface is often used as an input terminal. S1P_Eqn defines the impedance element through the equivalent impedance, which can realize the definition of a single impedance element or a composite element after combining several impedance elements. To define a component with impedance a + b j, simply make S[X,Y] = a + b j or S[X,Y] = (a,b). The capacitive reactance introduced by the nonlinear capacitor Cs in this study is:

$$ Z_{{\text{s}}} = \frac{1}{{2\pi fC_{{\text{s}}} {\text{j}}}} $$
(35)

Let S[1, 1] = Zs in the S1P_Eqn module, as shown in Fig. 

Fig. 13
figure 13

Zs is defined in the S1P_Eqn module

13. The VAR module is used to define Zs and establish the relationship between Zs and signal frequency.

In the forced vibration amplitude–frequency relationship formula (13), the relationship between the amplitude z and f can be expressed as an explicit function:

$$ z\left( f \right) = \frac{{\varepsilon A_{4} }}{{2f_{0}^{2} \sqrt {\left( {\frac{{f - f_{0} }}{{f_{0} }} + \frac{{3\varepsilon A_{3} }}{{8mf_{0}^{2} }}} \right)^{2} + \left( \frac{1}{2Q} \right)^{2} } }} $$
(36)

The functional relationship between Zs and f is transformed into the language in ADS, as shown in Fig. 10 and Fig. 13, thus completing the establishment of the nonlinear capacitance Cs that varies with the signal frequency f. After the S-parameter simulation, the relationship between the S21 parameter of the sensor and the excitation frequency f can be obtained.

Appendix 3

In order to prove that the latter terms can be ignored in the Taylor expansion formula of electrostatic force (Eq. (6)) in this paper, the following proofs are made:

The electrostatic force can be expressed as:

$$ f_{K} = - \left( {f_{K1}\Delta w^{3} + f_{K2}\Delta w^{4} + f_{K3}\Delta w^{5} + ...} \right) $$
(37)

where \(f_{K1} { = }\frac{{ - \varepsilon \varepsilon_{0} \varepsilon_{r} r\left( {{\text{KV}}_{K} /h} \right)^{2} }}{{h^{2} \overline{{w_{0} }} }}\),\(f_{K2} { = }\frac{{ - 3\varepsilon \varepsilon_{0} \varepsilon_{r} r\left( {{\text{KV}}_{K} /h} \right)^{2} }}{{2h^{3} \overline{{w_{0} }} }}\), and \(f_{K3} { = }\frac{{ - 2\varepsilon \varepsilon_{0} \varepsilon_{r} r\left( {{\text{KV}}_{K} /h} \right)^{2} }}{{h^{4} \overline{{w_{0} }} }}\).

In order to calculate fK, the dimensions and control parameters of the CNT need to be acquired. As shown in Table

Table 4 Size and control parameters of the CNT required to calculate the fK

4, according to the conclusions drawn in Fig. 3, a certain size and control parameters when the vibration can achieve stable hysteresis are selected.

Taking \(\overline{{\Delta w}}\) as the average amplitude in the vibration process of the CNT, then under the parameters shown in Table 4, \(\overline{{\Delta w}} { = 5}\;{\text{nm}}\).

After calculation, \(f_{K1}\Delta w^{3} { = }\) 1.82 × 10–12 N, \(f_{K2}\Delta w^{4} { = }\) 1.92 × 10–13 N, \(f_{K3}\Delta w^{5} { = }\) 1.72 × 10–14 N can be obtained. If only the first term of the expansion is considered when using Eq. (7), the calculation error of fK is about 9.5%, and the resulting analysis error of K is about 3.0%. According to Fig. 4, it can be obtained that when the K fluctuates by 3.0%, the influence on the analysis of the nonlinear state is negligible. Therefore, when using this model to analyze the nonlinear control parameters, it is sufficient to only consider the first term in the expansion of the electrostatic force exerted by the top plate on the CNT.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, X., Xu, L. Control of vibration nonlinearity and quality factor for a carbon nanotube mass sensor. Nonlinear Dyn 111, 6179–6197 (2023). https://doi.org/10.1007/s11071-022-08164-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08164-1

Keywords

Navigation