Skip to main content
Log in

Analysis of dynamic properties of carbon emission–carbon absorption model with time delay based on China

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Since the proposal of China’s double carbon goal, it has attracted wide attention from all walks of life. In order to study the impact of energy, economy and the time it takes for carbon dioxide released into the atmosphere to be completely absorbed on China’s future carbon emission and carbon absorption trend, and to provide estimates and suggestions for China’s carbon neutrality in future, we establish a carbon emission–carbon absorption model with time delay. First, we calculate the equilibrium of the model and analyze the stability of the equilibrium and then further analyze the existence of the Hopf bifurcation of the equilibrium, the Hopf bifurcation normal form of the model is derived by using the multiple time scales method, and the Hopf bifurcation direction and the stability of the bifurcation periodic solution are determined. Finally, we fit and analyze the official data, give the actual model parameters and use MATLAB to carry out numerical simulations to verify the correctness of the theoretical analysis. We find that numerically periodic solutions exist in a wide range around time delay. According to our model, the final results show that China will reach the carbon peak in 2027, but according to the current development model and carbon absorption level of China, carbon neutrality cannot be achieved before 2060. In this regard, we put forward relevant policies and suggestions to accelerate the realization of carbon neutrality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Qiao, W., Lu, H., Zhou, G., et al.: A hybrid algorithm for carbon dioxide emissions forecasting based on improved lion swarm optimizer. J. Clean. Prod. 244, 118612 (2020)

    Article  Google Scholar 

  2. Xu, L., Shi, Y., Fang, H., et al.: Vegetation carbon stocks driven by canopy density and forest age in subtropical forest ecosystems. Sci. Total Environ. 631–632, 619–626 (2018)

    Article  Google Scholar 

  3. Tong, X., Chen, K., Li, G.: Influencing Factors Analysis and Trend Forecasting of China’s Carbon Emissions-Empirical Study Based on STIRPAT and GM(1,1) Models. J. Northeast. Univ. (Nat. Sci.) 36(2), 297–300 (2015)

    Google Scholar 

  4. Liu, G., Zhao, T.: Influencing factors and dynamic effect analysis of China’s carbon emission intensity LIU Guangwei. Resour. Sci. 34(11), 2106–2114 (2012)

    Google Scholar 

  5. Xu, S., He, Z., Long, R.: Factors that influence carbon emissions due to energy consumption in China: decomposition analysis using LMDI. Appl. Energy 127, 182–193 (2014)

    Article  Google Scholar 

  6. Niu, D., Wang, K., Wu, J., et al.: Can China achieve its 2030 carbon emissions commitment? Scenario analysis based on an improved general regression neural network. J. Clean. Prod. 243, 118558 (2020)

    Article  Google Scholar 

  7. Wen, L., Yuan, X.: Forecasting \(\rm CO_2 \) emissions in Chinas commercial department, through BP neural network based on random forest and PSO. Sci. Total Environ. 718, 137194 (2020)

    Article  Google Scholar 

  8. Wang, Q., Chiu, Y., Chiu, C.: Driving factors behind carbon dioxide emissions in China: a modified production-theoretical decomposition analysis. Energy Econ. 51, 252–260 (2015)

    Article  Google Scholar 

  9. Henriques, S.T., Borowiecki, K.J.: The drivers of long-run \(\rm CO_2 \) emissions in Europe, North America and Japan since 1800. Energy Policy 101, 537–549 (2017)

    Article  Google Scholar 

  10. Ma, X., Jiang, P., Jiang, Q.: Research and application of association rule algorithm and an optimized grey model in carbon emissions forecasting. Technol. Forecast. Soc. 158, 120159 (2020)

    Article  Google Scholar 

  11. Xu, W., Jin, X., Liu, J., et al.: Analysis of spatio-temporal changes in forest biomass in China. J. Forestry Res. 33(1), 261–278 (2021)

    Article  Google Scholar 

  12. Chen, Z., Yu, G., Wang, Q.: Effects of climate and forest age on the ecosystem carbon exchange of afforestation. J. Forestry Res. 31(2), 365–374 (2020)

    Article  Google Scholar 

  13. Xu, H., Zhang, C., Li, W., et al.: Economic growth and carbon emission in China: a spatial econometric Kuznets curve? Zb. Rad. Ekon. Fak. Rije. 36(1), 11–28 (2018)

    Article  Google Scholar 

  14. Zhang, Q., Zhang, Y., Pan, B.: Analysis of factors affecting China’s economic growth and carbon emissions during the 40 years of reform and opening. J. Arid Land Resour. Environ. 33(10), 9–13 (2019)

    Google Scholar 

  15. National Statistic Bureau.: China Statistical Yearbook 2021. China Statistic Press, Beijing (2021)

  16. Zhou, X., Zhang, J., Li, J.: Industrial structural transformation and carbon dioxide emissions in China. Energy Policy 57, 43–51 (2013)

    Article  Google Scholar 

  17. Gu, A., He, C., Lv, Z.: Industrial structure changes impacts on carbon emissions in China based on LMDI method. Resour. Sci. 38(10), 1861–1870 (2016)

    Google Scholar 

  18. Hong, Y.: Study on carbon emissions of industry structure and energy structure changes: an empirical test by using environmental Kuznet curve. Environ. Sci. Technol. 38(8), 266–272 (2015)

    Google Scholar 

  19. Wiggins, S.: Introduction to applied nonlinear dynamical systems and chaos. Springer, New York (1990)

    Book  MATH  Google Scholar 

  20. Balachandran, B., Kalm-Nagy, T., Gilsinn, D.E.: Delay differential equations. Springer, Berlin (2009)

    Google Scholar 

  21. Lelkes, J., Kalmar-Nagy, T.: Bifurcation analysis of a forced delay equation for machine tool vibrations. Nonlinear Dyn. 98(4), 2961–2974 (2019)

    Article  MATH  Google Scholar 

  22. Song, Y., Peng, Y., Zhang, T.: The spatially inhomogeneous Hopf bifurcation induced by memory delay in a memory-based diffusion system. J. Differ. Equ. 300, 597–624 (2021)

    Article  MATH  Google Scholar 

  23. Ding, Y., Cao, J., Jiang, W.: Double Hopf bifurcation in active control system with delayed feedback: application to glue dosing processes for particleboard. Nonlinear Dyn. 83(3), 1567–1576 (2016)

    Article  MATH  Google Scholar 

  24. Ding, Y., Zheng, L.: Mathematical modeling and dynamics analysis of delayed nonlinear VOC emission system. Nonlinear Dyn. 109(4), 3157–3167 (2022)

    Article  Google Scholar 

  25. Liu, X., Ding, Y.: Stability and numerical simulations of a new SVIR model with two delays on COVID-19 booster vaccination. Mathematics. 10(10), 1772 (2022)

    Article  Google Scholar 

  26. Cahlon, B., Schmidt, D.: Asymptotic stability of a mechanical robotics model with damping and delay. J. Math. Anal. Appl. 303(1), 36–53 (2005)

    Article  MATH  Google Scholar 

  27. Jia, J., Wang, M., Li, M.: Periodic solutions for impulsive delay differential equations in the control model of plankton allelopathy. Chaos Soliton. Fract. 32(3), 962–968 (2007)

    Article  MATH  Google Scholar 

  28. Kuznetsov, Y.A.: Elements of applied bifurcation theory, 3rd edn. Springer, New York (2004)

    Book  MATH  Google Scholar 

  29. Hassard, B.D., Kazarinoff, N.D., Wan, Y.H.: Theory and applications of Hopf bifurcation. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  30. Faria, T., Magalhaes, L.T.: Normal forms for retarded functional differential equations with parameters and applications to Hopf bifurcation. J. Differ. Equ. 122(2), 181–200 (1995)

  31. Ju, Y., Chen, Y.: Calculation of carbon emission in building operation stage-research on emission coefficient method based on carbon emission factor. Sichuan Build. Sci. 41(03), 175–179 (2015)

    Google Scholar 

  32. Jalil, A., Feridun, M.: Energy-driven economic growth: energy consumption-economic growth nexus revisited for China. Emerg. Mark. Financ. Tr. 50(5), 159–168 (2015)

    Google Scholar 

  33. Nayfeh, A.H.: Order reduction of retarded nonlinear systems-the method of multiple scales versus center-manifold reduction. Nonlinear Dyn. 51, 483–500 (2008)

    Article  MATH  Google Scholar 

  34. Das, S.L., Chatterjee, A.: Multiple scales without center manifold reductions for delay differential equations near Hopf bifurcations. Nonlinear Dyn. 30, 323–335 (2002)

    Article  MATH  Google Scholar 

  35. Cong, J., Zhu, J., Chen, N., et al.: Comparison and case analysis of carbon emission accounting methods for urban energy consumption in China-based on the selection of “emission factor’’ and “activity level data’’. Urban Probl. 03, 5–11 (2014)

    Google Scholar 

Download references

Funding

This study was funded by the Fundamental Research Funds for the Central Universities of China (Grant No. 2572022DJ06) and College Students Innovations Special Project funded by the Northeast Forestry University of China (No. 202210225155).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuting Ding.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (rar 1088 KB)

Appendix

Appendix

We regard the delay \(\tau \) as a bifurcation parameter, let \(\tau =\tau _c+\varepsilon \mu \), where \(\tau _c=\tau ^{(j)}(j = 0, 1, 2, \cdots )\) is the critical value of Hopf bifurcation given in (7), \(\mu \) is the disturbance parameter and \(\varepsilon \) is the dimensionless scale parameter. Suppose system (10) undergoes a Hopf bifurcation from the trivial equilibrium E at the critical point \(\tau = \tau _c\), and then, the solution of (10) is assumed as follows:

$$\begin{aligned} Z(t)= & {} Z(T_0,T_1,T_2,\cdots .)\nonumber \\= & {} \sum \limits _{k=1}^{+\infty }\varepsilon ^k Z_k (T_0,T_1,T_2,\cdots .), \end{aligned}$$
(15)

where \(T_0=t, T_1=\varepsilon t, T_2=\varepsilon ^2 t,\cdots \), and we can get

$$\begin{aligned}&Z(T_0,T_1,T_2,\cdots )\\&\quad =(x(T_0,T_1,T_2,\cdots ),y(T_0,T_1,T_2,\cdots ),\\&\qquad G(T_0,T_1,T_2,\cdots ),S(T_0,T_1,T_2,\cdots ))^T,\\&Z_k (T_0,T_1,T_2,\cdots )\\&\quad =(x_k (T_0,T_1,T_2,\cdots ),y_k(T_0,T_1,T_2,\cdots ),\\&\qquad G_k(T_0,T_1,T_2,\cdots ),S_k(T_0,T_1,T_2,\cdots ))^T, \end{aligned}$$

and the derivative with regard to t is transformed into

$$\begin{aligned} \frac{\mathrm {d}}{\mathrm {d}t}= & {} \frac{\partial }{\partial T_0}+\varepsilon \frac{\partial }{\partial T_1}+\varepsilon ^2 \frac{\partial }{\partial T_2}+ \cdots \\= & {} D_0+\varepsilon D_1+\varepsilon ^2 D_2+ \cdots , \end{aligned}$$

where \(D_i\) is differential operator, and

$$\begin{aligned} D_i=\frac{\partial }{\partial T_i},i=0,1,2,\cdots . \end{aligned}$$

Then, we obtain

$$\begin{aligned} {\dot{Z}}(t)= & {} \varepsilon D_0 Z_1+\varepsilon ^2 D_1 Z_1 +\varepsilon ^3 D_2 Z_1+\varepsilon ^2 D_0 Z_2\nonumber \\&+\varepsilon ^3 D_1 Z_2+\varepsilon ^3 D_0 Z_3+\cdots . \end{aligned}$$
(16)

We expand \(x(T_0 -1,\varepsilon (T_0 -1),\varepsilon ^2 (T_0 -1),\cdots )\) at \(x(T_0 -1,T_1,T_2,\cdots )\) by the Taylor-series expansion, and we get

$$\begin{aligned} x(t-1)= & {} \varepsilon x_{1,\tau _c}+\varepsilon ^2 x_{2,\tau _c}+\varepsilon ^3 x_{3,\tau _c}-\varepsilon ^2 D_1 x_{1,\tau _c}\nonumber \\&-\varepsilon ^3 D_2 x_{1,\tau _c}-\varepsilon ^3 D_1 x_{2,\tau _c}+\cdots , \end{aligned}$$
(17)

where \(x_{j,\tau _c} = x_j (T_0 -1,T_1,T_2,\cdots ), j=1,2,3,\cdots .\)

Substituting Eqs. (15)–(17) into Eq. (10), after obtaining the equation, let the coefficients of \(\varepsilon \), \(\varepsilon ^2\) and \(\varepsilon ^3\) on both sides of the equation be equal. So, we get the following expression:

$$\begin{aligned} \left\{ \begin{aligned}&D_0 x_1-\tau _c[r_1 x_1-a_1(x_1 y^*+x^* y_1)-\frac{b n_1 G_1}{M}+n_2 S_1]=0,\\&\quad D_0 y_1-\tau _c[-r_2 y_1+a_2 x_{1,\tau _c} y^*+a_2 x^* y_1]=0,\\&\quad D_0 G_1+\tau _c r_3 G_1=0,\\&\quad D_0 S_1-\tau _c[r_4 S_1-\frac{2 r_4 S^* S_1}{N_2}+c G_1 S^*+c S_1 G^*]=0. \end{aligned} \right. \nonumber \\ \end{aligned}$$
(18)
$$\begin{aligned} \left\{ \begin{aligned}&D_0 x_2-\tau _c [r_1 x_2 - a_1(x_2 y^*+x^* y_2)- \frac{b n_1 G_2}{M} + n_2 S_2]\\&\quad =-D_1 x_1-\tau _c a_1 x_1 y_1+\mu [r_1 x_1\\&\quad -a_1(x_1 y^*+x^* y_1)-\frac{b n_1 G_1}{M}+n_2 S_1],\\&\quad D_0 y_2-\tau _c[-r_2 y_2+a_2 x_{2,\tau _c} y^*+a_2 x^* y_2]\\&\quad =-D_1 y_1+\tau _c a_2(x_{1,\tau _c} y_1-D_1 x_{1,\tau _c} y^*)\\&\quad +\mu [-r_2 y_1+a_2(x_{1,\tau _c} y^*+x^* y_1)],\\&\quad D_0 G_2+\tau _c r_3 G_2=-D_1 G_1-\frac{\tau _c r_3}{N_1} G_1^2-\mu r_3 G_1,\\&\quad D_0 S_2-\tau _c(r_4 S_2-\frac{2 r_4 S^* S_2}{N_2}+c G_2 S^*+c S_2 G^*)\\&\quad =-D_1 S_1+\tau _c(-\frac{r_4}{N_2} S_1^2+c G_1 S_1)\\&\quad +\mu [r_4 S_1(1-\frac{2 S^*}{N_2})+c(G_1 S^*+G^* S_1)]. \end{aligned} \right. \nonumber \\ \end{aligned}$$
(19)
$$\begin{aligned} \left\{ \begin{aligned}&D_0 x_3-\tau _c[r_1 x_3-a_1(x_3 y^*+x^* y_3)-\frac{b n_1 G_3}{M}+n_2 S_3]\\&\quad =-D_2 x_1-D_1 x_2-a_1 \tau _c (x_1 y_2+x_2 y_1)\\&\quad +\mu [r_1 x_2-a_1(x_1 y_1+x_2 y^*+x^* y_2)\\&\quad -\frac{b n_1 G_2}{M}+n_2 S_2],\\&\quad D_0 y_3-\tau _c(-r_2 y_3+a_2 x_{3,\tau _c} y^*+a_2 x^* y_3)\\&\quad =-D_2 y_1-D_1 y_2+a_2 \tau _c[(x_{2,\tau _c}-D_1 x_{1,\tau _c}) y_1\\&\quad -(D_2 x_{1,\tau _c}+D_1 x_{2,\tau _c})y^*+x_{1,\tau _c} y_2]\\&\quad +\mu [-r_2 y_2 + a_2 (x_{1,\tau _c} y_1 + x^* y_2)\\&\quad +a_2(x_{2,\tau _c} - D_1 x_{1,\tau _c}) y^*],\\&\quad D_0 G_3+\tau _c r_3 G_3=-D_2 G_1-D_1 G_2-\frac{2 \tau _c G_1 G_2 r_3}{N_1}\\&\quad -\mu r_3(G_2+\frac{G_1^2}{N_1}),\\&\quad D_0 S_3-\tau _c [r_4 S_3-\frac{2 r_4 S^* S_3}{N_2}+c(G_3 S^*+G^* S_3)]\\&\quad =-D_1 S_2-D_2 S_1+\tau _c[-\frac{2r_4 S_1 S_2}{N_2}+c G_1 S_2\\&\quad +c G_2 S_1]+\mu [r_4 S_2(1-\frac{2S^*}{N_2})-\frac{r_4 S_1^2}{N_2}\\&\quad +c(G_1 S_1+G_2 S^*+G^* S_2)]. \end{aligned} \right. \nonumber \\ \end{aligned}$$
(20)

The solution of (18) is given as follows:

$$\begin{aligned} Z_1=Q h \mathrm {e}^{\mathrm {i} \omega \tau _c T_0} +{\bar{Q}} {\bar{h}} \mathrm {e}^{-\mathrm {i} \omega \tau _c T_0}, \end{aligned}$$
(21)

where \(Q = Q(T_1, T_2,\cdots )\), h is obtained from (15). Thus, substituting solution (21) into the right part of Eq. (19) and assuming the coefficient vector of \(\mathrm {e}^{\mathrm {i} \omega \tau _c T_0}\) is noted as \(m_1\), by \(\langle h^*, m_1 \rangle =0\), we can solve \(\frac{\partial Q}{\partial T_1}\), namely

$$\begin{aligned} \frac{\partial Q}{\partial T_1}=L \mu Q, \end{aligned}$$
(22)

where

$$\begin{aligned} L=-\frac{\omega ^2+J}{P -\tau _c J}, \end{aligned}$$

with

$$\begin{aligned} P=2 \mathrm {i} \omega - r_1 + a_1 y^*,J=a_1 a_2 x^* y^* \mathrm {e}^{-\mathrm {i} \omega \tau _c}. \end{aligned}$$

Solving Eq. (19), we get its solution in the following form:

$$\begin{aligned} \begin{aligned} x_2&=f_1 \mathrm {e}^{\mathrm {i} \omega \tau _c T_0}+g_1 \mathrm {e}^{2\mathrm {i} \omega \tau _c T_0}+\bar{f_1} \mathrm {e}^{-\mathrm {i} \omega \tau _c T_0}\\&+\bar{g_1} \mathrm {e}^{-2\mathrm {i} \omega \tau _c T_0}+l_1,\\ y_2&=f_2 \mathrm {e}^{\mathrm {i} \omega \tau _c T_0}+g_2 \mathrm {e}^{2\mathrm {i} \omega \tau _c T_0}+\bar{f_2} \mathrm {e}^{-\mathrm {i} \omega \tau _c T_0}\\&+\bar{g_2} \mathrm {e}^{-2\mathrm {i} \omega \tau _c T_0}+l_2,\\ G_2&=0,\\ S_2&=0. \end{aligned} \end{aligned}$$
(23)

Then, substituting solution (23) into Eq. (19), we get

$$\begin{aligned} f_1= & {} \frac{I_1}{I} \mu Q, \quad f_2=\frac{I_2}{I} \mu Q, \quad g_1=-\frac{K_1}{K} Q^2 h_2, \\ g_2= & {} \frac{K_2}{K} Q^2 h_2, \quad l_1 =-\frac{V_1}{y^*} Q {\bar{Q}}, \quad l_2=\frac{V_2}{a_1 x^* y^*} Q {\bar{Q}}, \end{aligned}$$

with

$$\begin{aligned} T= & {} -L h_2 + (1 - \tau _c M) a_2 y^* \mathrm {e}^{-\mathrm {i} \omega \tau _c}, \\ I_1= & {} \mathrm {i} \omega (-L + \mathrm {i}\omega ) - a_1 x^* T, \\ I_2= & {} (\mathrm {i}\omega -r_1+a_1 y^*)T + a_2 y^* \mathrm {e}^{-\mathrm {i} \omega \tau _c} (-M + \mathrm {i} \omega ), \\ I= & {} \tau _c [\mathrm {i}\omega (\mathrm {i}\omega -r_1+a_1 y^*)+J],\\ K= & {} 2\mathrm {i} \omega P - a_1 a_2 x^* y^* \mathrm {e}^{-2\mathrm {i} \omega \tau _c}, \\ K_1= & {} a_1 (2\mathrm {i} \omega +r_2 \mathrm {e}^{-\mathrm {i}\omega \tau _c}),\\ K_2= & {} a_2 (P \mathrm {e}^{-\mathrm {i}\omega \tau _c}-a_1 y^* \mathrm {e}^{-2\mathrm {i}\omega \tau _c}), \\ V_1= & {} h_2 \mathrm {e}^{\mathrm {i} \omega \tau _c}+\bar{h_2} \mathrm {e}^{ -\mathrm {i} \omega \tau _c}, \\ V_2= & {} (-r_1+a_1 y^*) V_1 - a_1 y^*(h_2+\bar{h_2}). \end{aligned}$$

Next, substituting solutions (21) and (23) into (20) and assuming the coefficient vector of \(\mathrm {e}^{\mathrm {i} \omega \tau _c T_0}\) is noted as \(m_2\), by solvability condition, we get \(\langle h^*, m_2\rangle =0\). Note that \(\mu \) is disturbance parameter, and \(\mu ^2\) has little influence for small unfolding parameter, thus, we ignore the \(\mu ^2 G\) term, and then, \(\frac{\partial G}{\partial T_2}\) can be solved in the following form:

$$\begin{aligned} \frac{\partial Q}{\partial T_2}=H Q^2 {\bar{Q}}, \end{aligned}$$
(24)

where

$$\begin{aligned} H=-\frac{\mathrm {i} \omega a_1 \tau _c R_1 + a_1 a_2 x^* \tau _c R_2}{P - \tau _c J}, \end{aligned}$$

with

$$\begin{aligned} R_1= & {} \frac{V_2}{a_1 x^* y^*} + h_2 (\frac{K_2}{K} - \frac{V_1}{y^*} - \frac{K_1}{K} \bar{h_2}), \\ R_2= & {} h_2 (-\frac{V_1}{y^*} - \frac{K_1}{K} \bar{h_2} \mathrm {e}^{-2\mathrm {i} \omega \tau _c} + \frac{K_2}{K} \mathrm {e}^{\mathrm {i}\omega \tau _c})\\&+ \frac{V_2}{a_1 x^* y^*} \mathrm {e}^{-\mathrm {i}\omega \tau _c}. \end{aligned}$$

Let \(Q \rightarrow Q/\varepsilon \), we obtain the normal form of Hopf bifurcation of system (1) truncated at the cubic order terms

$$\begin{aligned} {\dot{Q}} = L \mu Q + H Q^2 {\bar{Q}}, \end{aligned}$$
(25)

where L is given in (22) and H is given in (24).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, C., Hou, Y. & Ding, Y. Analysis of dynamic properties of carbon emission–carbon absorption model with time delay based on China. Nonlinear Dyn 111, 4863–4877 (2023). https://doi.org/10.1007/s11071-022-08053-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08053-7

Keywords

Navigation