Skip to main content
Log in

Vibration stabilization by a nonresonant secondary limit cycle oscillator

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Many vibrating systems, over some ranges of parameter values, exhibit a single unstable mode. Adding a small resonant secondary system to the unstable system is a well-known stabilization strategy. Here we show that even a nonresonant secondary system, if equipped with a limit cycle of its own, can stabilize the unstable mode of the primary system. The primary system is modeled here as a linear spring block system with negative damping. The secondary system is a van der Pol oscillator. Smallness of the latter’s parameters allows use of the method of multiple scales. The resulting slow amplitude equations decouple from the phases and a two-dimensional system is obtained. The secondary system’s amplitude evolves faster than that of the primary system, which simplifies analysis. A parameter-dependent transformation casts the system in a canonical form with a single free parameter \(c_1>0\) in addition to the small perturbation parameter. The canonical phase portrait involves two key straight lines. When \(c_1 < 4\) these lines intersect and a separatrix passes through that intersection. Solutions on one side of the separatrix show quenching of the primary instability with limit cycle oscillation of the secondary system. Solutions on the other side of the separatrix show significant oscillations of the primary system at its natural frequency, with the secondary limit cycle being quenched. When \(c_1 > 4\), stabilization fails for all initial conditions. In summary, for the case of a negatively damped oscillator interacting with a small nonresonant secondary limit cycle oscillator, we show stabilization, provide a pair of canonical equations with one free parameter, and present a complete qualitative characterization of the dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Not applicable.

Notes

  1. Upon changing the sign of \(\gamma \), small solutions for that oscillator would be stable, large solutions would be unbounded, and there would be an unstable limit cycle.

References

  1. Frahm, H.: Device for damping vibrations of bodies. US Patent 989958 (1911)

  2. Ibrahim, R.A.: Recent advances in nonlinear passive vibration isolators. J. Sound Vib. 314(3–5), 371–452 (2008)

    Google Scholar 

  3. Ding, H., Chen, L.Q.: Designs, analysis, and applications of nonlinear energy sinks. Nonlinear Dyn. 100, 3061–3107 (2020)

    Google Scholar 

  4. Gatti, G.: Fundamental insight on the performance of a nonlinear tuned mass damper. Meccanica 53, 111–123 (2018)

    MathSciNet  Google Scholar 

  5. Starosvetsky, Y., Gendelman, O.V.: Vibration absorption in systems with a nonlinear energy sink: Nonlinear damping. J. Sound Vib. 324(3–5), 916–939 (2009)

    Google Scholar 

  6. Zhu, S.J., Zheng, Y.F., Fu, Y.M.: Analysis of non-linear dynamics of a two-degree-of-freedom vibration system with non-linear damping and non-linear spring. J. Sound Vib. 271(1–2), 15–24 (2004)

    Google Scholar 

  7. Verhulst, F.: Quenching of self-excited vibrations. J. Eng. Math. 53, 349–358 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Lee, Y.S., Vakakis, A.F., Bergman, L.A., McFarland, D.M.: Suppression of limit cycle oscillations in the van der Pol oscillator by means of passive non-linear energy sinks. Struct. Control Health Monit. 13, 41–75 (2006)

    Google Scholar 

  9. Habib, G., Kerschen, G.: Suppression of limit cycle oscillations using the nonlinear tuned vibration absorber. Proc. R. Soc. A Math. Phys. Eng. Sci. 471(2176), 20140976 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Wang, Js., Fan, D., Lin, K.: A review on flow-induced vibration of offshore circular cylinders. J. Hydrodyn. 32, 415–440 (2020)

    Google Scholar 

  11. Nasrabadi, M., Sevbitov, A.V., Maleki, V.A., Akbar, N., Javanshir, I.: Passive fluid-induced vibration control of viscoelastic cylinder using nonlinear energy sink. Mar. Struct. 81, 103116 (2022)

    Google Scholar 

  12. Guo, H., Liu, B., Yu, Y., Cao, S., Chen, Y.: Galloping suppression of a suspended cable with wind loading by a nonlinear energy sink. Arch. Appl. Mech. 87, 1007–1018 (2017)

    Google Scholar 

  13. Qin, Z., Chen, Y., Zhan, X., Liu, B., Zhu, K.: Research on the galloping and anti-galloping of the transmission line. Int. J. Bifurc. Chaos 22(02), 1250038 (2012)

    MATH  Google Scholar 

  14. Dai, H.L., Abdelkefi, A., Wang, L.: Usefulness of passive non-linear energy sinks in controlling galloping vibrations. Int. J. Non-Linear Mech. 81, 83–94 (2016)

    Google Scholar 

  15. Shirude, A., Vyasarayani, C.P., Chatterjee, A.: Towards design of a nonlinear vibration stabilizer for suppressing single-mode instability. Nonlinear Dyn. 103, 1563–1583 (2021)

    Google Scholar 

  16. Singla, S., Chatterjee, A.: Nonlinear responses of an SDOF structure with a light, whirling, driven, untuned pendulum. Int. J. Mech. Sci. 168, 105305 (2020)

    Google Scholar 

  17. Chatterjee, S.: On the efficacy of an active absorber with internal state feedback for controlling self-excited oscillations. J. Sound Vib. 330(7), 1285–1299 (2011)

    Google Scholar 

  18. Mondal, J., Chatterjee, S.: Controlling self-excited vibration of a nonlinear beam by nonlinear resonant velocity feedback with time-delay. Int. J. Non-Linear Mech. 131, 103684 (2021)

    Google Scholar 

  19. Gattulli, V., Di Fabio, F., Luongo, A.: Simple and double Hopf bifurcations in aeroelastic oscillators with tuned mass dampers. J. Frankl. Inst. 338(2–3), 187–201 (2001)

    MathSciNet  MATH  Google Scholar 

  20. Gattulli, V., Di Fabio, F., Luongo, A.: Nonlinear tuned mass damper for self-excited oscillations. Wind Struct. 7(4), 251–264 (2004)

    Google Scholar 

  21. Nayfeh, A.H.: Perturbation Methods. Wiley, New York (2000)

    MATH  Google Scholar 

  22. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  23. Cartmell, M.P., Ziegler, S., Khanin, R., Forehand, D.: Multiple scales analyses of the dynamics of weakly nonlinear mechanical systems. Appl. Mech. Rev. 56(5), 455–492 (2003)

    Google Scholar 

  24. Storti, D.W., Rand, R.H.: Dynamics of two strongly coupled van der Pol oscillators. Int. J. Non-Linear Mech. 17(3), 143–152 (1982)

    MathSciNet  MATH  Google Scholar 

  25. Natsiavas, S.: Free vibration of two coupled nonlinear oscillators. Nonlinear Dyn. 6, 69–86 (1994)

    Google Scholar 

  26. Yamashita, K., Yagyu, T., Yabuno, H.: Nonlinear interactions between unstable oscillatory modes in a cantilevered pipe conveying fluid. Nonlinear Dyn. 98, 2927–2938 (2019)

    MATH  Google Scholar 

  27. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer-Verlag, New York (1983)

    MATH  Google Scholar 

  28. Rand, R.H., Holmes, P.J.: Bifurcation of periodic motions in two weakly coupled van der Pol oscillators. Int. J. Non-Linear Mech. 15(4–5), 387–399 (1980)

    MathSciNet  MATH  Google Scholar 

  29. Storti, D.W., Rand, R.H.: Dynamics of two strongly coupled relaxation oscillators. SIAM J. Appl. Math. 46(1), 56–67 (1986)

    MathSciNet  MATH  Google Scholar 

  30. Chakraborty, T., Rand, R.H.: The transition from phase locking to drift in a system of two weakly coupled van der Pol oscillators. Int. J. Non-Linear Mech. 23(5–6), 369–376 (1988)

    MathSciNet  MATH  Google Scholar 

  31. Storti, D.W., Reinhall, P.G.: Stability of in-phase and out-of-phase modes for a pair of linearly coupled van der Pol oscillators. In: Guran, A. (ed.) Nonlinear Dynamics: The Richard Rand 50th Anniversary Volume, pp. 1–23. World Scientific, Singapore (1997)

    Google Scholar 

  32. Storti, D.W., Reinhall, P.G.: Phase-locked mode stability for coupled van der Pol oscillators. J. Vib. Acoust. 122(3), 318–323 (2000)

    Google Scholar 

  33. Wirkus, S., Rand, R.: The dynamics of two coupled van der Pol oscillators with delay coupling. Nonlinear Dyn. 30, 205–221 (2002)

    MathSciNet  MATH  Google Scholar 

  34. Low, L.A., Reinhall, P.G., Storti, D.W.: An investigation of coupled van der Pol oscillators. J. Vib. Acoust. 125(2), 162–169 (2003)

    Google Scholar 

  35. Ivanchenko, M.V., Osipov, G.V., Shalfeev, V.D., Kurths, J.: Synchronization of two non-scalar-coupled limit-cycle oscillators. Phys. D 189(1–2), 8–30 (2004)

    MathSciNet  MATH  Google Scholar 

  36. Camacho, E., Rand, R., Howland, H.: Dynamics of two van der Pol oscillators coupled via a bath. Int. J. Solids Struct. 41(8), 2133–2143 (2004)

    MathSciNet  MATH  Google Scholar 

  37. Tang, J., Han, F., Xiao, H., Wu, X.: Amplitude control of a limit cycle in a coupled van der Pol system. Nonlinear Anal. Theory Methods Appl. 71(7–8), 2491–2496 (2009)

    MathSciNet  MATH  Google Scholar 

  38. Zhang, J., Gu, X.: Stability and bifurcation analysis in the delay-coupled van der Pol oscillators. Appl. Math. Model. 34(9), 2291–2299 (2010)

    MathSciNet  MATH  Google Scholar 

  39. Kulikov, D.A.: Dynamics of coupled van der Pol oscillators. J. Math. Sci. 262, 817–824 (2022)

    MATH  Google Scholar 

  40. Poliashenko, M., McKay, S.R., Smith, C.W.: Hysteresis of synchronous-asynchronous regimes in a system of two coupled oscillators. Phys. Rev. A 43(10), 5638–5641 (1991)

    Google Scholar 

  41. Chunbiao, G., Qishao, L., Kelei, H.: Strongly resonant bifurcations of nonlinearly coupled van der Pol-Duffing oscillator. Appl. Math. Mech. 20, 68–75 (1999)

    MathSciNet  MATH  Google Scholar 

  42. Zang, H., Zhang, T., Zhang, Y.: Stability and bifurcation analysis of delay coupled Van der Pol-Duffing oscillators. Nonlinear Dyn. 75, 35–47 (2014)

    MathSciNet  MATH  Google Scholar 

  43. Gattulli, V., Di Fabio, F., Luongo, A.: One to one resonant double Hopf bifurcation in aeroelastic oscillators with tuned mass dampers. J. Sound Vib. 262(2), 201–217 (2003)

    MATH  Google Scholar 

  44. Habib, G., Kerschen, G.: Stability and bifurcation analysis of a Van der Pol-Duffing oscillator with a nonlinear tuned vibration absorber. In: Proceedings of the Eighth European Nonlinear Dynamics Conference. Vienna, Austria (2014)

  45. Mansour, W.M.: Quenching of limit cycles of a van der Pol oscillator. J. Sound Vib. 25(3), 395–405 (1972)

    MATH  Google Scholar 

  46. Suchorsky, M.K., Rand, R.H.: A pair of van der Pol oscillators coupled by fractional derivatives. Nonlinear Dyn. 69, 313–324 (2012)

    MathSciNet  MATH  Google Scholar 

  47. Pastor, I., Pérez-García, V.M., Encinas-Sanz, F., Guerra, J.M.: Ordered and chaotic behavior of two coupled van der Pol oscillators. Phys. Rev. E 48, 171–182 (1993)

    Google Scholar 

  48. Teufel, A., Steindl, A., Troger, H.: Synchronization of two flow excited pendula. Commun. Nonlinear Sci. Numer. Simul. 11(5), 577–594 (2006)

    MathSciNet  MATH  Google Scholar 

  49. Kuznetsov, A.P., Roman, J.P.: Properties of synchronization in the systems of non-identical coupled van der Pol and van der Pol-Duffing oscillators. Broadband synchronization. Phys. D 238(16), 1499–1506 (2009)

    MathSciNet  MATH  Google Scholar 

  50. Paccosi, R.G., Figliola, A., Galán-Vioque, J.: A bifurcation approach to the synchronization of coupled van der Pol oscillators. SIAM J. Appl. Dyn. Syst. 13(3), 1152–1167 (2014)

    MathSciNet  MATH  Google Scholar 

  51. Li, X., Ji, J.C., Hansen, C.H.: Dynamics of two delay coupled van der Pol oscillators. Mech. Res. Commun. 33(5), 614–627 (2006)

    MathSciNet  MATH  Google Scholar 

  52. Woafo, P., Chedjou, J.C., Fotsin, H.B.: Dynamics of a system consisting of a van der Pol oscillator coupled to a Duffing oscillator. Phys. Rev. E 54(6), 5929–5934 (1996)

    MATH  Google Scholar 

  53. Rajasekar, S., Murali, K.: Resonance behaviour and jump phenomenon in a two coupled Duffing-van der Pol oscillators. Chaos Solitons Fractals 19(4), 925–934 (2004)

    MATH  Google Scholar 

  54. Kuznetsov, A.P., Stankevich, N.V., Turukina, L.V.: Coupled van der Pol-Duffing oscillators: Phase dynamics and structure of synchronization tongues. Phys. D 238(14), 1203–1215 (2009)

    MathSciNet  MATH  Google Scholar 

  55. Chatterjee, S., Dey, S.: Nonlinear dynamics of two harmonic oscillators coupled by Rayleigh type self-exciting force. Nonlinear Dyn. 72, 113–128 (2013)

    MathSciNet  Google Scholar 

  56. Gendelman, O.V., Bar, T.: Bifurcations of self-excitation regimes in a Van der Pol oscillator with a nonlinear energy sink. Phys. D 239(3–4), 220–229 (2010)

    MathSciNet  MATH  Google Scholar 

  57. Domany, E., Gendelman, O.V.: Dynamic responses and mitigation of limit cycle oscillations in Van der Pol-Duffing oscillator with nonlinear energy sink. J. Sound Vib. 332(21), 5489–5507 (2013)

  58. Natsiavas, S., Bouzakis, K.D., Aichouh, P.: Free vibration in a class of self-excited oscillators with 1:3 internal resonance. Nonlinear Dyn. 12, 109–128 (1997)

    MathSciNet  MATH  Google Scholar 

  59. Natsiavas, S., Metallidis, P.: External primary resonance of self-excited oscillators with 1:3 internal resonance. J. Sound Vib. 208(2), 211–224 (1997)

    Google Scholar 

  60. El-Badawy, A.A., Nasr El-Deen, T.N.: Quadratic nonlinear control of a self-excited oscillator. J. Vib. Control 13(4), 403–414 (2007)

    MathSciNet  MATH  Google Scholar 

  61. Verros, G., Natsiavas, S.: Self-excited oscillators with asymmetric nonlinearities and one-to-two internal resonance. Nonlinear Dyn. 17, 325–346 (1998)

    MathSciNet  MATH  Google Scholar 

  62. Kengne, J., Chedjou, J.C., Kom, M., Kyamakya, K., Kamdoum Tamba, V.: Regular oscillations, chaos, and multistability in a system of two coupled van der Pol oscillators: numerical and experimental studies. Nonlinear Dyn. 76, 1119–1132 (2014)

    MathSciNet  Google Scholar 

  63. Chedjou, J.C., Fotsin, H.B., Woafo, P., Domngang, S.: Analog simulation of the dynamics of a van der Pol oscillator coupled to a Duffing oscillator. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 48(6), 748–757 (2001)

    MATH  Google Scholar 

  64. Ngamsa Tegnitsap, J.V., Fotsin, H.B., Kamdoum Tamba, V., Megam Ngouonkadi, E.B.: Dynamical study of VDPCL oscillator: antimonotonicity, bursting oscillations, coexisting attractors and hardware experiments. Eur. Phys. J. Plus 135, 591 (2020)

    Google Scholar 

Download references

Funding

We have not received any financial support for conducting this research.

Author information

Authors and Affiliations

Authors

Contributions

D. D. Tandel: Detailed execution of analysis and writing. Pankaj Wahi: Conception, aspects of analysis and writing. Anindya Chatterjee: Conception, guidance and writing.

Corresponding author

Correspondence to D. D. Tandel.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Broader literature review

We have conducted a broader literature search and found 40 papers, of which 39 of them were published between 1980 and 2022. These papers each have the van der Pol oscillator coupled to either the van der Pol oscillator or some other oscillator. These papers are included in this article as references [20, 24, 25, 28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64]. These references can be grouped in various ways depending on which aspect of their contribution we wish to focus on. Each such grouping serves to emphasize how our work is different.

Many of these papers involve two coupled oscillators that are resonant, i.e., the natural frequencies are close. From our 40 references, it turns out that references [20, 28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46] are in this first category. Since our two oscillators have frequencies that are not close, we do not fall in this category of resonant coupled oscillators.

Another way to classify the papers is to identify those (27 out of 40) where the two oscillators’ inertia terms are of equal or nearly equal magnitude, and their coupled dynamics, which may be weakly or strongly nonlinear, are then examined. References [24, 25, 28,29,30,31,32,33,34,35,36,37,38,39,40,41,42, 46,47,48,49,50,51,52,53,54,55] fall in this category. We do not fall in this category because our motivation is an untuned vibration stabilizer where the added system is necessarily small compared to the primary system, and it still affects the dynamics.

Another way to group some papers is to note those wherein two oscillators, by mathematical design, are capable of having perfectly synchronized solutions. In abstract first-order form, if we have

$$\begin{aligned} \dot{x} = f(x) + g(x,y) \quad \text{ and } \quad \dot{y} = f(y) + g(y,x), \end{aligned}$$

then \(x=y\) is a possible solution satisfying

$$\begin{aligned} \dot{x} = f(x) + g(x,x). \end{aligned}$$

Whether that phase-locked solution is stable or not then becomes important. If it is stable, the basin of attraction is important, and so on. Out of the 40, 9 papers fall in this category [29, 31,32,33, 36, 38, 39, 42, 46]. Since our two oscillators do not have this form, our paper does not fall into this category.

Then there are coupled van der Pol and Duffing systems, for which some papers study the dynamics near 1:1 resonance [41, 44, 49, 56, 57], phase-locked motions [49, 54], or assume comparable inertia [25, 41, 42, 49, 52,53,54]. As explained above, our paper is very different from these papers.

There are also studies of coupled van der Pol and Duffing systems that involve 1:2 or 1:3 resonances: see [58,59,60,61]. We focus on nonresonant interactions and so we do not fall in this category.

We note that nonresonant interactions were studied in [51,52,53], but there the inertias of the two oscillators were the same (as noted above), and they reported decoupled amplitude dynamics of the coupled oscillators, while our results with disparate inertias show a potentially useful coupled dynamics. Therefore we differ from those papers.

Finally, for parameter values that are not small and where analytical progress was limited, numerical or experimental approaches have been used [47, 50, 54, 62,63,64] to observe nonlinear responses like multistability and chaotic solutions. Our paper is not in this category.

In this way, there is at least one key difference, and usually more than one key difference, between our paper and these 40 papers.

Expressions from multiple scale analysis

The solution for \(Z_{1}\) is

$$\begin{aligned}{} & {} Z_{1}(T_{0}, T_{1}, T_{2}) = -\frac{1}{4 (1-{\omega _{p}}^{2})^{4}}\nonumber \\{} & {} \quad \left( (2 \gamma {\omega _{p}}^{4} - 4 \gamma {\omega _{p}}^{2} + 2 \gamma )R Q^{2} - (4 \gamma {\omega _{p}}^{4} -8 \gamma {\omega _{p}}^{2} \right. \nonumber \\{} & {} \quad \left. + 4 \gamma - \gamma R^{2}) R \right) \cos (T_{0} + \phi ) + \frac{m {\omega _{p}}^{4} R}{(1-{\omega _{p}}^{2})^{3}} \nonumber \\{} & {} \quad \sin (T_{0} + \phi )+ \frac{\gamma R^{3}}{4 (9 - {\omega _{p}}^{2})(1-{\omega _{p}}^{2})^{3} } \cos (3 T_{0} + 3 \phi )\nonumber \\{} & {} \quad - \frac{\gamma Q^{3}}{32 \omega _{p}} \cos (3 \omega _{p} T_{0} + 3 \psi )\nonumber \\{} & {} \quad + \frac{(1-2 \omega _{p}) \gamma Q^{2} R}{4 (1 - 3 \omega _{p}) (1 + \omega _{p}) (1-\omega _{p})^{2}} \nonumber \\{} & {} \quad \cos (T_{0} - 2 \omega _{p} T_{0} + \phi - 2 \psi )\nonumber \\{} & {} \quad + \frac{(1+2 \omega _{p}) \gamma Q^{2} R}{4 (1 + 3 \omega _{p}) (1 - \omega _{p}) (1+\omega _{p})^{2}} \nonumber \\{} & {} \quad \cos (T_{0} + 2 \omega _{p} T_{0} + \phi + 2 \psi )\nonumber \\{} & {} \quad + \frac{\gamma (2 -\omega _{p}) Q R^{2}}{16 (1-\omega _{p}) (1-{\omega _{p}}^{2})^{2}} \nonumber \\{} & {} \quad \cos (2 T_{0} - \omega _{p} T_{0} + 2 \phi -\psi )\nonumber \\{} & {} \quad -\frac{\gamma (2 +\omega _{p}) Q R^{2}}{16 (1+\omega _{p}) (1-{\omega _{p}}^{2})^{2}} \nonumber \\{} & {} \quad \cos (2 T_{0} + \omega _{p} T_{0} + 2 \phi +\psi ). \end{aligned}$$
(B.1)

Recall Eq. (27), the expressions are

$$\begin{aligned}{} & {} L_{1}=\frac{\partial ^{2} X_{2}}{\partial {T_{0}}^{2}} + X_{2} -\left( \frac{m^{2} {\omega _{p}}^{4} (1+ 3{\omega _{p}}^{2}) R}{4 (1-{\omega _{p}}^{2})^{3}}\right. \nonumber \\{} & {} \left. \quad +2 R \frac{\partial \phi }{\partial T_{2}}\right) \sin (T_{0} + \phi )\nonumber \\{} & {} \quad + \biggl (c R + \frac{m \gamma \left( 2(Q^{2}-2)(1-{\omega _{p}}^{2})^{2} + R^{2}\right) R}{4 (1- {\omega _{p}}^{2})^{4}} \nonumber \\{} & {} \quad + 2 \frac{\partial R}{\partial T_{2}} \biggr ) \cos (T_{0} +\phi )\nonumber \\{} & {} \quad -\frac{m \gamma \omega _{p} \left( (Q^{2}-4) (1-{\omega _{p}}^{2})^{2} + 2 R^{2}\right) Q}{4 (1-{\omega _{p}}^{2})^{3}} \nonumber \\{} & {} \quad \cos (\omega _{p} T_{0} + \psi )\nonumber \\{} & {} \quad + \frac{m^{2} {\omega _{p}}^{6} Q}{(1-{\omega _{p}}^{2})^{2}} \sin (\omega _{p} T_{0} + \psi )+ \frac{9 m \gamma \omega _{p} Q^{3}}{32} \nonumber \\{} & {} \quad \cos (3 \omega _{p} T_{0} + 3 \psi )\nonumber \\{} & {} \quad {- \frac{9 m \gamma R^{3}}{4 (9-{\omega _{p}}^{2})(1-{\omega _{p}}^{2})^{3}} \cos (3 T_{0} + 3 \phi )}\nonumber \\{} & {} \quad - \frac{m \gamma (1+2 \omega _{p})^{3} Q^{2} R}{4 (1 + 3 \omega _{p}) (1 - \omega _{p}) (1+\omega _{p})^{2}} \nonumber \\{} & {} \quad \cos (T_{0} + 2 \omega _{p} T_{0} + \phi + 2 \psi )\nonumber \\{} & {} \quad - \frac{m \gamma (1-2 \omega _{p})^{3} Q^{2} R}{4 (1 - 3 \omega _{p}) (1 + \omega _{p}) (1-\omega _{p})^{2}} \nonumber \\{} & {} \quad \cos (T_{0} - 2 \omega _{p} T_{0} + \phi - 2 \psi )\nonumber \\{} & {} \quad + \frac{m \gamma (2+\omega _{p})^{3} Q R^{2}}{16 (1+\omega _{p}) (1-{\omega _{p}}^{2})^{2}}\nonumber \\{} & {} \quad \cos (2 T_{0} + \omega _{p} T_{0} + 2 \phi +\psi )\nonumber \\{} & {} \quad - \frac{m \gamma (2-\omega _{p})^{3} Q R^{2}}{16 (1-\omega _{p}) (1-{\omega _{p}}^{2})^{2}} \nonumber \\{} & {} \quad \cos (2 T_{0} - \omega _{p} T_{0} + 2 \phi -\psi ), \end{aligned}$$
(B.2)

and

$$\begin{aligned}{} & {} L_{2}=\frac{\partial ^{2} Z_{2}}{\partial {T_{0}}^{2}} + {\omega _{p}}^{2} Z_{2} + \frac{\partial ^{2} X_{2}}{\partial {T_{0}}^{2}} \nonumber \\{} & {} \quad + \frac{{\omega _{p}}^{2}}{8 (1-{\omega _{p}}^{2})^{5}}\biggl (m \gamma (6 {\omega _{p}}^{6} - 10 {\omega _{p}}^{4} + 2 {\omega _{p}}^{2} \nonumber \\{} & {} \quad + 2 ) Q^{2} R + m \gamma (-12 {\omega _{p}}^{6} + 20 {\omega _{p}}^{4} - 4 {\omega _{p}}^{2} \nonumber \\{} & {} \quad -4 + 7 {\omega _{p}}^{2} R^{2} + R^{2}) R +(-16 {\omega _{p}}^{8} + 64 {\omega _{p}}^{6}\nonumber \\{} & {} \quad -96 {\omega _{p}}^{4} + 64 {\omega _{p}}^{2} -16) \frac{\partial R}{\partial T_{2}}\biggr ) \cos (T_{0} + \phi )\nonumber \\{} & {} \quad +\frac{1}{16 (9-{\omega _{p}}^{2}) (1-9 {\omega _{p}}^{2}) (1-{\omega _{p}}^{2})^{6}}\nonumber \\{} & {} \quad \biggl ((-45 {\omega _{p}}^{10} + 518 {\omega _{p}}^{8} -1110 {\omega _{p}}^{6} + 864 {\omega _{p}}^{4} \nonumber \\{} & {} \quad -245 {\omega _{p}}^{2} + 18) \gamma ^{2} R^{2} Q^{2} + (-18 {\omega _{p}}^{14} \nonumber \\{} & {} \quad + 264 {\omega _{p}}^{12} -1150 {\omega _{p}}^{10} + 2356 {\omega _{p}}^{8} \nonumber \\{} & {} \quad -2574 {\omega _{p}}^{6} + 1504 {\omega _{p}}^{4} -418 {\omega _{p}}^{2} + 36 ) \gamma ^{2} Q^{4} \nonumber \\{} & {} \quad + (18 {\omega _{p}}^{4} -92 {\omega _{p}}^{2} +10) \gamma ^{2} R^{4} \nonumber \\{} & {} \quad + (72 {\omega _{p}}^{14} -1016 {\omega _{p}}^{12} +4072 {\omega _{p}}^{10}\nonumber \\{} & {} \quad -7640 {\omega _{p}}^{8} +7640 {\omega _{p}}^{6} \nonumber \\{} & {} \quad -4072 {\omega _{p}}^{4} +1016 {\omega _{p}}^{2} -72) \gamma ^{2} Q^{2} \nonumber \\{} & {} \quad + (-72 {\omega _{p}}^{8} + 800 {\omega _{p}}^{6} -1456 {\omega _{p}}^{4} \nonumber \\{} & {} \quad + 800 {\omega _{p}}^{2}-72)\gamma ^{2} R^{2}\nonumber \\{} & {} \quad + m^{2} (-36 {\omega _{p}}^{16} + 292 {\omega _{p}}^{14} +472 {\omega _{p}}^{12} \nonumber \\{} & {} \quad -1784 {\omega _{p}}^{10} + 1164 {\omega _{p}}^{8} -108 {\omega _{p}}^{6} ) + \gamma ^{2} (144 {\omega _{p}}^{12}\nonumber \\{} & {} \quad -1888 {\omega _{p}}^{10} +6256 {\omega _{p}}^{8} -9024 {\omega _{p}}^{6} \nonumber \\{} & {} \quad + 6256 {\omega _{p}}^{4} -1888 {\omega _{p}}^{2} + 144) +(-288 {\omega _{p}}^{16}\nonumber \\{} & {} \quad + 4064 {\omega _{p}}^{14}-16288 {\omega _{p}}^{12}\nonumber \\{} & {} \quad + 30560 {\omega _{p}}^{10}-30560 {\omega _{p}}^{8}+16288 {\omega _{p}}^{6} -4064 {\omega _{p}}^{4} \nonumber \\ \end{aligned}$$
$$\begin{aligned}{} & {} \quad + 288 {\omega _{p}}^{2} )\frac{\partial \phi }{\partial T_{2}}\biggr ) R \sin (T_{0} + \phi ) +\frac{\omega _{p}}{4 (1-{\omega _{p}}^{2})^{4}}\nonumber \\{} & {} \quad \biggl (({\omega _{p}}^{8} -3 {\omega _{p}}^{6} + 3 {\omega _{p}}^{4} -{\omega _{p}}^{2} ) m \gamma Q^{3} \nonumber \\{} & {} \quad + (-2 {\omega _{p}}^{4} -2 {\omega _{p}}^{2}) m \gamma R^{2} Q + (-4 {\omega _{p}}^{8} + 12 {\omega _{p}}^{6} \nonumber \\{} & {} \quad -12 {\omega _{p}}^{4} + 4 {\omega _{p}}^{2} ) m \gamma Q + (8 {\omega _{p}}^{8}-32 {\omega _{p}}^{6} \nonumber \\{} & {} \quad +48 {\omega _{p}}^{4}-32 {\omega _{p}}^{2} +8 ) \frac{\partial Q}{\partial T_{2}}\biggr )\cos (\omega _{p} T_{0} + \psi ) \nonumber \\{} & {} \quad -\frac{1}{128 (1-9 {\omega _{p}}^{2}) (1- {\omega _{p}}^{2})^{5}} \biggl ((336 {\omega _{p}}^{8} \nonumber \\{} & {} \quad -896 {\omega _{p}}^{6}+ 800 {\omega _{p}}^{4} -256 {\omega _{p}}^{2} + 16) \gamma ^{2} R^{2} Q^{2} \nonumber \\{} & {} \quad + (63 {\omega _{p}}^{12} -322 {\omega _{p}}^{10} +665 {\omega _{p}}^{8} -700 {\omega _{p}}^{6} \nonumber \\{} & {} \quad +385 {\omega _{p}}^{4} -98 {\omega _{p}}^{2} +7) \gamma ^{2} Q^{4}\nonumber \\{} & {} \quad + (108 {\omega _{p}}^{4} -84 {\omega _{p}}^{2}+8) \gamma ^{2} R^{4} \nonumber \\{} & {} \quad + (-288 {\omega _{p}}^{12} + 1472 {\omega _{p}}^{10} -3040 {\omega _{p}}^{8} + 3200 {\omega _{p}}^{6} \nonumber \\{} & {} \quad -1760 {\omega _{p}}^{4}+ 448 {\omega _{p}}^{2}-32) \gamma ^{2} Q^{2}\nonumber \\{} & {} \quad + (-288 {\omega _{p}}^{8} + 896 {\omega _{p}}^{6} -960 {\omega _{p}}^{4}\nonumber \\{} & {} \quad +384 {\omega _{p}}^{2} -32) \gamma ^{2} R^{2} \nonumber \\{} & {} \quad + m^{2} (-864 {\omega _{p}}^{14} + 2688 {\omega _{p}}^{12} -2880 {\omega _{p}}^{10} \nonumber \\{} & {} \quad + 1152 {\omega _{p}}^{8} -96 {\omega _{p}}^{6} )\nonumber \\{} & {} \quad + \gamma ^{2} (288 {\omega _{p}}^{12} -1472 {\omega _{p}}^{10} + 3040 {\omega _{p}}^{8} \nonumber \\ \end{aligned}$$
$$\begin{aligned}{} & {} \quad -3200 {\omega _{p}}^{6}+ 1760 {\omega _{p}}^{4} -448 {\omega _{p}}^{2} + 32)\nonumber \\{} & {} \quad +(2304 {\omega _{p}}^{13} -11776 {\omega _{p}}^{11} + 24320 {\omega _{p}}^{9} \nonumber \\{} & {} \quad -25600 {\omega _{p}}^{7} +14080 {\omega _{p}}^{5}-3584 {\omega _{p}}^{3} \nonumber \\{} & {} \quad + 256 \omega _{p})\frac{\partial \psi }{\partial T_{2}}\biggr ) Q \sin (\omega _{p} T_{0} + \psi ) \nonumber \\{} & {} \quad + \frac{m \gamma {\omega _{p}}^{2} (7 {\omega _{p}}^{4} -46 {\omega _{p}}^{2} -9) R^{3}}{8 (9-{\omega _{p}}^{2}) (1-{\omega _{p}}^{2})^{5}} \cos (3 T_{0} + 3 \phi )\nonumber \\{} & {} \quad - \frac{3 \gamma ^{2} R^{3}}{16 (9- {\omega _{p}}^{2}) (1-{\omega _{p}}^{2})^{6}} \left( ({\omega _{p}}^{8} -17 {\omega _{p}}^{6} +69 {\omega _{p}}^{4} \right. \nonumber \\{} & {} \quad -91 {\omega _{p}}^{2}+ 38) Q^{2} +(-3 {\omega _{p}}^{2} +11) R^{2} + 8 {\omega _{p}}^{6} \nonumber \\{} & {} \quad \left. -56 {\omega _{p}}^{4}+ 88 {\omega _{p}}^{2} -40\right) \sin (3 T_{0} + 3 \phi ) - \frac{5 m \gamma {\omega _{p}}^{3} Q^{3}}{32 (1-{\omega _{p}}^{2})} \nonumber \\{} & {} \quad \cos (3 \omega _{p} T_{0} + 3 \psi )+ \frac{\gamma ^{2} Q^{3}}{128 (1-9 {\omega _{p}}^{2}) (1- {\omega _{p}}^{2})^{3}}\nonumber \\{} & {} \quad \left( (9 {\omega _{p}}^{8} -28 {\omega _{p}}^{6} + 30 {\omega _{p}}^{4} -12 {\omega _{p}}^{2} +1 ) Q^{2}\right. \nonumber \\{} & {} \quad + (540 {\omega _{p}}^{4} -152 {\omega _{p}}^{2} - 4) R^{2} + 72 {\omega _{p}}^{8} \nonumber \\{} & {} \left. \quad -224 {\omega _{p}}^{6} + 240 {\omega _{p}}^{4} -96 {\omega _{p}}^{2} + 8\right) \sin (3 \omega _{p} T_{0} + 3 \psi ) \nonumber \\{} & {} \quad + \frac{5 \gamma ^{2} R^{5}}{16 (9-{\omega _{p}}^{2}) (1-{\omega _{p}}^{2})^{5}} \sin (5 T_{0} + 5 \phi )\nonumber \\{} & {} \quad -\frac{5 \gamma ^{2} Q^{5}}{128} \sin (5 \omega _{p} T_{0} + 5 \psi ) \nonumber \\ \end{aligned}$$
$$\begin{aligned}{} & {} \quad - \frac{m \gamma {\omega _{p}}^{2} (22 {\omega _{p}}^{4} + 3 {\omega _{p}}^{3} -3 {\omega _{p}}^{2} + \omega _{p} + 1) R Q^{2}}{8 (1 + 3 \omega _{p}) (1-{\omega _{p}}^{2})^{3}} \nonumber \\{} & {} \quad \cos (T_{0} + 2 \omega _{p} T_{0} + \phi + 2 \psi )\nonumber \\{} & {} \quad - \frac{m \gamma {\omega _{p}}^{2} (22 {\omega _{p}}^{4} - 3 {\omega _{p}}^{3} -3 {\omega _{p}}^{2} - \omega _{p} + 1) R Q^{2}}{8 (1 - 3 \omega _{p}) (1-{\omega _{p}}^{2})^{3}} \nonumber \\{} & {} \quad \cos (T_{0} - 2 \omega _{p} T_{0} + \phi - 2 \psi )\nonumber \\{} & {} \quad + \frac{m \gamma {\omega _{p}}^{2} ({\omega _{p}}^{4} + 7 {\omega _{p}}^{3} + 14 {\omega _{p}}^{2} -2 \omega _{p} + 4) Q R^{2}}{16 (1-{\omega _{p}}^{2})^{4}} \nonumber \\{} & {} \quad \cos (2 T_{0} + \omega _{p} T_{0} + 2 \phi + \psi ) \nonumber \\{} & {} \quad - \frac{m \gamma {\omega _{p}}^{2} ({\omega _{p}}^{4} - 7 {\omega _{p}}^{3} + 14 {\omega _{p}}^{2} +2 \omega _{p} + 4) Q R^{2}}{16 (1-{\omega _{p}}^{2})^{4}} \nonumber \\{} & {} \quad \cos (2 T_{0} - \omega _{p} T_{0} + 2 \phi - \psi )\nonumber \\{} & {} \quad + \frac{\gamma ^{2} (4 + \omega _{p}) ({\omega _{p}}^{3} + 2 {\omega _{p}}^{2} -17 \omega _{p} -26) Q R^{4} }{64 (9-{\omega _{p}}^{2}) (1+\omega _{p}) (1-{\omega _{p}}^{2})^{4}} \nonumber \\{} & {} \quad \sin (4 T_{0} + \omega _{p} T_{0} + 4 \phi + \psi )\nonumber \\{} & {} \quad + \frac{\gamma ^{2} (4 - \omega _{p}) ({\omega _{p}}^{3} - 2 {\omega _{p}}^{2} -17 \omega _{p} +26) Q R^{4} }{64 (9-{\omega _{p}}^{2}) (1-\omega _{p}) (1-{\omega _{p}}^{2})^{4}} \nonumber \\{} & {} \quad \sin (4 T_{0} - \omega _{p} T_{0} + 4 \phi - \psi )\nonumber \\{} & {} \quad + \frac{\gamma ^{2} (1 + 4 \omega _{p}) (11 {\omega _{p}}^{2} + 8 \omega _{p} + 1) Q^{4} R}{64 \omega _{p} (1 + 3 \omega _{p}) (1+\omega _{p}) (1-{\omega _{p}}^{2})} \nonumber \\{} & {} \quad \sin (T_{0} + 4 \omega _{p} T_{0} + \phi + 4 \psi )\nonumber \\{} & {} \quad - \frac{\gamma ^{2} (1 - 4 \omega _{p}) (11 {\omega _{p}}^{2} - 8 \omega _{p} + 1) Q^{4} R}{64 \omega _{p} (1 - 3 \omega _{p}) (1-\omega _{p}) (1-{\omega _{p}}^{2})} \nonumber \\{} & {} \quad \sin (T_{0} - 4 \omega _{p} T_{0} + \phi - 4 \psi )\nonumber \\{} & {} \quad + \frac{\gamma ^{2} R Q^{2}}{64 \omega _{p} (1-9 {\omega _{p}}^{2}) (1-{\omega _{p}}^{2})^{3}} \nonumber \\{} & {} \quad \left( (5 {\omega _{p}}^{2}+54 {\omega _{p}}^{7} + 135 {\omega _{p}}^{6} -186 {\omega _{p}}^{5} -141 {\omega _{p}}^{4} \right. \nonumber \\{} & {} \quad + 146 {\omega _{p}}^{3} -14 \omega _{p} +1) Q^{2} + (-36 {\omega _{p}}^{4} + 78 {\omega _{p}}^{3} \nonumber \\{} & {} \quad -2 {\omega _{p}}^{2} -4 \omega _{p} ) R^{2} + 48 {\omega _{p}}^{7} -32 {\omega _{p}}^{2} \nonumber \\{} & {} \quad -224 {\omega _{p}}^{6} + 112 {\omega _{p}}^{5} + 256 {\omega _{p}}^{4} -176 {\omega _{p}}^{3} \left. + 16 \omega _{p} \right) \nonumber \\{} & {} \quad \sin (T_{0} - 2 \omega _{p} T_{0} + \phi - 2 \psi )\nonumber \\{} & {} \quad + \frac{\gamma ^{2} R Q^{2}}{64 \omega _{p} (1-9 {\omega _{p}}^{2}) (1-{\omega _{p}}^{2})^{3}} \nonumber \\{} & {} \quad \left( (- 5 {\omega _{p}}^{2}+54 {\omega _{p}}^{7} - 135 {\omega _{p}}^{6} -186 {\omega _{p}}^{5} +141 {\omega _{p}}^{4} \right. \nonumber \\ \end{aligned}$$
$$\begin{aligned}{} & {} \quad + 146 {\omega _{p}}^{3} -14 \omega _{p} -1) Q^{2} + (36 {\omega _{p}}^{4} + 78 {\omega _{p}}^{3} \nonumber \\{} & {} \quad +2 {\omega _{p}}^{2} -4 \omega _{p} ) R^{2} + 48 {\omega _{p}}^{7} +224 {\omega _{p}}^{6}\nonumber \\{} & {} \quad \left. + 112 {\omega _{p}}^{5} - 256 {\omega _{p}}^{4} -176 {\omega _{p}}^{3} +32 {\omega _{p}}^{2} + 16 \omega _{p} \right) \nonumber \\{} & {} \quad \sin (T_{0} + 2 \omega _{p} T_{0} + \phi + 2 \psi )\nonumber \\{} & {} \quad - \frac{\gamma ^{2} Q R^{2}}{32 (1-3 \omega _{p}) (9- {\omega _{p}}^{2}) (1-{\omega _{p}}^{2})^{5}} \nonumber \\{} & {} \quad \left( (3 {\omega _{p}}^{10}-18 {\omega _{p}}^{9}-48 {\omega _{p}}^{8}+283 {\omega _{p}}^{7} \right. \nonumber \\{} & {} \quad + 193 {\omega _{p}}^{6}-1277 {\omega _{p}}^{5}+ 7 {\omega _{p}}^{4} + 1777 {\omega _{p}}^{3} \nonumber \\{} & {} \quad -416 {\omega _{p}}^{2}-765 \omega _{p} +261) Q^{2} \nonumber \\{} & {} \quad + (-6 {\omega _{p}}^{5}-22 {\omega _{p}}^{4}+116 {\omega _{p}}^{3}+84 {\omega _{p}}^{2}\nonumber \\{} & {} \quad -334 \omega _{p} +98) R^{2} + 12 {\omega _{p}}^{9}+ 44 {\omega _{p}}^{8}-256 {\omega _{p}}^{7}\nonumber \\{} & {} \quad -448 {\omega _{p}}^{6} +1592 {\omega _{p}}^{5} +440 {\omega _{p}}^{4} -2464 {\omega _{p}}^{3} \nonumber \\{} & {} \quad \left. + 288 {\omega _{p}}^{2}+1116 \omega _{p}-324\right) \nonumber \\{} & {} \quad \sin (2 T_{0} - \omega _{p} T_{0} + 2 \phi - \psi )\nonumber \\{} & {} \quad + \frac{\gamma ^{2} Q R^{2}}{32 (1+3 \omega _{p}) (9- {\omega _{p}}^{2}) (1-{\omega _{p}}^{2})^{5}} \nonumber \\{} & {} \quad \left( (3 {\omega _{p}}^{10}+18 {\omega _{p}}^{9}-48 {\omega _{p}}^{8}-283 {\omega _{p}}^{7} + 193 {\omega _{p}}^{6}\right. \nonumber \\{} & {} \quad +1277 {\omega _{p}}^{5} + 7 {\omega _{p}}^{4} - 1777 {\omega _{p}}^{3}-416 {\omega _{p}}^{2}+765 \omega _{p} \nonumber \\{} & {} \quad +261) Q^{2} + (6 {\omega _{p}}^{5}-22 {\omega _{p}}^{4}-116 {\omega _{p}}^{3}+84 {\omega _{p}}^{2}\nonumber \\{} & {} \quad +334 \omega _{p}+98) R^{2} - 12 {\omega _{p}}^{9}+ 44 {\omega _{p}}^{8}+256 {\omega _{p}}^{7}\nonumber \\{} & {} \quad -448 {\omega _{p}}^{6}-1592 {\omega _{p}}^{5} +440 {\omega _{p}}^{4} \nonumber \\{} & {} \quad \left. +2464 {\omega _{p}}^{3}+ 288 {\omega _{p}}^{2}-1116 \omega _{p}-324\right) \nonumber \\{} & {} \quad \sin (2 T_{0} + \omega _{p} T_{0} + 2 \phi +\psi )\nonumber \\{} & {} \quad -\frac{\gamma ^{2} (2 + 3 \omega _{p}) (6 {\omega _{p}}^{3} + 49 {\omega _{p}}^{2} + 24 \omega _{p} +1) R^{2} Q^{3}}{128 \omega _{p} (1 + 3 \omega _{p}) (1 + \omega _{p}) (1-{\omega _{p}}^{2})^{2}} \nonumber \\{} & {} \quad \sin (2 T_{0} + 3 \omega _{p} T_{0} + 2 \phi + 3 \psi )\nonumber \\{} & {} \quad +\frac{\gamma ^{2} (2 - 3 \omega _{p}) (6 {\omega _{p}}^{3} - 49 {\omega _{p}}^{2} + 24 \omega _{p} -1) R^{2} Q^{3}}{128 \omega _{p} (1 - 3 \omega _{p}) (1 - \omega _{p}) (1-{\omega _{p}}^{2})^{2}} \nonumber \\{} & {} \quad \sin (2 T_{0} - 3 \omega _{p} T_{0} + 2 \phi - 3 \psi )\nonumber \\{} & {} \quad - \frac{\gamma ^{2} (3 +2 \omega _{p}) (3 {\omega _{p}}^{4} + 11 {\omega _{p}}^{3} -29 {\omega _{p}}^{2} -107 \omega _{p} -38) R^{3} Q^{2}}{32 (1 + 3 \omega _{p}) (9-{\omega _{p}}^{2}) (1+\omega _{p}) (1- {\omega _{p}}^{2})^{3}} \nonumber \\{} & {} \quad \sin (3 T_{0} + 2 \omega _{p} T_{0} \nonumber \\{} & {} \quad + 3 \phi + 2 \psi )\nonumber \\{} & {} \quad - \frac{\gamma ^{2} (3 -2 \omega _{p}) (3 {\omega _{p}}^{4}- 11 {\omega _{p}}^{3} -29 {\omega _{p}}^{2} +107 \omega _{p} -38) }{32 (1 - 3 \omega _{p}) (9-{\omega _{p}}^{2}) (1-\omega _{p}) (1- {\omega _{p}}^{2})^{3}} \nonumber \\{} & {} R^{3} Q^{2} \sin (3 T_{0} - 2 \omega _{p} T_{0} + 3 \phi -2 \psi ). \end{aligned}$$
(B.3)

The solution for \(X_{2}\) is

$$\begin{aligned}{} & {} X_{2}(T_{0},T_{1},T_{2})\nonumber \\{} & {} \quad ={\frac{ ((Q^{2}-4) (1-{\omega _{p}}^{2})^{2}+2 R^{2}) m \gamma Q \omega _{p}}{4 (1-{\omega _{p}}^{2})^{4}}} \nonumber \\{} & {} \quad \cos (\omega _{p} T_{0} + \psi )\nonumber \\{} & {} \quad {-\frac{Q {m}^{2}{\omega _{p}}^{6}}{(1-{\omega _{p}}^{2}) ^{3}}} \sin (\omega _{p} T_{0} + \psi ) \nonumber \\{} & {} \quad -{\frac{9 m \gamma \omega _{p} Q^{3}}{32 (1-9{\omega _{p}}^{2})}} \cos (3 \omega _{p} T_{0} + 3 \psi )\nonumber \\{} & {} \quad -{\frac{9 m \gamma R^{3}}{32 (9-{\omega _{p}}^{2})(1-{\omega _{p}}^{2})^{3}}} \cos (3 T_{0} + 3 \phi )\nonumber \\{} & {} \quad -{\frac{ (1+2 \omega _{p})^{3} m \gamma R Q^{2}}{ 16 \omega _{p} (1+3 \omega _{p}) (1-\omega _{p}) (1+\omega _{p})^{3}}}\nonumber \\{} & {} \quad \cos (T_{0}+\phi +2\omega _{p} T_{0} + 2\psi )\nonumber \\{} & {} \quad +{\frac{ (1-2 \omega _{p})^{3} m \gamma R Q^{2}}{ 16 \omega _{p} (1-3 \omega _{p}) (1+\omega _{p}) (1-\omega _{p})^{3}}}\nonumber \\{} & {} \quad \cos (T_{0}+\phi -2\omega _{p} T_{0} - 2\psi )\nonumber \\{} & {} \quad +{\frac{ (2+\omega _{p})^{3} m \gamma R^{2} Q}{ 16 (3+\omega _{p}) (1-\omega _{p})^{2}(1+\omega _{p})^{4}}} \nonumber \\{} & {} \quad \cos (2 T_{0}+2 \phi +\omega _{p} T_{0} + \psi )\nonumber \\{} & {} \quad -{\frac{ (2-\omega _{p})^{3} m \gamma R^{2} Q}{ 16 (3-\omega _{p}) (1+\omega _{p})^{2}(1-\omega _{p})^{4}}} \nonumber \\{} & {} \quad \cos (2 T_{0}+2 \phi -\omega _{p} T_{0} - \psi ) \end{aligned}$$
(B.4)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tandel, D.D., Wahi, P. & Chatterjee, A. Vibration stabilization by a nonresonant secondary limit cycle oscillator. Nonlinear Dyn 111, 6043–6062 (2023). https://doi.org/10.1007/s11071-022-08145-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08145-4

Keywords

Navigation