Skip to main content

Advertisement

Log in

Optimal Hilbert transform parameter identification of bistable structures

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Nonlinear bistable structures have received significant attention in the field of energy harvesting and vibration absorption. Obtaining their precise nonlinear restoring force is of significance to predict and enhance the system's performance. However, it is difficult to measure their nonlinear restoring force in experiments due to the distinct characteristic of snap-through. Moreover, the traditional Hilbert transform-based method may have insufficient identification accuracy or even be incapable because numerical integration or differentiation procedure is sensitive to noise disturbance. To address these issues, an optimal Hilbert transform parameter identification is proposed to precisely estimate the parameters in the bistable dynamic equation. The Hilbert transform interval estimation of mass, damping and nonlinear restoring force coefficients are derived for obtaining the reasonable range of identified parameters. Furthermore, an optimization fitness function is established to obtain the optimal value of nonlinear parameters in bistable structures. Numerical simulation of an asymmetric bistable dynamic equation shows that the proposed method exhibits an NMSE value of 2.52% for free vibration and 1.64% for forced periodic oscillation under 20 dB noise level. Besides, the damping effects on identification results are discussed. Experimental measurements of a magnetic coupled bistable cantilever beam under different conditions are performed to identify the nonlinear system parameters. Results indicate that the proposed method can effectively identify the nonlinear bistable structures with an average NMSE value of 8.23% for free vibration and 6.39% for forced periodic responses, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of data and material

These data are collected by the experiment and can be provided upon request.

Code availability

The code is written according to the proposed model and can be provided upon request.

References

  1. Hou, Z.H., Zha, W.Y., Wang, H.B., Liao, W.H., Bowen, C.R., Cao, J.Y.: Bistable energy harvesting backpack: design, modeling, and experiments. Energ. Convers. Manage. 259, 115441 (2022)

    Article  Google Scholar 

  2. Zhang, Y., Cao, J.Y., Wang, W., Liao, W.H.: Enhanced modeling of nonlinear restoring force in multi-stable energy harvesters. J. Sound Vib. 494, 115890 (2021)

    Article  Google Scholar 

  3. Ishida, S., Uchida, H., Shimosaka, H., Hagiwara, I.: Design and numerical analysis of vibration isolators with quasi-zero-stiffness characteristics using bistable foldable structures. ASME. J. Vib. Acoust. 139, 031015 (2017)

    Article  Google Scholar 

  4. Lin, L.Q., Daniil, Y., Tong, W.H., Yang, K.: Stochastic vibration responses of the bistable electromagnetic actuator with elastic boundary controlled by the random signals. Nonlinear Dyn. 108, 113–140 (2022)

    Article  Google Scholar 

  5. Hassani, F.A., Mogan, R.P., Gammad, G.G.L., Wang, H., Yen, S.C., Thakor, N.V., Lee, C.: Toward Self-Control Systems for Neurogenic Underactive Bladder: A Triboelectric Nanogenerator Sensor Integrated with a Bistable Micro-Actuator. ACS Nano 12, 3487–3501 (2018)

    Article  Google Scholar 

  6. Halevy, O., Krakover, N., Krylov, S.: Feasibility study of a resonant accelerometer with bistable electrostatically actuated cantilever as a sensing element. Int. J. Nonlin. Mech. 118, 103251–103255 (2020)

    Article  Google Scholar 

  7. Chillara, V.S., Dapino, M.J.: Review of Morphing Laminated Composites. App. Mech. Rev. 72, 010801 (2020)

    Article  Google Scholar 

  8. Nicassio, F., Scarselli, G., Pinto, F., Ciampa, F., Iervolino, O., Meo, M.: Low energy actuation technique of bistable composites for aircraft morphing. Aerosp. Sci. Technol. 75, 35–46 (2018)

    Article  Google Scholar 

  9. Wang, G.X., Ding, H., Chen, L.Q.: Performance evaluation and design criterion of a nonlinear energy sink. Mech. Syst. Signal Process. 169, 108770 (2022)

    Article  Google Scholar 

  10. Cao, J.Y., Zhou, S.X., Wang, W., Lin, J.: Influence of potential well depth on nonlinear tristable energy harvesting. Appl. Phys. Lett. 106, 173903 (2015)

    Article  Google Scholar 

  11. Stanton, S.C., Mcgehee, C.C., Mann, B.P.: Nonlinear dynamics for broadband energy harvesting: Investigation of a bistable piezoelectric inertial generator. Physica D. 239, 640–653 (2010)

    Article  MATH  Google Scholar 

  12. Zou, H.X., Li, M., Zhao, L.C., Gao, Q.H., Zhang, W.M.: A magnetically coupled bistable piezoelectric harvester for underwater energy harvesting. Energy 217, 119429 (2021)

    Article  Google Scholar 

  13. Yan, B., Ma, H.Y., Zhang, L., Zheng, W.G., Wu, C.Y.: A bistable vibration isolator with nonlinear electromagnetic shunt damping. Mech. Syst. Signal Process. 136, 106504 (2020)

    Article  Google Scholar 

  14. Yan, B., Ling, P., Zhou, Y.L., Wu, C.Y., Zhang, W.M.: Shock isolation characteristics of a bistable vibration isolator with tunable magnetic controlled stiffness. ASME. J. Vib. Acoust. 144, 021008 (2021)

    Article  Google Scholar 

  15. Yang, K., Tong, W.H., Lin, L.Q., Danill, Y., Wang, J.L.: Active vibration isolation performance of the bistable nonlinear electromagnetic actuator with the elastic boundary. J. Sound Vib. 520, 116588 (2021)

    Article  Google Scholar 

  16. Shaw, A.D., Neild, A.S., Wagg, D.J., Weaver, P.M.: A nonlinear spring mechanism incorporating a bistable composite plate for vibration isolation. J. Sound Vib. 332, 6265–6275 (2013)

    Article  Google Scholar 

  17. Zou, D.L., Liu, G.Y., Rao, Z.S., Tan, T., Liao, W.H.: Design of vibration energy harvesters with customized nonlinear forces. Mech. Syst. Signal Process. 153, 107526 (2020)

    Article  Google Scholar 

  18. Yuan, T.C., Yang, J., Chen, L.Q.: Experimental identification of hardening and softening nonlinearity in circular laminated plates. Int. J. of Nonlin. Mech. 95, 296–306 (2017)

    Article  Google Scholar 

  19. Wang, S.B., Tang, B.: Estimating quadratic and cubic stiffness nonlinearity of a nonlinear vibration absorber with geometric imperfections. Measurement 185, 110005 (2021)

    Article  Google Scholar 

  20. NoëL, J.P., Renson, L., Kerschen, G.: Complex dynamics of a nonlinear aerospace structure: experimental identification and modal interactions. J. Sound Vib. 333, 2588–2607 (2014)

    Article  Google Scholar 

  21. Xu, B., He, J., Dyke, S.J.: Model-free nonlinear restoring force identification for SMA dampers with double Chebyshev polynomials: approach and validation. Nonlinear Dyn. 82, 1–16 (2015)

    Article  Google Scholar 

  22. Zhou, S.X., Cao, J.Y., Inman, D.J., Lin, J., Liu, S.S., Wang, Z.Z.: Broadband tristable energy harvester: modeling and experiment verification. Appl. Energ. 133, 33–39 (2014)

    Article  Google Scholar 

  23. Feldman, M.: Hilbert Transform Applications in Mechanical Vibration. John Wiley & Sons Ltd, Chichester, UK, 2011.

  24. Feldman, M.: Nonparametric identification of asymmetric nonlinear vibration systems with the Hilbert transform. J. Sound Vib. 331, 3386–3396 (2012)

    Article  Google Scholar 

  25. Cohen, N., Bucher, I., Feldman, M.: Slow-fast response decomposition of a bi-stable energy harvester. Mech. Syst. Signal Process. 31, 29–39 (2012)

    Article  Google Scholar 

  26. Liu, Q.H., Hou, Z.H., Zhang, Y., Jing, X.J., Kerschen, G., Cao, J.Y.: Nonlinear restoring force identification of strongly nonlinear structures by displacement measurement. ASME. J. Vib. Acoust. 144, 031002 (2021)

    Article  Google Scholar 

  27. Anastasio, D., Fasana, A., Garibaldi, L., Marchesiello, S.: Nonlinear dynamics of a duffing-like negative stiffness oscillator: modeling and experimental characterization. Shock Vib. 2020, 1–13 (2020)

    Article  Google Scholar 

  28. Anastasio, D., Marchesiello, S.: Experimental characterization of friction in a negative stiffness nonlinear oscillator. Vibration. 3, 132–148 (2020)

    Article  Google Scholar 

  29. Liu, Q.H., Cao, J.Y., Hu, F.Y., Li, D., Jing, X.J., Hou, Z.H.: Parameter identification of nonlinear bistable piezoelectric structures by two-stage subspace method. Nonlinear Dyn. 105, 2157–2172 (2021)

    Article  Google Scholar 

  30. Luo, H.G., Fang, X.J., Ertas, B.: Hilbert transform and its engineering applications. Aiaa J. 47, 923–932 (2009)

    Article  Google Scholar 

  31. Zhu, R., Fei, Q.G., Jiang, D., Marchesiello, S., Anastasio, D.: Bayesian model selection in nonlinear subspace identification. Aiaa J. 60, 1–10 (2021)

    Google Scholar 

  32. Miguel, L., Teloli, R.D.O., Silva, S.D.: Bayesian model identification through harmonic balance method for hysteresis prediction in bolted joints. Nonlinear Dyn. 107, 77–98 (2021)

    Article  Google Scholar 

  33. Tang, B., Wang, S.B., Brennan, M., Feng, L.Y., Chen, W.C.: Identifying the stiffness and damping of a nonlinear system using its free response perturbed with Gaussian white noise. J. Vib. Control. 26, 830–839 (2020)

    Article  MathSciNet  Google Scholar 

  34. Quaranta, G., Lacarbonara, W., Masri, S.: A review on computational intelligence for identification of nonlinear dynamical systems. Nonlinear Dyn. 99, 1709–1761 (2020)

    Article  MATH  Google Scholar 

  35. Worden, K., Staszewski, W.J., Hensman, J.J.: Natural computing for mechanical systems research: a tutorial overview. Mech. Syst. Signal Process. 25, 4–111 (2011)

    Article  Google Scholar 

  36. Fang, S.T., Fu, X.L., Liao, W.H.: Asymmetric plucking bistable energy harvester: Modeling and experimental validation. J. Sound Vib. 459, 114852 (2019)

    Article  Google Scholar 

  37. Bowen, C.R., Giddings, P.F., Salo, A.I.T., Kim, H.A.: Modeling and characterization of piezoelectrically actuated bistable composites. IEEE T. Ultrason. Ferr. 58, 1737–1750 (2011)

    Article  Google Scholar 

  38. Zhou, S.X., Zuo, L.: Nonlinear dynamic analysis of asymmetric tristable energy harvesters for enhanced energy harvesting. Commun. Nonlinear Sci. 61, 271–284 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Feldman, M.: Non-linear system vibration analysis using Hilbert transform–II. Forced vibration analysis method “Forcevib.” Mech. Syst. Signal Process. 8, 309–318 (1994)

    Article  Google Scholar 

  40. Feldman, M.: Non-linear system vibration analysis using Hilbert transform–I. Free vibration analysis method “Freevib.” Mech. Syst. Signal Process. 8, 119–127 (1994)

    Article  Google Scholar 

  41. Yuan, T.C., Yang, J., Chen, L.Q.: Nonparametric identification of nonlinear piezoelectric mechanical systems. J. Appl. Mech. 85(11), 111008 (2018)

    Article  Google Scholar 

  42. Feldman, M.: Theoretical analysis and comparison of the Hilbert transform decomposition methods. Mech. Syst. Signal Process. 22(3), 509–519 (2008)

    Article  Google Scholar 

  43. Feldman, M.: Considering high harmonics for identification of non-linear systems by Hilbert transform. Mech. Syst. Signal Process. 21, 943–958 (2007)

    Article  Google Scholar 

  44. Braun, S., Feldman, M.: Decomposition of non-stationary signals into varying time scales: some aspects of the EMD and HVD methods. Mech. Syst. Signal Process. 25, 2608–2630 (2011)

    Article  Google Scholar 

  45. Worden, K., Manson, G.: On the identification of hysteretic systems. Part I: Fitness landscapes and evolutionary identification. Mech. Syst. Signal Process. 29, 201–212 (2012)

    Article  Google Scholar 

  46. He, S., Wu, Q.H., Wen, J.Y., Saunders, J.R., Paton, R.C.: A particle swarm optimizer with passive congregation. Biosystems. 78, 135–147 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This work is sponsored by the National Natural Science Foundation of China (Grant No. 51975453)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junyi Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Zhang, Y., Hou, Z. et al. Optimal Hilbert transform parameter identification of bistable structures. Nonlinear Dyn 111, 5449–5468 (2023). https://doi.org/10.1007/s11071-022-08120-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08120-z

Keywords

Navigation