Skip to main content
Log in

Dynamical analysis of HR–FN neuron model coupled by locally active hyperbolic memristor and DNA sequence encryption application

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A hyperbolic type memristor with local activity which can generate the hysteresis loops with asymmetrical hysteresis is proposed. A HR–FN neuron model coupled by locally active hyperbolic memristor is built. Complex dynamical behaviours are investigated by numerical analysis for the designed neuron model, and its circuit implementation is verified. Moreover, an image encryption algorithm based on chaotic sequences and DNA sequence operations is proposed. Chaotic sequences are generated by the HR–FN neural coupling system. The experimental results verify that the algorithm has strong resistance to interference and corruption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Hong, Q., Shi, Z., Sun, J., Du, S.: Memristive self-learning logic circuit with application to encoder and decoder. Neural Comput. Appl. 33(10), 4901–4913 (2021)

    Article  Google Scholar 

  2. Yan, R., Hong, Q., Wang, C., Sun, J., Li, Y.: Multilayer memristive neural network circuit based on online learning for license plate detection. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. (2021)

  3. Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P., Lu, W.: Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10(4), 1297–1301 (2010)

    Article  Google Scholar 

  4. Linares-Barranco, B., Serrano-Gotarredona, T.: Memristance can explain spike-time-dependent-plasticity in neural synapses. Nat. Prec. (2009). https://doi.org/10.1038/npre.2009.3010.1

    Article  Google Scholar 

  5. Hong, Q., Chen, H., Sun, J., Wang, C.: Memristive circuit implementation of a self-repairing network based on biological astrocytes in robot application. IEEE Trans. Neural Netw. Learn. Syst. (2020)

  6. Bao, B., Hu, A., Bao, H., Xu, Q., Chen, M., Wu, H.: Three-dimensional memristive hindmarsh-rose neuron model with hidden coexisting asymmetric behaviors. Complexity (2018). https://doi.org/10.1155/2018/3872573

    Article  Google Scholar 

  7. Bao, H., Liu, W., Chen, M.: Hidden extreme multistability and dimensionality reduction analysis for an improved non-autonomous memristive fitzhugh-nagumo circuit. Nonlinear Dyn. 96(3), 1879–1894 (2019)

    Article  MATH  Google Scholar 

  8. Chua, L.O.: Local activity is the origin of complexity. Int. J. Bifurc. Chaos 15(11), 3435–3456 (2005)

    Article  MATH  Google Scholar 

  9. Lin, H., Wang, C., Sun, Y., Yao, W.: Firing multistability in a locally active memristive neuron model. Nonlinear Dyn. 100, 3667–3683 (2020)

    Article  Google Scholar 

  10. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)

    Article  Google Scholar 

  11. Lojić Kapetanović, A., Šušnjara, A., Poljak, D.: Stochastic analysis of the electromagnetic induction effect on a neuron’s action potential dynamics. Nonlinear Dyn. 105(4), 3585–3602 (2021)

    Article  Google Scholar 

  12. Bao, H., Liu, W., Chen, M.: Hidden extreme multistability and dimensionality reduction analysis for an improved non-autonomous memristive fitzhugh-nagumo circuit. Nonlinear Dyn. 96(3), 1879–1894 (2019)

    Article  MATH  Google Scholar 

  13. Korneev, I., Semenov, V., Slepnev, A., Vadivasova, T.: The impact of memristive coupling initial states on travelling waves in an ensemble of the fitzhugh-nagumo oscillators. Chaos, Solitons Fractals 147, 110923 (2021)

    Article  MATH  Google Scholar 

  14. Yang, Y., Ma, J., Xu, Y., Jia, Y.: Energy dependence on discharge mode of izhikevich neuron driven by external stimulus under electromagnetic induction. Cogn. Neurodyn. 15(2), 265–277 (2021)

    Article  Google Scholar 

  15. Ying, J., Liang, Y., Wang, G., Iu, H.H.C., Zhang, J., Jin, P.: Locally active memristor based oscillators The dynamic route from period to chaos and hyperchaos. Chaos Interdiscip. J. Nonlinear Sci. 31(6), 063114 (2021)

    Article  MATH  Google Scholar 

  16. Bao, H., Liu, W., Ma, J., Wu, H.: Memristor initial-offset boosting in memristive hr neuron model with hidden firing patterns. Int. J. Bifurc. Chaos 30(10), 2030029 (2020)

    Article  MATH  Google Scholar 

  17. Rajagopal, K., Karthikeyan, A., Jafari, S., Parastesh, F., Volos, C., Hussain, I.: Wave propagation and spiral wave formation in a hindmarsh-rose neuron model with fractional-order threshold memristor synaps. Int. J. Mod. Phys. B 34(17), 2050157 (2020)

    Article  MATH  Google Scholar 

  18. Lakshmanan, S., Lim, C.P., Nahavandi, S., Prakash, M., Balasubramaniam, P.: Dynamical analysis of the hindmarsh-rose neuron with time delays. IEEE Trans. Neural Netw. Learn. Syst. 28(8), 1953–1958 (2016)

    Article  Google Scholar 

  19. Lin, H., Wang, C., Tan, Y.: Hidden extreme multistability with hyperchaos and transient chaos in a hopfield neural network affected by electromagnetic radiation. Nonlinear Dyn. 99(3), 2369–2386 (2020)

    Article  Google Scholar 

  20. Bao, H., Liu, W., Hu, A.: Coexisting multiple firing patterns in two adjacent neurons coupled by memristive electromagnetic induction. Nonlinear Dyn. 95(1), 43–56 (2019)

    Article  Google Scholar 

  21. Zhu, X., Wang, Q., Lu, W.D.: Memristor networks for real-time neural activity analysis. Nat. Commun. 11(1), 1–9 (2020)

    Google Scholar 

  22. Xu, L., Qi, G., Ma, J.: Modeling of memristor-based hindmarsh-rose neuron and its dynamical analyses using energy method. Appl. Math. Model. 101, 503–516 (2022)

    Article  MATH  Google Scholar 

  23. Tan, Y., Wang, C.: A simple locally active memristor and its application in hr neurons. Chaos Interdiscip. J. Nonlinear Sci. 30(5), 053118 (2020)

    Article  MATH  Google Scholar 

  24. Tabekoueng Njitacke, Z., Sami Doubla, I., Kengne, J., Cheukem, A.: Coexistence of firing patterns and its control in two neurons coupled through an asymmetric electrical synapse. Chaos Interdiscip. J. Nonlinear Sci. 30(2), 023101 (2020)

    Article  MATH  Google Scholar 

  25. Bao, B., Yang, Q., Zhu, D., Zhang, Y., Xu, Q., Chen, M.: Initial-induced coexisting and synchronous firing activities in memristor synapse-coupled morris-lecar bi-neuron network. Nonlinear Dyn. 99(3), 2339–2354 (2020)

    Article  Google Scholar 

  26. Lin, H., Wang, C., Tan, Y.: Hidden extreme multistability with hyperchaos and transient chaos in a hopfield neural network affected by electromagnetic radiation. Nonlinear Dyn. 99(3), 2369–2386 (2020)

    Article  Google Scholar 

  27. Xie, W., Wang, C., Lin, H.: A fractional-order multistable locally active memristor and its chaotic system with transient transition, state jump. Nonlinear Dyn. (2021). https://doi.org/10.1007/s11071-021-06476-2

    Article  Google Scholar 

  28. Ding, D., Jiang, L., Hu, Y., Yang, Z., Li, Q., Zhang, Z., Wu, Q.: Hidden coexisting firings in fractional-order hyperchaotic memristor-coupled hr neural network with two heterogeneous neurons and its applications. Chaos Interdiscip. J. Nonlinear Sci. 31(8), 083107 (2021)

    Article  Google Scholar 

  29. Sun, S., Yan, D., Ji’e, M., Du, X., Wang, L., Duan, S.: Memristor-based time-delay chaotic system with hidden extreme multi-stability and pseudo-random sequence generator. Eur. Phys. J. Spec. Top. 230(18), 3481–3491 (2021)

    Article  Google Scholar 

  30. Chen, P., Yu, S., Zhang, X., He, J., Lin, Z., Li, C., Lü, J.: Arm-embedded implementation of a video chaotic secure communication via wan remote transmission with desirable security and frame rate. Nonlinear Dyn. 86(2), 725–740 (2016)

    Article  Google Scholar 

  31. Hua, Z., Zhu, Z., Yi, S., Zhang, Z., Huang, H.: Cross-plane colour image encryption using a two-dimensional logistic tent modular map. Inf. Sci. 546, 1063–1083 (2021)

    Article  Google Scholar 

  32. Li, Z., Peng, C., Tan, W., Li, L.: A novel chaos-based color image encryption scheme using bit-level permutation. Symmetry 12(9), 1497 (2020)

    Article  Google Scholar 

  33. Sun, J., Han, G., Wang, Y.: Dynamical analysis of memcapacitor chaotic system and its image encryption application. Int. J. Control Autom. Syst. 18(5), 1242–1249 (2020)

    Article  Google Scholar 

  34. Zhan, K., Wei, D., Shi, J., Yu, J.: Cross-utilizing hyperchaotic and dna sequences for image encryption. Sci. China Technol. Sci. 26(1), 013021 (2017)

    Google Scholar 

  35. Bao, H., Hua, Z., Liu, W., Bao, B.: Discrete memristive neuron model and its interspike interval-encoded application in image encryption. Sci. China Technol. Sci. 64(10), 2281–2291 (2021)

    Article  Google Scholar 

  36. Zhou, S.: A real-time one-time pad dna-chaos image encryption algorithm based on multiple keys. Opt. Laser Technol. 143, 107359 (2021)

    Article  Google Scholar 

  37. Leon, C.: Everything you wish to know about memristors but are afraid to ask. Radioengineering 24(2), 319–368 (2015)

    Article  Google Scholar 

  38. Takembo, C.N., Mvogo, A., Ekobena Fouda, H.P., Kofané, T.C.: Effect of electromagnetic radiation on the dynamics of spatiotemporal patterns in memristor-based neuronal network. Nonlinear Dyn. 95(2), 1067–1078 (2019)

    Article  MATH  Google Scholar 

  39. Hindmarsh, J., Rose, R.: A model of the nerve impulse using two first-order differential equations. Nature 296(5853), 162–164 (1982)

  40. Danca, M.F., Fečkan, M., Kuznetsov, N.V., Chen, G.: Complex dynamics, hidden attractors and continuous approximation of a fractional-order hyperchaotic pwc system. Nonlinear Dyn. 91(4), 2523–2540 (2018)

    Article  MATH  Google Scholar 

  41. Njitacke, Z.T., Koumetio, B.N., Ramakrishnan, B., Leutcho, G.D., Fozin, T.F., Tsafack, N., Rajagopal, K., Kengne, J.: Hamiltonian energy and coexistence of hidden firing patterns from bidirectional coupling between two different neurons. Cogn. Neurodyn. (2021). https://doi.org/10.1007/s11571-021-09747-1

    Article  Google Scholar 

  42. Li, Z., Zhou, H., Wang, M., Ma, M.: Coexisting firing patterns and phase synchronization in locally active memristor coupled neurons with hr and fn models. Nonlinear Dyn. 104(2), 1455–1473 (2021)

    Article  Google Scholar 

  43. Preishuber, M., Hütter, T., Katzenbeisser, S., Uhl, A.: Depreciating motivation and empirical security analysis of chaos-based image and video encryption. IEEE Trans. Inf. For. Secur. 13(9), 2137–2150 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 62276239 and 62272424, in part by the Joint Funds of the National Natural Science Foundation of China under Grant U1804262, in part by Henan Province University Science and Technology Innovation Talent Support Plan under Grant 20HA STIT027, in part by Zhongyuan Thousand Talents Program under Grant 204200510003, in part by Zhongyuan Talents Program under Grant ZYYCYU202012154, and in part by Henan Natural Science Foundation-Outstanding Youth Foundation under Grant 222300420095.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junwei Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Yan, Y., Wang, Y. et al. Dynamical analysis of HR–FN neuron model coupled by locally active hyperbolic memristor and DNA sequence encryption application. Nonlinear Dyn 111, 3811–3829 (2023). https://doi.org/10.1007/s11071-022-08027-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08027-9

Keywords

Navigation