Skip to main content
Log in

Vibro-impact dynamics of large-scale geared systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This work is concerned with the analysis of vibro-impact responses observed in large-scale nonlinear geared systems. Emphasis is laid on the interactions between the high-frequency internal excitation generated by the meshing process, i.e. the static transmission error and time-varying mesh stiffness, and low-frequency external excitations. To this end, a three-dimensional finite element model of a pump equipped with a reverse spur gear pair (gear ratio \(1\!:\!1\)) is built. The model takes into account the flexibility of the kinematic chain, the bearings and the housing and the gear backlash nonlinearity. A reduced-order model is solved with the Harmonic Balance Method coupled to an arc-length continuation algorithm which allows one to compute the periodic solutions of the system. The onset and disappearance of vibro-impact responses is studied through the computation of grazing bifurcations. Results show that the coupling between the external excitation and the time-varying mesh stiffness term greatly modifies the characteristics of the responses in terms of number and periodicity of impacts and contact loss duration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Nejad, A.R., Keller, J., Guo, Y., Sheng, S., Polinder, H., Watson, S., Dong, J., Qin, Z., Ebrahimi, A., Schelenz, R., Gutiérrez Guzmán, F., Cornel, D., Golafshan, R., Jacobs, G., Blockmans, B., Bosmans, J., Pluymers, B., Carroll, J., Koukoura, S., Hart, E., McDonald, A., Natarajan, A., Torsvik, J., Moghadam, F.K., Daems, P.J., Verstraeten, T., Peeters, C., Helsen, J.: Wind turbine drivetrains: state-of-the-art technologies and future development trends. Wind Energy Sci. 7(1), 387–411 (2022). https://doi.org/10.5194/wes-7-387-2022

    Article  Google Scholar 

  2. Tatar, A., Schwingshackl, C.W., Friswell, M.I.: Dynamic behaviour of three-dimensional planetary geared rotor systems. Mech. Mach. Theory 134, 39–56 (2019). https://doi.org/10.1016/j.mechmachtheory.2018.12.023

    Article  Google Scholar 

  3. Mason, J., Homer, M., Eddie Wilson, R.: Mathematical models of gear rattle in roots blower vacuum pumps. J. Sound Vib. 308(3), 431–440 (2007). https://doi.org/10.1016/j.jsv.2007.03.071

    Article  Google Scholar 

  4. Garambois, P., Donnard, G., Rigaud, E., Perret-Liaudet, J.: Multiphysics coupling between periodic gear mesh excitation and input/output fluctuating torques: application to a roots vacuum pump. J. Sound Vib. 405, 158–174 (2017). https://doi.org/10.1016/j.jsv.2017.05.043

    Article  Google Scholar 

  5. Welbourn, D.: Fundamental knowledge of gear noise: a survey. In: Proceedings of Conference on Noise and Vibrations of Engines and Transmissions. C177/79, pp. 9-29. (1979)

  6. Rigaud, E., Perret-Liaudet, J.: Investigation of gear rattle noise including visualization of vibro-impact regimes. J. Sound Vib. 467, 115026 (2020). https://doi.org/10.1016/j.jsv.2019.115026

    Article  Google Scholar 

  7. Carbonelli, A., Rigaud, E., PerretLiaudet, J.: Vibro-Acoustic Analysis of Geared Systems—Predicting and Controlling the Whining Noise. Springer International Publishing, Cham (2016)

    Book  Google Scholar 

  8. Karagiannis, K., Pfeiffer, F.: Theoretical and experimental investigations of gear-rattling. Nonlinear Dyn. 2(5), 367–387 (1991). https://doi.org/10.1007/BF00045670

    Article  Google Scholar 

  9. Pfeiffer, F., Prestl, W.: Hammering in diesel-engine driveline systems. Nonlinear Dyn. 5(4), 477–492 (1994). https://doi.org/10.1007/BF00052455

    Article  Google Scholar 

  10. Nevzat Özgüven, H., Houser, D.: Mathematical models used in gear dynamics-a review. J. Sound Vib. 121(3), 383–411 (1988). https://doi.org/10.1016/S0022-460X(88)80365-1

    Article  Google Scholar 

  11. Kahraman, A., Singh, R.: Non-linear dynamics of a spur gear pair. J. Sound Vib. 142(1), 49–75 (1990). https://doi.org/10.1016/0022-460X(90)90582-K

    Article  Google Scholar 

  12. Margielewicz, J., Gąska, D., Litak, G.: Modelling of the gear backlash. Nonlinear Dyn. 97(1), 355–368 (2019). https://doi.org/10.1007/s11071-019-04973-z

    Article  Google Scholar 

  13. Cao, Z., Chen, Z., Jiang, H.: Nonlinear dynamics of a spur gear pair with force-dependent mesh stiffness. Nonlinear Dyn. 99(2), 1227–1241 (2020). https://doi.org/10.1007/s11071-019-05348-0

    Article  Google Scholar 

  14. Liu, C., Qin, D., Wei, J., Liao, Y.: Investigation of nonlinear characteristics of the motor-gear transmission system by trajectory-based stability preserving dimension reduction methodology. Nonlinear Dyn. 94(3), 1835–1850 (2018). https://doi.org/10.1007/s11071-018-4460-2

    Article  Google Scholar 

  15. Mélot, A., Benaïcha, Y., Rigaud, E., Perret-Liaudet, J., Thouverez, F.: Effect of gear topology discontinuities on the nonlinear dynamic response of a multi-degree-of-freedom gear train. J. Sound Vib. 516, 116495 (2022). https://doi.org/10.1016/j.jsv.2021.116495

    Article  Google Scholar 

  16. Shin, D., Palazzolo, A.: Nonlinear analysis of a geared rotor system supported by fluid film journal bearings. J. Sound Vib. 475, 115269 (2020). https://doi.org/10.1016/j.jsv.2020.115269

    Article  Google Scholar 

  17. Azimi, M.: Pitchfork and Hopf bifurcations of geared systems with nonlinear suspension in permanent contact regime. Nonlinear Dyn. 107(4), 3339–3363 (2022). https://doi.org/10.1007/s11071-021-07110-x

    Article  Google Scholar 

  18. Yavuz, S.D., Saribay, Z.B., Cigeroglu, E.: Nonlinear time-varying dynamic analysis of a spiral bevel geared system. Nonlinear Dyn. 92(4), 1901–1919 (2018). https://doi.org/10.1007/s11071-018-4170-9

    Article  Google Scholar 

  19. Yavuz, S.D., Saribay, Z.B., Cigeroglu, E.: Nonlinear dynamic analysis of a drivetrain composed of spur, helical and spiral bevel gears. Nonlinear Dyn. 100(4), 3145–3170 (2020). https://doi.org/10.1007/s11071-020-05666-8

    Article  Google Scholar 

  20. Rigaud, E., Sabot, J.: Effect of elasticity of shafts, bearings, casing and couplings on the critical rotational speeds of a gearbox. In: International Conference on Gears. VDI Berichte, vol. 1230, pp. 833–845. Dresde, Germany (1996)

  21. Byrtus, M., Zeman, V.: On modeling and vibration of gear drives influenced by nonlinear couplings. Mech. Mach. Theory 46(3), 375–397 (2011). https://doi.org/10.1016/j.mechmachtheory.2010.10.007

    Article  MATH  Google Scholar 

  22. Pan, W., Li, X., Wang, L., Yang, Z.: Nonlinear response analysis of gear-shaft-bearing system considering tooth contact temperature and random excitations. Appl. Math. Model. 68, 113–136 (2019). https://doi.org/10.1016/j.apm.2018.10.022

    Article  MathSciNet  MATH  Google Scholar 

  23. Al-shyyab, A., Kahraman, A.: Non-linear dynamic analysis of a multi-mesh gear train using multi-term harmonic balance method: period-one motions. J. Sound Vib. 284(1–2), 151–172 (2005). https://doi.org/10.1016/j.jsv.2004.06.010

    Article  Google Scholar 

  24. Al-shyyab, A., Kahraman, A.: Non-linear dynamic analysis of a multi-mesh gear train using multi-term harmonic balance method: sub-harmonic motions. J. Sound Vib. 279(1–2), 417–451 (2005). https://doi.org/10.1016/j.jsv.2003.11.029

    Article  Google Scholar 

  25. Yoon, J.Y., Kim, B.: Effect and feasibility analysis of the smoothening functions for clearance-type nonlinearity in a practical driveline system. Nonlinear Dyn. 85(3), 1651–1664 (2016). https://doi.org/10.1007/s11071-016-2784-3

    Article  Google Scholar 

  26. Mélot, A., Rigaud, E., Perret-Liaudet, J.: Bifurcation tracking of geared systems with parameter-dependent internal excitation. Nonlinear Dyn. 107(1), 413–431 (2022). https://doi.org/10.1007/s11071-021-07018-6

    Article  Google Scholar 

  27. Pierre, C., Ferri, A.A., Dowell, E.H.: Multi-harmonic analysis of dry friction damped systems using an incremental harmonic balance method. J. Appl. Mech. 52(4), 958–964 (1985). https://doi.org/10.1115/1.3169175

    Article  MATH  Google Scholar 

  28. Grolet, A., Thouverez, F.: On a new harmonic selection technique for harmonic balance method. Mech. Syst. Signal Process. (2012). https://doi.org/10.1016/j.ymssp.2012.01.024

    Article  Google Scholar 

  29. Süß, D., Jerschl, M., Willner, K.: Adaptive harmonic balance analysis of dry friction damped systems, In: Kerschen, G. (ed.) Nonlinear Dynamics, Vol. 1. Springer International Publishing, Cham, pp 405–414. https://doi.org/10.1007/978-3-319-29739-2_36

  30. Gastaldi, C., Berruti, T.M.: A method to solve the efficiency-accuracy trade-off of multi-harmonic balance calculation of structures with friction contacts. Int. J. Non-Linear Mech. 92, 25–40 (2017). https://doi.org/10.1016/j.ijnonlinmec.2017.03.010

    Article  Google Scholar 

  31. Ottewill, J.R., Neild, S.A., Wilson, R.E.: Intermittent gear rattle due to interactions between forcing and manufacturing errors. J. Sound Vib. 321(3), 913–935 (2009). https://doi.org/10.1016/j.jsv.2008.09.050

    Article  Google Scholar 

  32. Battiato, G., Firrone, C., Berruti, T., Epureanu, B.: Reduction and coupling of substructures via Gram-Schmidt Interface modes. Comput. Methods Appl. Mech. Eng. 336, 187–212 (2018). https://doi.org/10.1016/j.cma.2018.03.001

    Article  MathSciNet  MATH  Google Scholar 

  33. Yuan, J., El-Haddad, F., Salles, L., Wong, C.: Numerical assessment of reduced order modeling techniques for dynamic analysis of jointed structures With contact nonlinearities. J. Eng. Gas Turbines Power 141(3), 031027 (2018). https://doi.org/10.1115/1.4041147

  34. Yuan, J., Schwingshackl, C., Wong, C., Salles, L.: On an improved adaptive reduced-order model for the computation of steady-state vibrations in large-scale non-conservative systems with friction joints. Nonlinear Dyn. 103(4), 3283–3300 (2021). https://doi.org/10.1007/s11071-020-05890-2

    Article  Google Scholar 

  35. Craig, R.R., Bampton, M.C.C.: Coupling of substructures for dynamic analyses. AIAA J. 6(7), 1313–1319 (1968). https://doi.org/10.2514/3.4741

    Article  MATH  Google Scholar 

  36. Garambois, P., Perret-Liaudet, J., Rigaud, E.: NVH robust optimization of gear macro and microgeometries using an efficient tooth contact model. Mech. Mach. Theory 117, 78–95 (2017). https://doi.org/10.1016/j.mechmachtheory.2017.07.008

    Article  Google Scholar 

  37. Farshidianfar, A., Saghafi, A.: Global bifurcation and chaos analysis in nonlinear vibration of spur gear systems. Nonlinear Dyn. 75(4), 783–806 (2014). https://doi.org/10.1007/s11071-013-1104-4

    Article  MathSciNet  Google Scholar 

  38. Hunt, K., Crossley, E.: Coefficient of restitution interpreted as damping in vibroimpact. J. Appl. Mech. (1975). https://doi.org/10.1115/1.3423596

    Article  Google Scholar 

  39. Kim, T.C., Rook, T.E., Singh, R.: Effect of nonlinear impact damping on the frequency response of a torsional system with clearance. J. Sound Vib. 281(3), 995–1021 (2005). https://doi.org/10.1016/j.jsv.2004.02.038

    Article  Google Scholar 

  40. Alcorta, R., Baguet, S., Prabel, B., Piteau, P., Jacquet-Richardet, G.: Period doubling bifurcation analysis and isolated sub-harmonic resonances in an oscillator with asymmetric clearances. Nonlinear Dyn. 98(4), 2939–2960 (2019). https://doi.org/10.1007/s11071-019-05245-6

    Article  MATH  Google Scholar 

  41. Cameron, T.M., Griffin, J.: An alternating frequency/time domain method for calculating the steady-state response of nonlinear dynamic systems. J. Appl. Mech. (1989). https://doi.org/10.1115/1.3176036

    Article  MATH  Google Scholar 

  42. Petrov, E.P.: A high-accuracy model reduction for analysis of nonlinear vibrations in structures with contact interfaces. J. Eng. Gas Turbines Power 133, 10 (2011). https://doi.org/10.1115/1.4002810

    Article  Google Scholar 

  43. Colaïtis, Y.: Stratégie numérique pour l’analyse qualitative des interactions aube/carter. Ph.D. thesis, Polytechnique Montréal (2021)

  44. Ibrahim, R.A.: Vibro-Impact Dynamics. Springer-Verlag, Berlin (2009)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work was performed within the framework of the LabCom LADAGE (LAboratoire de Dynamique des engrenAGEs), created by the LTDS and the Vibratec Company and operated by the French National Research Agency (ANR-14-LAB6-0003). It was also performed within the framework of the LABEX CeLyA (ANR-10-LABX-0060) of Université de Lyon, within the program “Investissements d’Avenir” (ANR-16-IDEX-0005) operated by the French National Research Agency (ANR).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrien Mélot.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Table 2.

Table 2 List of harmonics used in the convergence study

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mélot, A., Perret-Liaudet, J. & Rigaud, E. Vibro-impact dynamics of large-scale geared systems. Nonlinear Dyn 111, 4959–4976 (2023). https://doi.org/10.1007/s11071-022-08144-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08144-5

Keywords

Navigation