Skip to main content
Log in

Zeno-free event-triggered fixed-time control of two-time-scale systems by Chang transformation and backstepping design

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates fixed-time stabilization of linear two-time-scale systems. The existing fixed-time control techniques are no longer applicable due to the inherent ill-conditioned numerical issues, which is induced by the time-scale separation of two-time-scale systems when carrying out stability analysis. Alternative challenge is that the considered systems are not fully actuated, such that some full rank conditions regarded to the control matrix do not hold anymore. All of these pose difficulties to the fixed-time controller design and stability analysis. To handle these issues, appropriate state transformations are proposed to decouple the system into slow and fast subsystems with approximate strict feedback structure. Then, by the backstepping method, a continuous-time controller is designed to achieve fixed-time stabilization. Furthermore, a Zeno-free event-triggered strategy is proposed to reduce the control updates and then a practical stability result of two-time-scale systems is obtained. A numerical simulation is presented to illustrate the effectiveness of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Siciliano, B., Book, W.J.: A singular perturbation approach to control of lightweight flexible manipulators. Int. J. Robot. Res. 7(4), 79–90 (1988)

    Article  Google Scholar 

  2. Jiang, N., Chiang, H.-D.: A two-time scale dynamic correction method for fifth-order generator model undergoing large disturbances. IEEE Trans. Power Syst. 31(5), 3616–3623 (2015)

    Article  Google Scholar 

  3. Zagaris, A., Kaper, H.G., Kaper, T.J.: Analysis of the computational singular perturbation reduction method for chemical kinetics. J. Nonlinear Sci. 14(1), 59–91 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kokotović, P., Khalil, H. K., O’Reilly, J.: Singular Perturbation Methods in Control: Analysis and Design, Siam, (1999)

  5. Liu, W., Wang, Y., Wang, Z.: H\(_\infty \) observer-based sliding mode control for singularly perturbed systems with input nonlinearity. Nonlinear Dyn. 85(1), 573–582 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Yang, W., Liu, X.-K., Wang, Y.-W., Liu, Z.-W., Xiao, J.-W.: Secure stabilization of singularly perturbed switched systems under deception attacks. Nonlinear Dyn. 108(1), 683–695 (2022)

    Article  Google Scholar 

  7. Zuo, Z., Tie, L.: Distributed robust finite-time nonlinear consensus protocols for multi-agent systems. Int. J. Syst. Sci. 47(6), 1366–1375 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Harshavarthini, S., Sakthivel, R., Ahn, C.K.: Finite-time reliable attitude tracking control design for nonlinear quadrotor model with actuator faults. Nonlinear Dyn. 96(4), 2681–2692 (2019)

    Article  MATH  Google Scholar 

  9. Polyakov, A.: Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control 57(8), 2106–2110 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Tian, B., Zuo, Z., Yan, X., Wang, H.: A fixed-time output feedback control scheme for double integrator systems. Automatica 80, 17–24 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ren, H., Zong, G., Ahn, C.K.: Event-triggered finite-time resilient control for switched systems: an observer-based approach and its applications to a boost converter circuit system model. Nonlinear Dyn. 94(4), 2409–2421 (2018)

    Article  MATH  Google Scholar 

  12. Li, B., Zhang, H., Xiao, B., Wang, C., Yang, Y.: Fixed-time integral sliding mode control of a high-order nonlinear system. Nonlinear Dyn. 107(1), 909–920 (2022)

    Article  Google Scholar 

  13. Yang, W., Wang, Y.-W., Morǎrescu, I.-C., Liu, X.-K., Huang, Y.: Fixed-time synchronization of competitive neural networks with multiple time scales, IEEE Trans. Neural Netw. Learn. Syst.https://doi.org/10.1109/TNNLS.2021.3052868.

  14. Lei, Y., Wang, Y.-W., Morarescu, I.-C., Postoyan, R.: Event-triggered fixed-time stabilization of two-time-scale linear systems, IEEE Trans. Autom. Control. https://doi.org/10.1109/TAC.2022.3151818.

  15. Ding, L., Han, Q.-L., Ge, X., Zhang, X.-M.: An overview of recent advances in event-triggered consensus of multiagent systems. IEEE Trans. Cybern. 48(4), 1110–1123 (2017)

    Article  Google Scholar 

  16. Zhang, Z., Liang, H., Wu, C., Ahn, C.K.: Adaptive event-triggered output feedback fuzzy control for nonlinear networked systems with packet dropouts and actuator failure. IEEE Trans. Fuzzy Syst. 27(9), 1793–1806 (2019)

    Article  Google Scholar 

  17. Tabuada, P.: Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans. Autom. Control 52(9), 1680–1685 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Donkers, M.C.F., Heemels, W.P.M.H.: Output-based event-triggered control with guaranteed \(\cal{L} _{\infty }\)-gain and improved and decentralized event-triggering. IEEE Trans. Autom. Control 57(6), 1362–1376 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ling, S., Wang, H., Liu, P.X.: Fixed-time adaptive event-triggered tracking control of uncertain nonlinear systems. Nonlinear Dyn. 100(4), 3381–3397 (2020)

    Article  Google Scholar 

  20. Abdelrahim, M., Postoyan, R., Daafouz, J.: Event-triggered control of nonlinear singularly perturbed systems based only on the slow dynamics. Automatica 52, 15–22 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Borgers, D.P., Heemels, W.P.M.H.: Event-separation properties of event-triggered control systems. IEEE Trans. Autom. Control 59(10), 2644–2656 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sivaranjani, K., Rakkiyappan, R., Cao, J., Alsaedi, A.: Synchronization of nonlinear singularly perturbed complex networks with uncertain inner coupling via event triggered control. Appl. Math. Comput. 311, 283–299 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Postoyan, R., Tabuada, P., Nešić, D., Anta, A.: A framework for the event-triggered stabilization of nonlinear systems. IEEE Trans. Autom. Control 60(4), 982–996 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, H., Duan, J., Wang, Y., Gao, Z.: Bipartite fixed-time output consensus of heterogeneous linear multiagent systems. IEEE Trans. Cybern. 51(2), 548–557 (2021). https://doi.org/10.1109/TCYB.2019.2936009

    Article  Google Scholar 

  25. Zhang, C.-H., Yang, G.-H.: Event-triggered global finite-time control for a class of uncertain nonlinear systems. IEEE Trans. Autom. Control 65(3), 1340–1347 (2020). https://doi.org/10.1109/TAC.2019.2928767

    Article  MathSciNet  MATH  Google Scholar 

  26. Goedel, R., Sanfelice, R.G., Teel, A.R.: Hybrid Dynamical Systems: Modeling Stability, and Robustness. Princeton University Press, Princeton, NJ (2012)

    Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China under Grants 62233006, 62173152 and 62103156, and the Natural Science Foundation of Hubei Province of China (2021CFB052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Wu Wang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

The work described has not been published before, it is not under consideration for publication anywhere else.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by the National Natural Science Foundation of China under Grants 62233006, 62173152 and 62103156, and the Natural Science Foundation of Hubei Province of China (2021CFB052).

7 Appendix

7 Appendix

1.1 7.1 Technical Lemmas

Lemma 3

[7] For any \(x_i\in \mathbb {R}\), \(i=1, \ldots , n\), and \(\alpha \ge 1\), \(0<\beta \le 1\),

$$\begin{aligned} \begin{array}{l} \big (\sum \limits _{i = 1}^n {\left| {{x_i}} \right| }\big )^\alpha \ge \sum \limits _{i = 1}^n {\left| {{x_i}} \right| ^\alpha } \ge n^{1-\alpha }\big (\sum \limits _{i = 1}^n {\left| {{x_i}} \right| }\big )^\alpha ,\\ \big (\sum \limits _{i = 1}^n {\left| {{x_i}} \right| }\big )^\beta \le \sum \limits _{i = 1}^n {\left| {{x_i}} \right| ^\beta } \le n^{1-\beta }\big (\sum \limits _{i = 1}^n {\left| {{x_i}} \right| }\big )^\beta . \end{array} \end{aligned}$$

Lemma 4

[25] For any \(x\in \mathbb {R}\), \(y\in \mathbb {R}\) and \(a>0\), \(b>0\),

$$\begin{aligned} \left| x^ay^b \right|\le & {} \varsigma (x,y)\left| x \right| ^{a+b}+\frac{b}{a+b}\\{} & {} \times \Big (\frac{a}{(a+b)\varsigma (x,y)}\Big )^{\frac{a}{b}}\left| y \right| ^{a+b}, \end{aligned}$$

where \(\varsigma (x,y)>0\).

Lemma 5

For any \(e=(e_1,e_2,\ldots ,e_n)\), \(x=(x_1,x_2, \ldots ,x_n)\), where \(e_i, x_i \in \mathbb {R}\), \(i=1,\ldots ,n\);

$$\begin{aligned}&sig (x^T)^{\alpha _1}{} sig (x\!+\!e)^\beta \\&\quad \ge (1-2^{1-\beta }\varsigma )sig (x^T)^{\alpha _1}{} sig (x)^\beta \\&\qquad -\!\frac{2^{1-\beta }\beta \alpha _1^{\frac{\alpha _1}{\beta }}}{(\alpha _1\!+\!\beta )^{\frac{\alpha _1}{\beta }+1}{\varsigma }^{\frac{\alpha _1}{\beta }}}{} sig (e^T)^{\alpha _1}{} sig (e)^\beta ,\\&sig (x^T)^{\alpha _1}{} sig (x\!+\!e)^\alpha \\&\quad \ge (2^{1-\alpha }-\varsigma )sig (x^T)^{\alpha _1}{} sig (x)^\alpha \\&\qquad -\!\frac{\alpha \alpha _1^{\frac{\alpha _1}{\alpha }}}{(\alpha _1\!+\!\alpha )^{\frac{\alpha _1}{\alpha }+1}{\varsigma }^{\frac{\alpha _1}{\alpha }}}{} sig (e^T)^{\alpha _1}{} sig (e)^\alpha , \end{aligned}$$

where \(0<\beta \le 1\), \(\alpha \ge 1\), \(\alpha _1>0\), \(\varsigma >0\).

Proof

With a similar proof as in [14], it can be obtained that, \(\forall a,b\in \mathbb {R}\),

$$\begin{aligned} \text {sig}(a)^{\alpha _1}\cdot \text {sig}(a+b)^\beta&\ge \left| a\right| ^{\alpha _1}(\left| a\right| ^\beta -2^{1-\beta }\left| b\right| ^\beta ), \end{aligned}$$
(46)
$$\begin{aligned} \text {sig}(a)^{\alpha _1}\cdot \text {sig}(a+b)^\alpha&\ge \left| a\right| ^{\alpha _1}(2^{1-\alpha }\left| a\right| ^\alpha -\left| b\right| ^\alpha ). \end{aligned}$$
(47)

Thus, from (46), it has, for \(\varsigma >0\) and \(0<\beta \le 1\),

$$\begin{aligned}&\text {sig}(x^T)^{\alpha _1}\text {sig}(x\!+\!e)^\beta \\&\quad \ge \sum \limits _{i = 1}^n {\left| x_i \right| ^{\alpha _1}(\left| x_i \right| ^\beta -2^{1-\beta }\left| e_i \right| ^\beta )}\\&\quad \ge (1-2^{1-\beta }\varsigma )\text {sig}(x^T)^{\alpha _1}\text {sig}(x)^\beta \\&\quad -\!\frac{2^{1-\beta }\beta \alpha _1^{\frac{\alpha _1}{\beta }}}{(\alpha _1\!+\!\beta )^{\frac{\alpha _1}{\beta }+1}{\varsigma }^{\frac{\alpha _1}{\beta }}}\text {sig}(e^T)^{\alpha _1}\text {sig}(e)^\beta . \end{aligned}$$

Similarly, from (47), for \(\alpha \ge 1\) and \(\varsigma >0\),

$$\begin{aligned}&\text {sig}(x^T)^{\alpha _1}\text {sig}(x\!+\!e)^\alpha \\&\quad \ge (2^{1-\alpha }-\varsigma )\text {sig}(x^T)^{\alpha _1}\text {sig}(x)^\alpha \\&\qquad -\!\frac{\alpha \alpha _1^{\frac{\alpha _1}{\alpha }}}{(\alpha _1\!+\!\alpha )^{\frac{\alpha _1}{\alpha }+1}{\varsigma }^{\frac{\alpha _1}{\alpha }}}\text {sig}(e^T)^{\alpha _1}\text {sig}(e)^\alpha . \end{aligned}$$

\(\square \)

1.2 7.2 Proof of Theorem 1

Proof

Let \(T>0\), \(\varepsilon \in (0,{\bar{\varepsilon }})\), where \({\bar{\varepsilon }}>0\) is specified in the following. Recall \(V_c(\xi _c)=\sum _{i = 1}^{k_s}V_{s,i}(\bar{x}_{s})+\varepsilon \sum _{j = 1}^{k_f}V_{f,j}(\bar{z}_{f})\),where \(\xi _c\!:=\!(\bar{x}_{s},\bar{z}_{f})\). From (13), (14), (17), and (18), there exist two class \({\mathcal {K}}_{\infty }\) functions \({\underline{\alpha }}(\Vert \xi _c\Vert )\), \({\overline{\alpha }}(\Vert \xi _c\Vert )\), such that for any \(\xi _c\in \mathbb {R}^{n_x+n_z}\),

$$\begin{aligned} {\underline{\alpha }}(\Vert \xi _c\Vert )\le V_c(\xi _c)\le {\overline{\alpha }}(\Vert \xi _c\Vert ). \end{aligned}$$
(48)

From (31), (36) and Lemma 2, for \(\Vert \xi _c\Vert \ge \nu _1\),

$$\begin{aligned} \left\langle \nabla V_c(\xi _c),f(\xi _c)\right\rangle \!\le&\! -\!\sum _{i= 1}^{k_s}(\frac{b}{2}\Vert \bar{x}_{s,i}\Vert ^2\!+\!\frac{b}{2}\Vert \bar{x}_{s,i}\Vert ^{2-2\sigma }) \nonumber \\&\! -\!\sum _{j = 1}^{k_f}(\frac{b}{2}\Vert {\tilde{z}}_{f,j}\Vert ^2\!+\!\frac{c}{2}\Vert {\tilde{z}}_{f,j}\Vert ^{2-2\sigma }). \end{aligned}$$
(49)

From (14), (18) and Lemma 3,

$$\begin{aligned} (V_c(\xi _c))^{\frac{2}{2-\sigma }}\le&(\sum _{i = 1}^{k_s}b_{s,i}\text {sig}({{\bar{x}}}_{s,i}^T)^{1-\sigma }{{\bar{x}}}_{s,i}\nonumber \\&+\sum _{j = 1}^{k_f}\varepsilon b_{f,j}\text {sig}({{\bar{z}}}_{f,j}^T)^{1-\sigma }{{\bar{z}}}_{f,j})^{\frac{2}{2-\sigma }}\nonumber \\ \!\le&2\sum _{i= 1}^{k_s}\Vert \bar{x}_{s,i}\Vert ^2+\!2\sum _{j = 1}^{k_f}\Vert {\tilde{z}}_{f,j}\Vert ^2,\nonumber \\ (V_c(\xi _c))^{\frac{2-2\sigma }{2-\sigma }}\!\le&(\sum _{i = 1}^{k_s}b_{s,i}\text {sig}({{\bar{x}}}_{s,i}^T)^{1-\sigma }{{\bar{x}}}_{s,i}\nonumber \\&+\sum _{j = 1}^{k_f}\varepsilon b_{f,j}\text {sig}({{\bar{z}}}_{f,j}^T)^{1-\sigma }{{\bar{z}}}_{f,j})^{\frac{2-2\sigma }{2-\sigma }} \end{aligned}$$
(50)
$$\begin{aligned} \le&2(n_x\!+\!n_z)^{\frac{-\sigma }{2-\sigma }}\sum _{i= 1}^{k_s}\Vert \bar{x}_{s,i}\Vert ^{2-\sigma }\nonumber \\&+2(n_x\!+\!n_z)^{\frac{-\sigma }{2-\sigma }}\sum _{j = 1}^{k_f}\Vert {\tilde{z}}_{f,j}\Vert ^{2-\sigma }\nonumber \\ \!\le&4\sum _{i=1}^{k_s}\Vert \bar{x}_{s,i}\Vert ^{2\!-\!\sigma }+\!4\sum _{j=1}^{k_f}\Vert {\tilde{z}}_{f,j}\Vert ^{2\!-\!\sigma }. \end{aligned}$$
(51)

Thus, for all \(\Vert \xi _c\Vert \ge \nu _1\),

$$\begin{aligned} \left\langle \nabla V_c(\xi _c),f(\xi _c)\right\rangle&\!\le \!-\!\frac{b}{4}(V_c(\xi _c))^{\frac{2}{2-\sigma }}\!-\!\frac{c}{8}(V_c(\xi _c))^{\frac{2-2\sigma }{2-\sigma }}. \end{aligned}$$
(52)

From Lemma 4.1 of [7], there exists a function \(\sigma _{T_1,\varepsilon }\in {\mathcal {K}}{\mathcal {L}}\) defined similar as \(\beta _{T,\varepsilon }\) in Definition 1 with \( T_1:=(\frac{2}{b}+\frac{4}{c})\frac{\sigma -2}{\sigma }\), such that, for any solution \(\xi _c\),

$$\begin{aligned} V_c(\xi _c)\le&\max \big \{\sigma _{T_1,\varepsilon }({\overline{\alpha }}^{-1}(\Vert \xi _c(0)\Vert ),t),2\nu _1^{2-\sigma }\big \}\nonumber \\ \le&\sigma _{T_1,\varepsilon }({\overline{\alpha }}^{-1}(\Vert \xi _c(0)\Vert ),t)+2\nu _1^{2-\sigma }. \end{aligned}$$
(53)

Supposed that \([0,T_M)\) is the maximally defined interval of the solution of the closed-loop TTSS (1) and (36), where \(0<T_M\le \infty \). From (53), the solution of the closed-loop TTSS (1) and (36) would not escape in finite time and thus \(T_M=\infty \).

When \({{\varvec{k}}_{{\varvec{m}}}:=\textbf{max}\{{\varvec{k}}_{{\varvec{s}}},{\varvec{k}}_{{\varvec{f}}}\}=\textbf{1}}\), it has \(\nu _1=0\). From (9), (13), (17) and (38), there exist a function \(\beta _{T,\varepsilon }\in {\mathcal {K}}{\mathcal {L}}\) defined similar as \(\beta _{T,\varepsilon }\) in Definition 1 with \({T}\ge 2T_1\), and a function \(\gamma (\varepsilon )\in {\mathcal {K}}\) independent of \(T,\varepsilon \), such that, for any solution (xz) and \(t\ge 0\), (3) holds with \(\gamma (\varepsilon )=0\).

When \({{\varvec{k}}_{{\varvec{m}}}>\textbf{1}}\), it has \(0<\nu _1\le \nu \) being \(O(\varepsilon ^{-\frac{1}{(k_m-1)\sigma }})\). Then, for all \(\varepsilon \in (0,{\bar{\varepsilon }}]\), \(\sigma \in (0,{\bar{\sigma }}]\) and any solution \(\xi _c\),

$$\begin{aligned} V_c(\xi _c) \le&\sigma _{T_1,\varepsilon }({\overline{\alpha }}^{-1}(\Vert \xi _c(0)\Vert ),t)+2\nu ^{2-\sigma }. \end{aligned}$$

Since \(V_c(\xi _c)=\sum _{i = 1}^{k_s}V_{s,i}(\bar{x}_{s})+\varepsilon \sum _{j = 1}^{k_f}V_{f,j}(\bar{z}_{f})\), the ultimate bound of \(\sum _{j = 1}^{k_f}V_{f,j}(\bar{z}_{f})\) depends on \(\varepsilon \). It cannot yet find a function \(\gamma \in {\mathcal {K}}\) independent of \(\varepsilon \) such that (3) holds.

Let \(V_f(\xi _c):=\varepsilon \sum _{j = 1}^{k_f}V_{f,j}(\bar{z}_{f})\) for any \(\xi _c \in \mathbb {R}^{n_x+n_z}\). With a similar proof of (52), it can be obtained that, for all \(\varepsilon \in (0,{\bar{\varepsilon }}]\), \(\sigma \in (0,{\bar{\sigma }}]\) and \(\Vert \xi _c\Vert \ge \nu \),

$$\begin{aligned}&\left\langle \nabla V_f(\xi _c),F(\xi _c)\right\rangle \\&\quad \le -\frac{b}{4}(V_f(\xi _c))^{\frac{2}{2-\sigma }}\!-\!\frac{c}{8}(V_f(\xi _c))^{\frac{2-2\sigma }{2-\sigma }}\\&\qquad + \sum _{i= 1}^{k_s}(\frac{b}{2}\Vert \bar{x}_{s,i}\Vert ^2\!+\!\frac{b}{2}\Vert \bar{x}_{s,i}\Vert ^{2-2\sigma }). \end{aligned}$$

Since \(V_c(\xi _c) \le \sigma _{T_1,\varepsilon }({\overline{\alpha }}^{-1}(\Vert \xi _c(0)\Vert ),t)+2\nu ^{2-\sigma }\), there exist two functions \(\gamma _1\), \(\gamma _2\in {\mathcal {K}}\), for all \(\varepsilon \in (0,{\bar{\varepsilon }}]\), \(\sigma \in (0,{\bar{\sigma }}]\) and \(\Vert \xi _c\Vert \ge \nu \),

$$\begin{aligned}&\left\langle \nabla V_f(\xi _c),F(\xi _c)\right\rangle \\&\quad \le -\frac{b}{4}(V_f(\xi _c))^{\frac{2}{2-\sigma }}\!-\!\frac{c}{8}(V_f(\xi _c))^{\frac{2-2\sigma }{2-\sigma }}\\&\qquad +\!\gamma _1(\sigma _{T_1,\varepsilon }({\overline{\alpha }}^{-1}(\Vert \xi _c(0)\Vert ),t)) \!+\! \gamma _2(\nu ). \end{aligned}$$

Then, there exist a function \({\bar{\sigma }}_{T_1,\varepsilon }\in {\mathcal {K}}{\mathcal {L}}\) defined similar as \(\beta _{T,\varepsilon }\) in Definition 1, and two functions \(\gamma _3, \gamma _4\in {\mathcal {K}}\) independent of \(T_1, \varepsilon \), so that for \(t\le T_1\),

$$\begin{aligned} \Vert \bar{z}_f(t)\Vert ^2\le \max&\{ {\bar{\sigma }}_{T_1,\varepsilon }({\overline{\alpha }}^{-1}(\Vert \xi _c(0)\Vert ),t),\\&\gamma _3(\sigma _{T_1,\varepsilon }({\overline{\alpha }}^{-1}(\Vert \xi _c(0)\Vert ),0))\!+\!\gamma _4(\nu )\}. \end{aligned}$$

For \(t\ge T_1\), it has \(V_c(\xi _c) \le 2\nu ^{2-\sigma }\). Thus, for \(t\ge T_1\),

$$\begin{aligned}&\left\langle \nabla V_f(\xi _c),F(\xi _c)\right\rangle \\&\quad \le \!-\!\frac{b}{4}(V_f(\xi _c))^{\frac{2}{2\!-\!\sigma }}\!-\!\frac{c}{8}(V_f(\xi _c))^{\frac{2\!-\!2\sigma }{2\!-\!\sigma }} \!+\! \gamma _2(\nu ). \end{aligned}$$

Similarly, for \(t\ge T_1\),

$$\begin{aligned} \Vert \bar{z}_f(t)\Vert ^2\!\le \! \max \{{\bar{\sigma }}_{T_1,\varepsilon }(V_f(\xi _c(T_1)),t-T_1), \gamma _4(\nu )\}. \end{aligned}$$

Thus, there exists a function \({\hat{\sigma }}_{2T_1,\varepsilon }\in {\mathcal {K}}{\mathcal {L}}\) defined similar as \(\beta _{T,\varepsilon }\) in Definition 1, such that, \(\forall (t,j)\in \text {dom} \chi \),

$$\begin{aligned} \Vert \bar{z}_f(t)\Vert ^2 \le {\hat{\sigma }}_{2T_1,\varepsilon }(\Vert \xi _c(0)\Vert ,t)+2\gamma _4(\nu ). \end{aligned}$$

Then, there exist two functions \(\gamma _5, \gamma _6\in {\mathcal {K}}\) such that for any \(0<\varepsilon \le {\bar{\varepsilon }}\), and any \((t,j)\in \text {dom} \chi \),

$$\begin{aligned} \Vert \xi _c(t)\Vert ^2 \le&\gamma _5(\sigma _{T_1,\varepsilon }({\overline{\alpha }}_U^{-1}(\Vert \chi (0,0)\Vert ),t))\nonumber \\&+\!{\hat{\sigma }}_{2T_1,\varepsilon }(\Vert \chi (0,0)\Vert ,t)\!+\!\gamma _5(\nu ). \end{aligned}$$
(54)

Since \(2T_1<T\), there exist a function \(\beta _{T,\varepsilon }\in {\mathcal {K}}{\mathcal {L}}\) defined in Definition 1, and a function \(\gamma \in {\mathcal {K}}\) independent of \(T,\varepsilon \), such that (3) is ensured for any \(t\ge 0\).

\(\square \)

1.3 7.3 Proof of Theorem 2

Proof

Denote \(U(\chi ):=\sum _{i = 1}^{k_s}V_{s,i}(\bar{x}_{s})+\sum _{j = 1}^{k_f}V_{f,j} (\bar{z}_{f})+ \varphi ^T\varphi \), where \(\chi :=(x, z, {\hat{x}}, {\hat{z}}, \varphi )\). Then, there exist functions \({\underline{\alpha }}_1, {\overline{\alpha }}_1\in {\mathcal {K}}_{\infty }\) such that, \(\forall \chi \in \mathbb {X}\),

$$\begin{aligned} {\underline{\alpha }}_1(\Vert (\xi ,\varphi )\Vert )\le U(\chi )\le {\overline{\alpha }}_1(\Vert (\xi ,\varphi )\Vert ). \end{aligned}$$
(55)

Let \(\chi \in C\). Following similar steps as in the Proof of Theorem 1 to obtain (49), it has

$$\begin{aligned}&\left\langle \nabla U(\chi ),F(\chi )\right\rangle \nonumber \\ \le&-\sum _{i = 1}^{k_s}(b\Vert \bar{x}_{s,i}\Vert ^2\!+\!c\Vert \bar{x}_{s,i}\Vert ^{2-2\sigma } ) \nonumber \\&-\sum _{j = 1}^{k_f}(b\Vert \bar{z}_{f,j}\Vert ^2\!+\!c\Vert \bar{z}_{f,j}\Vert ^{2-2\sigma }) \nonumber \\&-a\sum _{i = 1}^{k_s}V_{s,i}(\bar{x}_{s})-\frac{a}{\varepsilon }\sum _{j = 1}^{k_f}V_{f,j}(\bar{z}_{f}) \nonumber \\&-2(\omega _1\Vert \varphi \Vert ^2 \!+\! \omega _2(\Vert \varphi \Vert ^2)^{\frac{2}{2-\sigma }} \!+\! 2^{\frac{\sigma }{2-\sigma }} \omega _3(\Vert \varphi \Vert ^2)^{\frac{2-2\sigma }{2-\sigma }})\nonumber \\&+ \text {sig}{({{\bar{x}}_{s,k_s}^T})^{2-l_{s,k_s+1}}} {\tilde{B}}_s(u-{\alpha }_{s,k_s}({\tilde{x}}_s))\nonumber \\&+ \text {sig}{({{\bar{z}}_{f,k_f}^T})^{2-l_{f,k_f+1}}} {\tilde{B}}_f(u-{\alpha }_{f,j}({\tilde{z}}_f))\nonumber \\&+\sum _{i = 1}^{k_s}\text {sig}{({{\bar{x}}_{s,i}^T})^{2\!-\!l_{s,i+1} }}(O(\varepsilon ){\tilde{x}}_{s}\!+\!O(\varepsilon )u)\nonumber \\&+\sum _{i = 1}^{k_s}\sum _{p = 1}^{i }\frac{\partial V_{s,i}}{\partial {\tilde{x}}_{s,p}}(O(\varepsilon ){\tilde{x}}_{s}\!+\!O(\varepsilon )u)\nonumber \\&+\sum _{j = 1}^{k_f}\text {sig}{({{\bar{z}}_{f,j}^T})^{2\!-\!l_{z,j+1} }}(O(\varepsilon ){\tilde{z}}_{f}\!+\!O(\varepsilon )u)\nonumber \\&+\sum _{j = 1}^{k_f }\sum _{p = 1}^{j }\frac{\partial V_{f,j}}{\partial {\tilde{z}}_{f,p}}(O(\varepsilon ){\tilde{z}}_{f}\!+\!O(\varepsilon )u). \end{aligned}$$
(56)

From Lemma 5 and (44), with the similar proof of (37), there exists \({\bar{\varepsilon }}_1>0\), such that for \(\varepsilon \le {\bar{\varepsilon }}_1\) and \(\Vert \xi _c\Vert \ge \nu _1\),

$$\begin{aligned}&f_{\varepsilon }({\tilde{x}}_{s},{\tilde{z}}_{f},u)\!+\!\text {sig}{({{\bar{x}}_{s,k_s}^T})^{2-l_{s,k_s+1}}} {\tilde{B}}_s(u\!-\!{\alpha }_{s,k_s}({\tilde{x}}_s))\nonumber \\&\qquad + \text {sig}{({{\bar{z}}_{f,k_f}^T})^{2-l_{f,k_f+1}}} {\tilde{B}}_f(u\!-\!{\alpha }_{f,j}({\tilde{z}}_f))\nonumber \\&\quad =f_{\varepsilon }({\tilde{x}}_{s},{\tilde{z}}_{f},u)\!+\!\text {sig}({{\bar{x}}_{s,k_s}^T})^{2-l_{s,k_s+1}}\check{\beta }_{s,k_s}({\check{x}},{\check{z}})\nonumber \\&(\text {sig}(g_{s,k_s}({\check{x}}_{s})+e_{s,1})^{l_{s,k_s+1}}-\text {sig}({{\bar{x}}_{s,k_s}})^{l_{s,k_s+1}}) \nonumber \\&\qquad +c \text {sig}({{\bar{x}}_{s,k_s}^T})^{2-l_{s,k_s+1}} (\text {sig}(g_{f,k_f}({\check{z}}_f)+e_{s,1})^{l_{s,k_s}-\sigma } \nonumber \\&\qquad - \text {sig}({{\bar{x}}_{s,k_s}})^{l_{s,k_s+1}}) \nonumber \\&\qquad +\text {sig}({{\bar{x}}_{s,k_s}^T})^{2-l_{s,k_s+1}}(e_{s,2}\text {sig}(g_{s,k_s}(\hat{x}_{s}))^{l_{s,k_s+1}}) \nonumber \\&\qquad +\!\text {sig}({{\bar{z}}_{f,k_f}^T})^{2\!-\!l_{f,k_f\!+\!1}}\check{\beta }_{f,k_f}({\check{x}},{\check{z}})(\text {sig}(g_{f,k_f}(\hat{z}_f)\!\nonumber \\&\qquad +\!e_{f,1})^{l_{f,k_f\!+\!1}}-\text {sig}({{\bar{z}}_{f,k_f}})^{l_{f,k_f+1}}) \nonumber \\&\qquad +c \text {sig}({{\bar{z}}_{f,k_f}^T})^{2-l_{f,k_f+1}} (\text {sig}(g_{f,k_f}(\hat{z}_f)+e_{f,1})^{l_{f,k_f}-\sigma } \nonumber \\&\qquad +\text {sig}({{\bar{z}}_{f,k_f}^T})^{2-l_{f,k_f+1}}(e_{f,2}\text {sig}(g_{f,k_f}(\hat{z}_f))^{l_{f,k_f+1}}) \nonumber \\&\quad \le \sum _{i = 1}^{k_s}\frac{b}{4}\Vert \bar{x}_{s,i}\Vert ^2+\frac{c}{4}\Vert \bar{x}_{s,i}\Vert ^{2-2\sigma } \nonumber \\&\qquad +\sum _{j = 1}^{k_f}\frac{b}{4}\Vert \bar{z}_{f,j}\Vert ^2+\frac{c}{4}\Vert \bar{z}_{f,j}\Vert ^{2-2\sigma } \nonumber \\&\qquad + \!\varpi _1(\Vert e_{s,1}\Vert ^2 \!+\! \Vert e_{f,1}\Vert ^2) \!+\! \varpi _2(\Vert e_{s,1}\Vert ^{2\!-\!2\sigma } \!+\! \Vert e_{f,1}\Vert ^{2c \!-\!2\sigma })\nonumber \\&\qquad + \varpi _3(\Vert e_{s,2}\Vert ^2\Vert \hat{x}_{s,k_s}\Vert ^2+\Vert e_{f,2}\Vert ^2\Vert \hat{z}_{f,k_f}\Vert ^2)\nonumber \\&\quad \le \sum _{i = 1}^{k_s}\frac{b}{2}\Vert \bar{x}_{s,i}\Vert ^2+\frac{c}{2}\Vert \bar{x}_{s,i}\Vert ^{2-2\sigma }+\varpi _5\varphi _s^2 \nonumber \\&\qquad +\sum _{j = 1}^{k_f}\frac{b}{2}\Vert \bar{z}_{f,j}\Vert ^2+\frac{c}{2}\Vert \bar{z}_{f,j}\Vert ^{2-2\sigma } + \varpi _5\varphi _f^2+\nu . \end{aligned}$$
(57)

where \(\nu _1=0\) when \(k_m:=\max \{k_s,k_f\}=1\), otherwise \(\nu _1>0\) being \(O(\varepsilon ^{-\frac{1}{(k_m-1)\sigma }})\).

Thus, from (56) and the definition of \(\varpi _i\), \(i=1,2,3,4\), abc, for \(\varepsilon <{\bar{\varepsilon }}\) and \(\chi \in \mathbb {X}\) with \(\Vert \xi _c\Vert \ge \max \{\nu _1,\frac{8\nu }{b}\}\),

$$\begin{aligned} \left\langle \nabla U(\chi ),F(\chi )\right\rangle \!\le&-\frac{b}{4}U^{\frac{2}{2-\sigma }}\!-\!\frac{c}{8}U^{\frac{2-2\sigma }{2-\sigma }}. \end{aligned}$$
(58)

Then, the existence of a uniform semiglobal average dwell-time will be proved to exclude the Zeno behavior.

From (44), the time between two continuous triggering event due to D is always longer than the time it needs for \({\bar{f}}_e=\varpi _1(\Vert e_{s,1}\Vert ^2\!+\!\Vert e_{f,1}\Vert ^2)\!+\!\varpi _2(\Vert e_{s,1}\Vert ^{2-2\sigma }\!+\!\Vert e_{f,1}\Vert ^{2-2\sigma }) \!+\!\varpi _3(\Vert e_{s,2}\Vert ^{\frac{2}{l_{s,k_s+1}}}\Vert g_{s,k_s}(\hat{x}_{s})\Vert ^2\!+\!\Vert e_{f,2}\Vert ^{\frac{2}{l_{f,k_f+1}}}\Vert g_{f,k_f}(\hat{z}_f)\Vert ^2)\) to grow from 0 to \(\nu _s\). Denote \(\Delta >0\) with \(||\chi (0,0)||\le \Delta \). Since \(\check{\beta }_{s,k_s}\) is smooth positive function, from (10) and (58), \(\dot{e}_{s,1}\) and \(\dot{e}_{s,2}\) are bounded. Thus, there is a constant \(\delta _{\varepsilon }(\Delta )>0\), such that \(D^+({\bar{f}}_e)\le \delta _{\varepsilon }(\Delta )\), where \(D^+(\cdot )\) denotes the upper right-hand Dini derivative. Hence, for any (si), \((t,k)\in \text {dom}\chi \) with \(s+i\le t+k\),

$$\begin{aligned} k-i \le \frac{(t-s)}{\tau _{\varepsilon }(\Delta )}+1, \end{aligned}$$
(59)

where \(\tau _{\varepsilon }(\Delta ):= \frac{\nu _1}{\delta _{\varepsilon }(\Delta )}>0\). Thus, the Zeno behavior is excluded. Similarly, it can also be obtained that the solution of the system (42) would not escape in finite time and exists in \([0,\infty )\).

Let \(U_f(\chi ):= \varphi ^T\varphi +\varepsilon \sum _{j = 1}^{k_f}V_{f,j}(\bar{z}_{f})\). With the similar proof of (54), for any \(\varepsilon \in (0,{\bar{\varepsilon }}]\), there exist \(\gamma , {\bar{\gamma }}\in {\mathcal {K}}\), \(\beta _{T,\varepsilon }\in {\mathcal {K}}{\mathcal {L}}\) defined similar as \(\beta _{T,\varepsilon }\) in Definition 1, such that, for any solution \(\chi \) to (42), any \((t,j)\in \text {dom} \chi \),

$$\begin{aligned}{} & {} \Vert (x(t,j),z(t,j))\Vert \\{} & {} \quad \le \beta _{T,\varepsilon }(\Vert \chi (0,0)\Vert ,t)+\gamma (\varepsilon )+{\bar{\gamma }}(\nu ). \end{aligned}$$

The proof is completed. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, Y., Wang, YW., Liu, XK. et al. Zeno-free event-triggered fixed-time control of two-time-scale systems by Chang transformation and backstepping design. Nonlinear Dyn 111, 6379–6393 (2023). https://doi.org/10.1007/s11071-022-08147-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08147-2

Keywords

Navigation