Skip to main content
Log in

Geometrical nonlinearities in a curved cantilever beam: a condensation model and inertia-induced nonlinear features

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Subjected to high level forcing, flexible and curved beams exhibit pronounced geometrical nonlinearities. In particular, intrinsic nonlinearities of cantilevers are different from their counterparts with end-constrained boundaries and the combination of the enhanced nonlinear-inertia effects with initial curvature creates harsh demand on the modeling, numerical simulation and understanding of associated physical phenomena. This paper investigates the salient nonlinear features in a curved cantilever beam, with particular attention paid to the inertia-induced effects through both linear and nonlinear analyses. An inextensible condensation model, with the consideration of the initial curvature, is proposed based on a geometrically exact model for an Euler–Bernoulli cantilever beam. The free boundary of the cantilever gives rise to more significant longitudinal motion, which increases the inertia effects in the beam vibration which is in turn enhanced by the initial curvature. Specific techniques are proposed to numerically implement the developed model with increased accuracy and robustness. Numerical simulations are then conducted to validate the proposed model through comparisons with the finite element method, examine the assumptions underpinning the model and explore the salient physical features, in particular the inertia-induced effects in both linear and nonlinear cases. Results show a decrease in the natural frequencies due to the initial curvature effect, a transition of the first mode from hardening to softening caused by enhanced curvature-induced inertia effect, and a pronounced asymmetry of the higher order modes with respect to frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Pai, P.F., Nayfeh, A.H.: A fully nonlinear theory of curved and twisted composite rotor blades accounting for warpings and three-dimensional stress effects. Int. J. Solids Struct. 31(9), 1309–1340 (1994)

    MATH  Google Scholar 

  2. Nayfeh, A.H., Lacarbonara, W., Chin, C.-M.: Nonlinear normal modes of buckled beams: three-to-one and one-to-one internal resonances. Nonlinear Dyn. 18(3), 253–273 (1999)

    MathSciNet  MATH  Google Scholar 

  3. Yu, A.M., Yang, J.W., Nie, G.H., Yang, X.G.: An improved model for naturally curved and twisted composite beams with closed thin-walled sections. Compos. Struct. 93(9), 2322–2329 (2011)

    Google Scholar 

  4. Ghayesh, M.H., Amabili, M.: Coupled longitudinal-transverse behaviour of a geometrically imperfect microbeam. Compos. B Eng. 60, 371–377 (2014)

    Google Scholar 

  5. Yi, Z., Stanciulescu, I.: Nonlinear normal modes of a shallow arch with elastic constraints for two-to-one internal resonances. Nonlinear Dyn. 83(3), 1577–1600 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Qiao, W., Guo, T., Kang, H., Zhao, Y.: Softening–hardening transition in nonlinear structures with an initial curvature: a refined asymptotic analysis. Nonlinear Dyn. 107(1), 357–374 (2022)

    Google Scholar 

  7. Touzé, C., Vizzaccaro, A., Thomas, O.: Model order reduction methods for geometrically nonlinear structures: a review of nonlinear techniques. Nonlinear Dyn. 105(2), 1141–1190 (2021)

    Google Scholar 

  8. Lacarbonara, W.: Nonlinear structural mechanics: theory, dynamical phenomena and modeling. Springer (2013)

    MATH  Google Scholar 

  9. Nayfeh, A.H., Pai, P.F.: Linear and nonlinear structural mechanics. Wiley (2008)

    MATH  Google Scholar 

  10. Ding, H., Chen, L.-Q.: Nonlinear vibration of a slightly curved beam with quasi-zero-stiffness isolators. Nonlinear Dyn. 95(3), 2367–2382 (2019)

    MATH  Google Scholar 

  11. Kármán, T.V.: Festigkeitsprobleme im Maschinenbau. In: Klein, F., Müller, C. (eds.) Mechanik, pp. 311–385. Vieweg+Teubner Verlag, Wiesbaden (1907)

    Google Scholar 

  12. Lagnese, J.E.: Boundary stabilization of thin plates. SIAM (1989)

    MATH  Google Scholar 

  13. Lagnese, J.E., Leugering, G.: Uniform stabilization of a nonlinear beam by nonlinear boundary feedback. J. Differ. Equ. 91(2), 355–388 (1991)

    MathSciNet  MATH  Google Scholar 

  14. Koch, H., Lasiecka, I.: Hadamard Well-posedness of Weak Solutions in Nonlinear Dynamic Elasticity-full von Karman Systems. In: Lorenzi, A., Ruf, B. (eds.) Evolution Equations, pp. 197–216. Semigroups and Functional Analysis. In Memory of Brunello Terreni, Birkhäuser Basel, Basel (2002)

    Google Scholar 

  15. Alijani, F., Amabili, M.: Non-linear vibrations of shells: A literature review from, 2003 to 2013. Int. J. Non-Linear Mech. 58, 233–257 (2014)

    Google Scholar 

  16. Nayfeh, A.H., Mook, D.T.: Nonlinear oscillations. Wiley, UK (2008)

    MATH  Google Scholar 

  17. Amabili, M.: Nonlinear vibrations and stability of shells and plates. Cambridge University Press (2008)

    MATH  Google Scholar 

  18. Bhashyam, G.R., Prathap, G.: Galerkin finite element method for non-linear beam vibrations. J. Sound Vib. 72(2), 191–203 (1980)

    MATH  Google Scholar 

  19. Lee, J., Kerschen, G., Detroux, T.: Harmonic balance computation of the nonlinear frequency response of a thin plate, (2017)

  20. Amabili, M.: Theory and experiments for large-amplitude vibrations of rectangular plates with geometric imperfections. J. Sound Vib. 291(3), 539–565 (2006)

    Google Scholar 

  21. Touzé, C., Camier, C., Favraud, G., Thomas, O.: Effect of imperfections and damping on the type of nonlinearity of circular plates and shallow spherical shells. Math. Probl. Eng. 2008, 678307 (2008)

    MATH  Google Scholar 

  22. Lacarbonara, W., Arafat, H.N., Nayfeh, A.H.: Non-linear interactions in imperfect beams at veering. Int. J. Non-Linear Mech. 40(7), 987–1003 (2005)

    MATH  Google Scholar 

  23. Yi, Z., Wang, L., Kang, H., Tu, G.: Modal interaction activations and nonlinear dynamic response of shallow arch with both ends vertically elastically constrained for two-to-one internal resonance. J. Sound Vib. 333(21), 5511–5524 (2014)

    Google Scholar 

  24. Bauchau, O.A., Hong, C.H.: Large displacement analysis of naturally curved and twisted composite beams. AIAA J. 25(11), 1469–1475 (1987)

    MATH  Google Scholar 

  25. Ibrahimbegović, A.: On finite element implementation of geometrically nonlinear Reissner’s beam theory: three-dimensional curved beam elements. Comput. Methods Appl. Mech. Eng. 122(1), 11–26 (1995)

    MATH  Google Scholar 

  26. Crespo da Silva, M.R.M., Glynn, C.C.: Nonlinear flexural-flexural-torsional dynamics of inextensional beams. I. Equations of motion. J. Struct. Mech. 6(4), 437–448 (1978)

    Google Scholar 

  27. Culver, D., McHugh, K., Dowell, E.: An assessment and extension of geometrically nonlinear beam theories. Mech. Syst. Signal Process. 134, 106340 (2019)

    Google Scholar 

  28. Nayfeh, A.H., Pai, P.F.: Non-linear non-planar parametric responses of an inextensional beam. Int. J. Non-Linear Mech. 24(2), 139–158 (1989)

    MATH  Google Scholar 

  29. Thomas, O., Sénéchal, A., Deü, J.F.: Hardening/softening behavior and reduced order modeling of nonlinear vibrations of rotating cantilever beams. Nonlinear Dyn. 86(2), 1293–1318 (2016)

    Google Scholar 

  30. McHugh, K., Dowell, E.: Nonlinear responses of inextensible cantilever and free-free beams undergoing large deflections. J. Appl. Mech. 85(5), 051008 (2018)

    Google Scholar 

  31. Dowell, E., McHugh, K.: Equations of motion for an inextensible beam undergoing large deflections. J. Appl. Mech. (2016). https://doi.org/10.1115/1.4032795

    Article  Google Scholar 

  32. Anderson, T.J., Nayfeh, A.H., Balachandran, B.: Experimental verification of the importance of the nonlinear curvature in the response of a cantilever beam. J. Vib. Acoust. 118(1), 21–27 (1996)

    Google Scholar 

  33. Kumar, A.: Effect of approximation of curvature/inertia on the nonlinear vibrations of cantilever beam. Structures 26, 737–744 (2020)

    Google Scholar 

  34. Farokhi, H., Xia, Y., Erturk, A.: Experimentally validated geometrically exact model for extreme nonlinear motions of cantilevers. Nonlinear Dyn. 107(1), 457–475 (2022)

    Google Scholar 

  35. Amabili, M., Ferrari, G., Ghayesh, M.H., Hameury, C., Hena Zamal, H.: Nonlinear vibrations and viscoelasticity of a self-healing composite cantilever beam: Theory and experiments. Compos. Struct. 294, 115741 (2022)

    Google Scholar 

  36. Semler, C., Li, G.X., Paϊdoussis, M.P.: The non-linear equations of motion of pipes conveying fluid. J. Sound Vib. 169(5), 577–599 (1994)

    MATH  Google Scholar 

  37. Paidoussis, M.P.: Fluid-structure interactions: slender structures and axial flow. Academic press (1998)

    Google Scholar 

  38. Deliyianni, M., McHugh, K., Webster, J.T., Dowell, E.: Dynamic equations of motion for inextensible beams and plates. Arch. Appl. Mech. 92(6), 1929–1952 (2022)

    Google Scholar 

  39. McHugh, K.A., Dowell, E.H.: Nonlinear response of an inextensible, cantilevered beam subjected to a nonconservative follower force. J. Comput. Nonlinear Dyn. 14(3), (2019)

  40. Malatkar, P.: Nonlinear vibrations of cantilever beams and plates. Virginia Polytechnic Institute and State University (2003)

    Google Scholar 

  41. Deliyianni, M., Webster, J.T.: Theory of solutions for an inextensible cantilever. Appl. Math. Optim. 84(2), 1345–1399 (2021)

    MathSciNet  MATH  Google Scholar 

  42. Deliyianni, M., Gudibanda, V., Howell, J., Webster, J.T.: Large deflections of inextensible cantilevers: modeling, theory, and simulation. Math. Model. Nat. Phenom. 15, 44 (2020)

    MathSciNet  MATH  Google Scholar 

  43. Amabili, M., Paı¨doussis, M.P.: Review of studies on geometrically nonlinear vibrations and dynamics of circular cylindrical shells and panels, with and without fluid-structure interaction. Appl. Mech. Rev. 56(4), 349–381 (2003)

    Google Scholar 

  44. Pan, K.-Q., Liu, J.-Y.: Geometric nonlinear dynamic analysis of curved beams using curved beam element. Acta. Mech. Sin. 27(6), 1023–1033 (2011)

    MathSciNet  MATH  Google Scholar 

  45. Liu, J., Hong, J., Cui, L.: An exact nonlinear hybrid-coordinate formulation for flexible multibody systems. Acta. Mech. Sin. 23(6), 699–706 (2007)

    MathSciNet  MATH  Google Scholar 

  46. Tang, S., Sweetman, B.: A geometrically-exact momentum-based non-linear theory applicable to beams in non-inertial frames. Int. J. Non-Linear Mech. 113, 158–170 (2019)

    Google Scholar 

  47. Zulli, D., Alaggio, R., Benedettini, F.: Non-linear dynamics of curved beams Part 1: formulation. Int. J. Non-Linear Mech. 44(6), 623–629 (2009)

    Google Scholar 

  48. Zulli, D., Alaggio, R., Benedettini, F.: Non-linear dynamics of curved beams. Part 2, numerical analysis and experiments. Int. J. Non-Linear Mech. 44(6), 630–643 (2009)

    Google Scholar 

  49. Shen, Y., Vizzaccaro, A., Kesmia, N., Yu, T., Salles, L., Thomas, O., Touzé, C.: Comparison of reduction methods for finite element geometrically nonlinear beam structures. Vibration 4(1), 175–204 (2021)

    Google Scholar 

  50. Cochelin, B., Vergez, C.: A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions. J. Sound Vib. 324(1), 243–262 (2009)

    Google Scholar 

  51. Woiwode, L., Balaji, N.N., Kappauf, J., Tubita, F., Guillot, L., Vergez, C., Cochelin, B., Grolet, A., Krack, M.: Comparison of two algorithms for harmonic balance and path continuation. Mech. Syst. Signal Process. 136, 106503 (2020)

    Google Scholar 

  52. Detroux, T., Renson, L., Masset, L., Kerschen, G.: The harmonic balance method for bifurcation analysis of large-scale nonlinear mechanical systems. Comput. Methods Appl. Mech. Eng. 296, 18–38 (2015)

    MathSciNet  MATH  Google Scholar 

  53. Detroux, T., Noël, J.-P., Virgin, L.N., Kerschen, G.: Experimental study of isolas in nonlinear systems featuring modal interactions. PLoS ONE 13(3), e0194452 (2018)

    Google Scholar 

  54. Chung, J., Hulbert, G.M.: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. J. Appl. Mech. 60(2), 371–375 (1993). https://doi.org/10.1115/1.2900803

    Article  MathSciNet  MATH  Google Scholar 

  55. Pai, P.F., Anderson, T.J., Wheater, E.A.: Large-deformation tests and total-Lagrangian finite-element analyses of flexible beams. Int. J. Solids Struct. 37(21), 2951–2980 (2000)

    MATH  Google Scholar 

  56. Pai, P.F.: Problems in geometrically exact modeling of highly flexible beams. Thin-Walled Struct. 76, 65–76 (2014)

    Google Scholar 

  57. Webb, J.: Imposing linear constraints in finite-element analysis. Commun. Appl. Numer. Methods 6(6), 471–475 (1990)

    MATH  Google Scholar 

  58. Cameron, T.M., Griffin, J.H.: An alternating frequency/time domain method for calculating the steady-state response of nonlinear dynamic systems. J. Appl. Mech. 56(1), 149–154 (1989)

    MathSciNet  MATH  Google Scholar 

  59. Tang, D., Zhao, M., Dowell, E.H.: Inextensible beam and plate theory: computational analysis and comparison with experiment. J. Appl. Mech. (2014). https://doi.org/10.1115/1.4026800

    Article  Google Scholar 

  60. Peeters, M., Viguié, R., Sérandour, G., Kerschen, G., Golinval, J.C.: Nonlinear normal modes, Part II: toward a practical computation using numerical continuation techniques. Mech. Syst. Signal Process. 23(1), 195–216 (2009)

    Google Scholar 

  61. Coddington, E.A., Levinson, N.: Theory of ordinary differential equations. Tata McGraw-Hill Education (1955)

    MATH  Google Scholar 

Download references

Acknowledgements

Authors thank the Research Grant Council of the Hong Kong SAR (PolyU 152023/20E) for financial support.

Funding

The authors have not additional funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Cheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

The generalized-α method

The generalized-α method is applied to offer intuitive time history of the system responses. In the main text, Eq. (19) requires the treatment of different system response terms, especially displacement x, as well as its derivatives representing velocity \({\dot{\mathbf{x}}}\) and acceleration \({\ddot{\mathbf{x}}}\). The interrelation among them can be cast into the following general form [54]:

$$ \begin{gathered} {\dot{\mathbf{x}}}_{i + 1} = {\dot{\mathbf{x}}}_{i} + \left( {1 - \gamma } \right)\Delta t{\ddot{\mathbf{x}}}_{i} + \gamma \Delta t{\ddot{\mathbf{x}}}_{i + 1} \hfill \\ {\mathbf{x}}_{i + 1} = {\mathbf{x}}_{i} + \Delta t{\dot{\mathbf{x}}}_{i} + \Delta t^{2} \left( {\frac{1}{2} - \beta } \right){\ddot{\mathbf{x}}}_{i} + \Delta t^{2} \beta {\ddot{\mathbf{x}}}_{i + 1} \hfill \\ \end{gathered} $$
(46)

The governing equation of motion, Eq. (19), is built on semi-point scheme in the time discretization. The semi-point values of these quantities write

$$ \begin{gathered} {\mathbf{x}}_{{i + 1 - \alpha_{f} }} = \left( {1 - \alpha_{f} } \right){\mathbf{x}}_{i + 1} + \alpha_{f} {\mathbf{x}}_{i} \hfill \\ {\dot{\mathbf{x}}}_{{i + 1 - \alpha_{f} }} = \left( {1 - \alpha_{f} } \right){\dot{\mathbf{x}}}_{i + 1} + \alpha_{f} {\dot{\mathbf{x}}}_{i} \hfill \\ {\ddot{\mathbf{x}}}_{{i + 1 - \alpha_{m} }} = \left( {1 - \alpha_{m} } \right){\ddot{\mathbf{x}}}_{i + 1} + \alpha_{m} {\ddot{\mathbf{x}}}_{i} \hfill \\ t_{{i + 1 - \alpha_{f} }} = \left( {1 - \alpha_{f} } \right)t_{i + 1} + \alpha_{f} t_{i} \hfill \\ \end{gathered} $$
(47)

A residual vector is formulated from Eq. (19) as

$$ {\mathbf{r}}\left( {\mathbf{x}} \right) = {\mathbf{M}}\ddot{\mathbf{x}} + {C\dot{\mathbf{x}}} + {\mathbf{Kx}} + {\mathbf{f}}_{nl} \left( {{\mathbf{x}},{\dot{\mathbf{x}}},{\ddot{\mathbf{x}}}} \right) - {\mathbf{f}}_{ext} = {\mathbf{0}} $$
(48)

Discretized version of the above equation in terms of \(({\mathbf{x}}_{{i + 1 - \alpha_{f} }} ,{\dot{\mathbf{x}}}_{{i + 1 - \alpha_{f} }} ,{\ddot{\mathbf{x}}}_{{i + 1 - \alpha_{m} }} )\) writes

$$ {\mathbf{r}}\left( {{\mathbf{x}}_{{i + 1 - \alpha_{f} }} ,{\dot{\mathbf{x}}}_{{i + 1 - \alpha_{f} }} ,{\ddot{\mathbf{x}}}_{{i + 1 - \alpha_{m} }} } \right) = {\mathbf{0}} $$
(49)

Let us denote \(({\mathbf{x}}_{{i + 1 - \alpha_{f} }}^{k} ,{\dot{\mathbf{x}}}_{{i + 1 - \alpha_{f} }}^{k} ,{\ddot{\mathbf{x}}}_{{i + 1 - \alpha_{m} }}^{k} )\) as the approximate value of \(({\mathbf{x}}_{{i + 1 - \alpha_{f} }} ,{\dot{\mathbf{x}}}_{{i + 1 - \alpha_{f} }} ,{\ddot{\mathbf{x}}}_{{i + 1 - \alpha_{m} }} )\) resulting from the iteration k. In the vicinity of the prediction value, the residual equation can be replaced with sufficient accuracy through the following linear expression:

$$ {\mathbf{r}}^{k + 1} \approx {\mathbf{r}}^{k} + {\mathbf{S}}^{k} \Delta {\mathbf{x}}_{{i + 1 - \alpha_{f} }}^{k} = {\mathbf{r}}^{k} + {\mathbf{S}}_{T}^{k} \Delta {\mathbf{x}}_{i + 1}^{k} = {\mathbf{0}} $$
(50)

in which the Jacobian (also called iteration) matrix writes:

$$ {\mathbf{S}}_{T}^{k} = \left( {1 - \alpha_{f} } \right)\left. {\frac{{\partial {\mathbf{r}}}}{{\partial {\mathbf{x}}}}} \right|_{{{\mathbf{x}}_{{i + 1 - \alpha_{f} }}^{k} }} $$
(51)

whose expression is detailed as

$$ {\mathbf{S}}_{T} \left( {\mathbf{x}} \right) = \left( {1 - \alpha_{f} } \right)\left( {{\mathbf{M}}\frac{{\partial {\ddot{\mathbf{x}}}}}{{\partial {\mathbf{x}}}} + {\mathbf{C}}\frac{{\partial {\dot{\mathbf{x}}}}}{{\partial {\mathbf{x}}}} + {\mathbf{K}} + \frac{{\partial {\mathbf{f}}_{nl} }}{{\partial {\mathbf{x}}}} + \frac{{\partial {\mathbf{f}}_{nl} }}{{\partial {\dot{\mathbf{x}}}}}\frac{{\partial {\dot{\mathbf{x}}}}}{{\partial {\mathbf{x}}}} + \frac{{\partial {\mathbf{f}}_{nl} }}{{\partial {\ddot{\mathbf{x}}}}}\frac{{\partial {\ddot{\mathbf{x}}}}}{{\partial {\mathbf{x}}}}} \right) $$
(52)

The integration relationship, Eq.(46), can be written as

$$ \frac{{\partial {\ddot{\mathbf{x}}}_{{i + 1 - \alpha_{m} }} }}{{\partial {\mathbf{x}}_{{i + 1 - \alpha_{f} }} }} = \frac{{1 - \alpha_{m} }}{{\left( {1 - \alpha_{f} } \right)\beta \Delta t^{2} }}{\mathbf{I}},\quad \frac{{\partial {\dot{\mathbf{x}}}_{{i + 1 - \alpha_{f} }} }}{{\partial {\mathbf{x}}_{{i + 1 - \alpha_{f} }} }} = \frac{\gamma }{\beta \Delta t}{\mathbf{I}} $$
(53)

Combining Eqs. (52) and (53) yields the expression of the iteration matrix as:

$$ \begin{gathered} {\mathbf{S}}_{T} \left( {\mathbf{x}} \right) = \frac{{1 - \alpha_{m} }}{{\beta \Delta t^{2} }}{\mathbf{M}} + \frac{{\gamma \left( {1 - \alpha_{f} } \right)}}{\beta \Delta t}{\mathbf{C}} + \left( {1 - \alpha_{f} } \right){\mathbf{K}} \hfill \\ \quad + \left( {1 - \alpha_{f} } \right)\frac{{\partial {\mathbf{f}}_{nl} }}{{\partial {\mathbf{x}}}} + \frac{{\gamma \left( {1 - \alpha_{f} } \right)}}{\beta \Delta t}\frac{{\partial {\mathbf{f}}_{nl} }}{{\partial {\dot{\mathbf{x}}}}} + \frac{{1 - \alpha_{m} }}{{\beta \Delta t^{2} }}\frac{{\partial {\mathbf{f}}_{nl} }}{{\partial {\ddot{\mathbf{x}}}}} \hfill \\ \end{gathered} $$
(54)

The nonlinear equation (50) is then solved using an iteration scheme using Newton–Raphson method. Substituting Eqs. (46 and 47) into Eq. (50) gives

$$ {\mathbf{S}}_{T}^{k} \Delta {\mathbf{x}}_{i + 1}^{k} = - {\mathbf{r}}^{k} $$
(55)

with

$$ \begin{gathered} {\mathbf{r}}^{k} = \beta \Delta t^{2} {\mathbf{S}}_{L} {\ddot{\mathbf{x}}}_{i + 1}^{k} + {\mathbf{f}}_{nl,i + 1}^{k} - {\mathbf{p}}_{i + 1} \hfill \\ {\mathbf{S}}_{L} = \frac{{1 - \alpha_{m} }}{{\beta \Delta t^{2} }}{\mathbf{M}} + \frac{{\gamma \left( {1 - \alpha_{f} } \right)}}{\beta \Delta t}{\mathbf{C}} + \left( {1 - \alpha_{f} } \right){\mathbf{K}} \hfill \\ {\mathbf{p}}_{i + 1} = \left( {1 - \alpha_{f} } \right){\mathbf{f}}_{ext,i + 1} + \alpha_{f} {\mathbf{f}}_{ext,i} - \left( {{\mathbf{a}}_{1} {\mathbf{x}}_{i} + {\mathbf{a}}_{2} {\dot{\mathbf{x}}}_{i} + {\mathbf{a}}_{3} {\ddot{\mathbf{x}}}_{i} } \right) \hfill \\ {\mathbf{a}}_{1} = {\mathbf{K}} \hfill \\ {\mathbf{a}}_{2} = {\mathbf{C}} + \left( {1 - \alpha_{f} } \right)\Delta t{\mathbf{K}} \hfill \\ {\mathbf{a}}_{3} = \alpha_{m} {\mathbf{M}} + \left( {1 - \alpha_{f} } \right)\left( {1 - \gamma } \right)\Delta t{\mathbf{C}} + \Delta t^{2} \left( {1 - \alpha_{f} } \right)\left( {\frac{1}{2} - \beta } \right){\mathbf{K}} \hfill \\ \end{gathered} $$
(56)

The velocity and acceleration are found from

$$ \Delta {\ddot{\mathbf{x}}}_{i + 1}^{k} = \frac{1}{{\beta \Delta t^{2} }}\Delta {\mathbf{x}}_{i + 1}^{k} ,\quad \Delta {\dot{\mathbf{x}}}_{i + 1}^{k} = \frac{\gamma }{\beta \Delta t}\Delta {\mathbf{x}}_{i + 1}^{k} $$
(57)

When \(k = 0\), the initial prediction to initialize the process is \({\ddot{\mathbf{x}}}_{i + 1}^{0} = {\ddot{\mathbf{x}}}_{i}\) as the first-order approximation, which would need more correction steps.

To simplify the process and reduce the computation burden, an alternative prediction formulation with third-order precision, i.e.,\({\ddot{\mathbf{x}}}_{i + 1}^{0} = 4{\ddot{\mathbf{x}}}_{i} - 6{\ddot{\mathbf{x}}}_{i - 1} + 4{\ddot{\mathbf{x}}}_{i - 2} - {\ddot{\mathbf{x}}}_{i - 3}\), is proposed by using the four latest points. Stepwise correction continues until \(||{\mathbf{r}}({\mathbf{x}}_{i + 1}^{k} )|| \le \varepsilon\), where ε is a predefined tolerance value.

The above calculation scheme is combined with the generalized-α method [54]. The parameters are chosen as follows

$$ \begin{gathered} \alpha_{m} = \frac{{2\rho_{\infty } - 1}}{{\rho_{\infty } + 1}},\quad \alpha_{f} = \frac{{\rho_{\infty } }}{{\rho_{\infty } + 1}},\quad \rho_{\infty } \in \left[ {0,\;1} \right] \hfill \\ \gamma = \frac{1}{2} - \alpha_{m} + \alpha_{f} ,\quad \beta = \frac{1}{4}\left( {1 - \alpha_{m} + \alpha_{f} } \right)^{2} \hfill \\ \end{gathered} $$
(58)

The dissipation parameter \(\rho_{\infty }\) is set to 0.8 in the present study.

Appendix 2

Efficiency and robustness enhanced by OS technique

The OS technique discussed in Sect. 3.2 is expected to improve the efficiency and the robustness of the generalized-α method by separating a full complex problem into several sub-problems. To demonstrate this, the generalized-α methods with and without the OS technique are compared using a beam vibration problem.

Examine the straight cantilever beam (used in Sect. 4) excited by a harmonic force at its free end. The excitation force has an amplitude 0.5 N at 3.85 Hz, which is arbitrarily chosen around the first natural frequency of the beam. The computation duration is 70 s, which is long enough to get stable response in the system. The sampling frequency is \(f_{s} = 400\;{\text{Hz}}\). Figure 

Fig. 12
figure 12

a Time responses obtained by the generalized-α method with and without OS technique, b close-up view taken in the stable region for a period. Note the two curves coincide perfectly, so it is difficult to visually differentiate them

12a illustrates the overall time response signals obtained by using the two methods. The two curves coincide completely during the entire time duration, as better shown in the close-up view (Fig. 12b). The residual values (as defined by Eq. (56) in Appendix 1) are calculated for both methods and shown in Fig. 

Fig. 13
figure 13

a Residual and b minimum iteration in each time point obtained by the generalized-α method with and without OS technique. Note in Figure 13 b, the method using OS needs only one iteration to reach the convergence

13a. It follows that OS technique yields very small residuals, which are smaller than the ones without OS for nearly every single time point, demonstrating the accuracy of the proposed OS technique. Figure 13b shows the minimum iteration number required to achieve converged result with a residual value capped at \(10^{ - 6}\). It can be seen that, by embedding the OS technique into the generalized-α method, it takes only one iteration to reach converged result, while more iterations are required without OS technique. This happens even within the stable region. Moreover, it was also noticed that generalized-α method without OS technique may not always yield converged solution for some frequencies, while the one with OS technique always does. The above comparison shows the high efficiency and the robustness of the generalized-α method after embedding the proposed OS technique.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Kerschen, G. & Cheng, L. Geometrical nonlinearities in a curved cantilever beam: a condensation model and inertia-induced nonlinear features. Nonlinear Dyn 111, 6533–6556 (2023). https://doi.org/10.1007/s11071-022-08162-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08162-3

Keywords

Navigation