Skip to main content
Log in

Combination resonances of a dual-rotor system with inter-shaft bearing

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper focuses on the combination resonances of a dual-rotor system with inter-shaft bearing. The motion equations of the dual-rotor system are formulated by the Lagrange equation, in which the unbalanced excitations of the two rotors and the clearance of the inter-shaft bearing are taken into consideration. The HB-AFT method (harmonic balance-alternating frequency/time domain method) is employed to obtain all the periodic solutions including the unstable solutions of the system. The combination resonance characteristics of the system are analyzed in detail by using the frequency response curves and separated frequency responses of the dual-rotor system. Besides the two primary resonance peaks, three more combination resonance regions in the frequency response curves of the system are found, in which the jump and bi-stable phenomena are observed. The primary resonance is mainly dominated by the excitation frequency \(\omega_{1}\) and \(\omega_{2}\), the combination resonance of the system is mainly dominated by the combined frequency component of \(2\omega_{2} - \omega_{1}\), \(4\omega_{2} - 3\omega_{1}\), \(3\omega_{2} - 2\omega_{1}\) and is almost independent of other frequency components. Furthermore, the effect of inter-shaft bearing clearance on the combination resonance regions is obtained, it is indicated that increasing the inter-shaft bearing clearance will not only affect the response amplitudes of the combination resonance and change the “softening and hardening characteristic” of the frequency response curves, but also show a certain “stiffness weakening effect” on the rotor system. The study in this paper is of great significance to select the parameters of the dual-rotor system reasonably so as to avoid harmful combination resonance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

Abbreviations

HB-AFT:

Harmonic balance-alternating frequency/time domain method

SFD:

Squeeze film damper

AFT:

Alternating frequency/time domain

DFT:

Discrete Fourier transform

References

  1. Chen, Y., Zhang, H.: Review and prospect on the research of dynamics of complete aero-engine systems. Acta Aeronaut. Astronaut. Sin. 32, 1371–1391 (2011)

    Google Scholar 

  2. Liao, M., Yu, X., Wang, S., Wang, Y., Lü, P.: The vibration features of a twin spool rotor system. Mech. Sci. Technol. Aerospace Eng. 32, 475–480 (2013). https://doi.org/10.13433/j.cnki.1003-8728.2013.04.020

    Article  Google Scholar 

  3. Wang, J., Zuo, Y., Jiang, Z., Feng, K.: Evalution of vibration coupling effect of dual-rotor system with intershaft bearing. Acta Aeronautica et Astronautica Sinica 42, 401–412 (2021)

    Google Scholar 

  4. Chen, Y., Hou, L., Chen, G., Song, H., Lin, R., Jin, Y., Chen, Y.: Nonlinear dynamics analysis of a dual-rotor-bearing-casing system based on a modified HB-AFT method. Mech. Syst. Signal Proc. 185, 109805 (2023). https://doi.org/10.1016/j.ymssp.2022.109805

    Article  Google Scholar 

  5. Gupta, K., Gupta, K.D., Athre, K.: Unbalance response of a dual rotor system: theory and experiment. J. Vib. Acoust. 115, 427–435 (1993). https://doi.org/10.1115/1.2930368

    Article  Google Scholar 

  6. Ferraris G., Maisonneuve V., Lalanne M.: Prediction of the dynamic behavior of non-symmetric coaxial co- or counter-rotating rotors. J. Sound Vib. 195(4), 649–666 (1996). https://doi.org/10.1006/jsvi.1996.0452

    Article  Google Scholar 

  7. Zhang, Z., Wan, K., Li, J., Li, X.: Synchronization identification method for unbalance of dual-rotor system. J. Braz. Soc. Mech. Sci. Eng. 40, 241 (2018). https://doi.org/10.1007/s40430-018-1133-5

    Article  Google Scholar 

  8. Hu, Q., Deng, S., Teng, H.: A 5-DOF model for aeroengine spindle dual-rotor system analysis. Chin. J. Aeronaut. 24, 224–234 (2011). https://doi.org/10.1016/S1000-9361(11)60027-7

    Article  Google Scholar 

  9. Wang, H., Zhao, Y., Luo, Z., Han, Q.: Analysis on influences of squeeze film damper on vibrations of rotor system in aeroengine. Appl. Sci.-Basel. 12, 615 (2022). https://doi.org/10.3390/app12020615

    Article  Google Scholar 

  10. Chen, L., Zeng, Z., Zhang, D., Wang, J.: Vibration properties of dual-rotor systems under base excitation, mass unbalance and gravity. Appl. Sci.-Basel. 12, 960 (2022). https://doi.org/10.3390/app12030960

    Article  Google Scholar 

  11. Gao, P., Hou, L., Yang, R., Chen, Y.: Local defect modelling and nonlinear dynamic analysis for the inter-shaft bearing in a dual-rotor system. Appl. Math. Model. 68, 29–47 (2019). https://doi.org/10.1016/j.apm.2018.11.014

    Article  MathSciNet  MATH  Google Scholar 

  12. Gao, T., Cao, S.: Paroxysmal impulse vibration phenomena and mechanism of a dual-rotor system with an outer raceway defect of the inter-shaft bearing. Mech. Syst. Signal Proc. 157, 107730 (2021). https://doi.org/10.1016/j.ymssp.2021.107730

    Article  Google Scholar 

  13. Ma, P., Zhai, J., Zhang, H., Han, Q.: Multi-body dynamic simulation and vibration transmission characteristics of dual-rotor system for aeroengine with rubbing coupling faults. J. Vibroeng. 21, 1875–1887 (2019)

    Article  Google Scholar 

  14. Wang, N., Jiang, D.: Vibration response characteristics of a dual-rotor with unbalance-misalignment coupling faults: Theoretical analysis and experimental study. Mech. Machine Theory 125, 207–219 (2018)

    Article  Google Scholar 

  15. Yu, P., Wang, C., Hou, L., Chen, G.: Dynamic characteristics of an aeroengine dual-rotor system with inter-shaft rub-impact. Mech. Syst. Signal Proc. 166, 108475 (2022). https://doi.org/10.1016/j.ymssp.2021.108475

    Article  Google Scholar 

  16. Liu, J., Wang, C., Luo, Z.: Research nonlinear vibrations of a dual-rotor system with nonlinear restoring forces. J. Braz. Soc. Mech. Sci. Eng. 42, 461 (2020). https://doi.org/10.1007/s40430-020-02541-w

    Article  Google Scholar 

  17. Bavi, R., Hajnayeb, A., Sedighi, H.M., Shishesaz, M.: Simultaneous resonance and stability analysis of unbalanced asymmetric thin-walled composite shafts. Int. J. Mech. Sci. 217, 107047 (2022). https://doi.org/10.1016/j.ijmecsci.2021.107047

    Article  Google Scholar 

  18. Kim, Y., Noah, S.: Stability and bifurcation-analysis of oscillators with piecewise-linear characteristics: a general approach. J. Appl. Mech.-Trans. ASME 58, 545–553 (1991). https://doi.org/10.1115/1.2897218

    Article  MathSciNet  MATH  Google Scholar 

  19. Ma, Q., Kahraman, A.: Period-one motions of a mechanical oscillator with periodically time-varying, piecewise-nonlinear stiffness. J. Sound Vib. 284, 893–914 (2005). https://doi.org/10.1016/j.jsv.2004.07.026

    Article  Google Scholar 

  20. Tiwari, M., Gupta, K., Prakash, O.: Effect of radial internal clearance of a ball, bearing on the dynamics of a balanced horizontal rotor. J. Sound Vibr. 238, 723–756 (2000). https://doi.org/10.1006/jsvi.1999.3109

    Article  Google Scholar 

  21. Villa, C., Sinou, J.-J., Thouverez, F.: Stability and vibration analysis of a complex flexible rotor bearing system. Commun. Nonlinear Sci. Numer. Simul. 13, 804–821 (2008). https://doi.org/10.1016/j.cnsns.2006.06.012

    Article  Google Scholar 

  22. Ju, R., Fan, W., Zhu, W.D.: Comparison between the incremental harmonic balance method and alternating frequency/time-domain method. J. Vib. Acoust. 143, 024501 (2021). https://doi.org/10.1115/1.4048173

    Article  Google Scholar 

  23. Ju, R., Fan, W., Zhu, W.: An efficient galerkin averaging-incremental harmonic balance method based on the fast fourier transform and tensor contraction. J. Vib. Acoust. 142, 061011 (2020). https://doi.org/10.1115/1.4047235

    Article  Google Scholar 

  24. Kim, Y.-B., Noah, S.T.: Quasi-periodic response and stability analysis for a non-linear jeffcott rotor. J. Sound Vibr. 190, 239–253 (1996). https://doi.org/10.1006/jsvi.1996.0059

    Article  Google Scholar 

  25. Kim, Y.B., Choi, S.-K.: A multiple harmonic balance method for the internal resonant vibration of a non-linear jeffcott rotor. J. Sound Vibr. 208, 745–761 (1997). https://doi.org/10.1006/jsvi.1997.1221

    Article  Google Scholar 

  26. Guskov, M., Sinou, J.-J., Thouverez, F.: Multi-dimensional harmonic balance applied to rotor dynamics. Mech. Res. Commun. 35, 537–545 (2008). https://doi.org/10.1016/j.mechrescom.2008.05.002

    Article  MATH  Google Scholar 

  27. Guskov, M., Thouverez, F.: Harmonic balance-based approach for quasi-periodic motions and stability analysis. J. Vib. Acoust.-Trans. ASME 134, 031003 (2012). https://doi.org/10.1115/1.4005823

    Article  Google Scholar 

  28. Zhang, Z., Chen, Y.: Harmonic balance method with alternating frequency/time domain technique for nonlinear dynamical system with fractional exponential. Appl. Math. Mech.-Engl. Ed. 35, 423–436 (2014). https://doi.org/10.1007/s10483-014-1802-9

    Article  MathSciNet  Google Scholar 

  29. Zhang, Z., Rui, X., Yang, R., Chen, Y.: Control of period-doubling and chaos in varying compliance resonances for a ball bearing. J. Appl. Mech. 87, 021005 (2020). https://doi.org/10.1115/1.4045398

    Article  Google Scholar 

  30. HongLiang, L., YuShu, C., Lei, H., ZhiYong, Z.: Periodic response analysis of a misaligned rotor system by harmonic balance method with alternating frequency/time domain technique. Sci. China-Technol. Sci. 59, 1717–1729 (2016). https://doi.org/10.1007/s11431-016-6101-7

    Article  Google Scholar 

  31. Yang, R., Jin, Y., Hou, L., Chen, Y.: Super-harmonic resonance characteristic of a rigid-rotor ball bearing system caused by a single local defect in outer raceway. Sci. China-Technol. Sci. 61, 1184–1196 (2018). https://doi.org/10.1007/s11431-017-9155-3

    Article  Google Scholar 

  32. Hou, L., Chen, Y., Fu, Y., Chen, H., Lu, Z., Liu, Z.: Application of the HB-AFT method to the primary resonance analysis of a dual-rotor system. Nonlinear Dyn. 88, 2531–2551 (2017). https://doi.org/10.1007/s11071-017-3394-4

    Article  Google Scholar 

  33. Gupta, V., Mittal, M., Mittal, V.: An efficient low computational cost method of R-peak detection. Wireless Pers Commun. 118, 359–381 (2021). https://doi.org/10.1007/s11277-020-08017-3

    Article  Google Scholar 

  34. Gupta, V., Mittal, M.: Arrhythmia detection in ECG signal using fractional wavelet transform with principal component analysis. J. Inst. Eng. India Ser. B 101, 451–461 (2020). https://doi.org/10.1007/s40031-020-00488-z

    Article  Google Scholar 

  35. Gupta, V., Mittal, M., Mittal, V., Saxena, N.K.: A critical review of feature extraction techniques for ECG signal analysis. J. Inst. Eng. India Ser. B 102, 1049–1060 (2021). https://doi.org/10.1007/s40031-021-00606-5

    Article  Google Scholar 

  36. Gupta, V., Mittal, M., Mittal, V., Saxena, N.K.: BP Signal analysis using emerging techniques and its validation using ECG signal, sens. Imaging. 22, 1–19 (2021). https://doi.org/10.1007/s11220-021-00349-z

    Article  Google Scholar 

  37. Rahman, Md.S., Hasan, A.S., Yeasmin, I.: Modified multi-level residue harmonic balance method for solving nonlinear vibration problem of beam resting on nonlinear elastic foundation. J. Appl. Comput. Mech. (2018). https://doi.org/10.22055/jacm.2018.26729.1352

    Article  Google Scholar 

  38. Sun, C., Chen, Y., Hou, L.: Steady-state response characteristics of a dual-rotor system induced by rub-impact. Nonlinear Dyn. 86, 91–105 (2016)

    Article  Google Scholar 

  39. Thornton, S.T., Marion, J.B.: Classical dynamics of particles and systems, 5th edn. Brooks/Cole, Belmont, CA (2004)

    Google Scholar 

  40. Wang, Q., Liu, Y., Liu, H., Fan, H., Jing, M.: Parallel numerical continuation of periodic responses of local nonlinear systems. Nonlinear Dyn. 100, 2005–2026 (2020). https://doi.org/10.1007/s11071-020-05619-1

    Article  Google Scholar 

  41. Hsu, C.S., Cheng, W.-H.: Applications of the theory of impulsive parametric excitation and new treatments of general parametric excitation problems. J. Appl. Mech.-Trans. ASME 40, 78–86 (1973). https://doi.org/10.1115/1.3422976

    Article  MATH  Google Scholar 

  42. Friedmann, P., Hammond, C.E.: Efficient numerical treatment of periodic systems with application to stability problems. Int. J. Numer. Meth. Eng. 11, 1117–1136 (1977).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful for the financial supports from the National Natural Science Foundation of China (Grant No. 11972129), the National Major Science and Technology Projects of China (Grant No. 2017-IV-0008-0045), the Natural Science Foundation of Heilongjiang Province (Outstanding Youth Foundation, Grant No. YQ2022A008), and the Fundamental Research Funds for the Central Universities.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Hou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, L., Chen, Y. & Chen, Y. Combination resonances of a dual-rotor system with inter-shaft bearing. Nonlinear Dyn 111, 5197–5219 (2023). https://doi.org/10.1007/s11071-022-08133-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08133-8

Keywords

Navigation