Skip to main content
Log in

A bounded-mapping-based prescribed constraint tracking control method without initial condition

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Based on a backstepping technique, a prescribed constraint tracking control method without initial conditions is investigated for a class of strict-feedback nonlinear systems with actuator saturation and external disturbances. Unlike the existing constraint control method without initial conditions, the proposed method gives another refreshing solution by means of a bounded nonlinear mapping function, as well as two proposed prescribed performance constraint functions whose design is unrelated to the initial tracking conditions. The setting time when the constrained tracking error enters into a prescribed region is a design parameter that can be set according to any reasonable requirements. A prescribed performance constraint tracking controller is designed, and it guarantees that the tracking error of the nonlinear system gets into a prescribed constraint region from different initial values no later than a setting time, and both the transient and steady-state performance of the system is ensured. A comparison with the existing method is given, and the effectiveness and superiority of the proposed method are demonstrated using two practical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Wang, M., Wang, C., Shi, P., Liu, X.: Dynamic learning from neural control for strict-feedback systems with guaranteed predefined performance. IEEE Trans. Neural Netw. Learn. Syst. 27(12), 2564–2576 (2016)

    Google Scholar 

  2. Qiu, J., Sun, K., Wang, T., Gao, H.: Observer-based fuzzy adaptive event-triggered control for pure-feedback nonlinear systems with prescribed performance. IEEE Trans. Fuzzy Syst. 27(11), 2152–2162 (2019)

    Google Scholar 

  3. Shao, X., Tong, S.: Adaptive prescribed performance decentralized control for stochastic nonlinear large-scale systems. Int. J. Adapt. Control Signal Process. 32(12), 1782–1800 (2018)

    MATH  Google Scholar 

  4. Meng, W., Yang, Q., Sun, Y.: Adaptive neural control of nonlinear MIMO systems with time-varying output constraints. IEEE Trans. Neural Netw. Learn. Syst. 26(5), 1074–1085 (2015)

    Google Scholar 

  5. Wang, S., Ren, X., Na, J.: Extended-state-observer-based funnel control for nonlinear servomechanisms with prescribed tracking performance. IEEE Trans. Autom. Sci. Eng. 14(1), 98–108 (2017)

    Google Scholar 

  6. Han, S.I., Lee, J.M.: Fuzzy echo state neural networks and funnel dynamic surface control for prescribed performance of a nonlinear dynamic system. IEEE Trans. Ind. Electron. 61(2), 1099–1112 (2014)

    Google Scholar 

  7. Chen, L., Wang, Q.: Prescribed performance-barrier Lyapunov function for the adaptive control of unknown pure-feedback systems with full-state constraints. Nonlinear Dyn. 95(3), 2443–2459 (2019)

    MATH  Google Scholar 

  8. Zhang, R., Wei, C., Yin, Z.: Adaptive quasi fixed-time orbit control around asteroid with performance guarantees. Comput. Model. Eng. Sci. 122(1), 89–108 (2020)

    Google Scholar 

  9. Liang, Q., Yang, Q., Meng, W., Li, Y.: Adaptive finite-time control for turbo-generator of power systems with prescribed performance. Asian J. Control 24(4), 1597–1608 (2022)

    Google Scholar 

  10. Dai, S.L., He, S., Wang, M., Yuan, C.: Adaptive neural control of underactuated surface vessels with prescribed performance guarantees. IEEE Trans. Neural Netw. Learn. Syst. 30(12), 3686–3698 (2018)

    Google Scholar 

  11. Tee, K.P., Ge, S.S., Tay, E.H.: Barrier Lyapunov functions for the control of output-constrained nonlinear systems. Automatica 45(4), 918–927 (2009)

    MATH  Google Scholar 

  12. Zhao, S.Y., Liang, H.J., Du, P.H., Qi, S.W.: Adaptive NN finite-time tracking control of output constrained nonlinear system with input saturation. Nonlinear Dyn. 92(4), 1845–1856 (2018)

    MATH  Google Scholar 

  13. Li, H.Y., Zhao, S.Y., He, W., Lu, R.Q.: Adaptive finite-time tracking control of full state constrained nonlinear systems with dead-zone. Automatica 100, 99–107 (2019)

    MATH  Google Scholar 

  14. Xu, Z., Xie, N., Shen, H., Hu, X., Liu, Q.: Extended state observer-based adaptive prescribed performance control for a class of nonlinear systems with full-state constraints and uncertainties. Nonlinear Dyn. 105(1), 345–358 (2021)

    Google Scholar 

  15. Xie, X.J., Guo, C., Cui, R.H.: Removing feasibility conditions on tracking control of full-state constrained nonlinear systems with time-varying powers. IEEE Trans. Syst. Man Cybern. Syst. 51(10), 6535–6543 (2020)

    Google Scholar 

  16. Liu, X., Wang, H., Gao, C., Chen, M.: Adaptive fuzzy funnel control for a class of strict feedback nonlinear systems. Neurocomputing 241, 71–80 (2017)

    Google Scholar 

  17. Sui, S., Li, Y., Tong, S.: Observer-based adaptive fuzzy control for switched stochastic nonlinear systems with partial tracking errors constrained. IEEE Trans. Syst. Man Cybern. Syst. 46(12), 1605–1617 (2016)

    Google Scholar 

  18. He, W., Dong, Y.T.: Adaptive fuzzy neural network control for a constrained robot using impedance learning. IEEE Trans. Neural Netw. Learn. Syst. 29(4), 1174–1186 (2018)

    Google Scholar 

  19. Sun, W., Su, S., Wu, Y., Xia, J., Nguyen, V.: Adaptive fuzzy control with high-order barrier Lyapunov functions for high-order uncertain nonlinear systems with full-state constraints. IEEE Trans. Cybern. 50(8), 3424–3432 (2020)

    Google Scholar 

  20. Wang, C.X., Wu, Y.Q., Wang, F.H., Zhao, Y.: TABLF-based adaptive control for uncertain nonlinear systems with time-varying asymmetric full-state constraints. Int. J. Control 94(5), 1238–1246 (2021)

    MATH  Google Scholar 

  21. Liu, Y.J., Tong, S.C., Chen, C.L.P., Li, D.J.: Adaptive NN control using integral barrier Lyapunov functionals for uncertain nonlinear block-triangular constraint systems. IEEE Trans. Cybern. 47(11), 3747–3757 (2017)

    Google Scholar 

  22. Li, D., Liu, L., Liu, Y.J., Tong, S.C., Chen, C.L.P.: Fuzzy approximation-based adaptive control of nonlinear uncertain state constrained systems with time-varying delays. IEEE Trans. Fuzzy Syst. 28(8), 1620–1630 (2020)

    Google Scholar 

  23. Sun, T., Pan, Y.: Robust adaptive control for prescribed performance tracking of constrained uncertain nonlinear systems. J. Frankl. Inst. 356(1), 18–30 (2019)

    MATH  Google Scholar 

  24. Niu, B., Wang, D., Li, H., Xie, X., Alotaibi, A.D.: A novel neural-network-based adaptive control scheme for output-constrained stochastic switched nonlinear systems. IEEE Trans. Syst. Man Cybern. Syst. 49(2), 418–432 (2019)

    Google Scholar 

  25. Yin, S., Yu, H., Shahnazi, R., Adel, H.: Fuzzy adaptive tracking control of constrained nonlinear switched stochastic pure-feedback systems. IEEE Trans. Cybern. 47(3), 579–588 (2017)

    Google Scholar 

  26. Zhang, T., Wang, N., Wang, Q., Yi, Y.: Adaptive neural control of constrained strict-feedback nonlinear systems with input unmodeled dynamics. Neurocomputing 272, 596–605 (2018)

    Google Scholar 

  27. Bechlioulis, C.P., Rovithakis, G.A.: Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance. IEEE Trans. Autom. Control 53(9), 2090–2099 (2008)

    MATH  Google Scholar 

  28. Zhang, J.X., Yang, G.H.: Robust adaptive fault-tolerant control for a class of unknown nonlinear systems. IEEE Trans. Ind. Electron. 64(1), 585–594 (2016)

    Google Scholar 

  29. Zhang, J.X., Yang, G.H.: Fuzzy adaptive output feedback control of uncertain nonlinear systems with prescribed performance. IEEE Trans. Cybern. 48(5), 1342–1354 (2017)

    Google Scholar 

  30. Song, Y.D., Zhou, S.: Tracking control of uncertain nonlinear systems with deferred asymmetric time-varying full state constraints. Automatica 98, 314–322 (2018)

    MATH  Google Scholar 

  31. Wang, A., Liu, L., Qiu, J., Feng, G.: Event-triggered adaptive fuzzy output-feedback control for nonstrict-feedback nonlinear systems with asymmetric output constraint. IEEE Trans. Cybern. 52(1), 712–722 (2022)

    Google Scholar 

  32. Yang, Y., Feng, G., Ren, J.: A combined backstepping and small-gain approach to robust adaptive fuzzy control for strict-feedback nonlinear systems. IEEE Trans. Syst Man Cybern. A Syst. Hum. 34(3), 406–420 (2004)

    Google Scholar 

  33. Wen, C., Zhou, J., Liu, Z., Su, H.: Robust adaptive control of uncertain nonlinear systems in the presence of input saturation and external disturbance. IEEE Trans. Autom. Control 56(7), 1672–1678 (2011)

    MATH  Google Scholar 

  34. Wang, H., Shi, P., Li, H., Zhou, Q.: Adaptive neural tracking control for a class of nonlinear systems with dynamic uncertainties. IEEE Trans. Cybern. 47(10), 3075–3087 (2017)

    Google Scholar 

  35. Ma, J., Ge, S.S., Zheng, Z., Hu, D.W.: Adaptive NN control of a class of nonlinear systems with asymmetric saturation actuators. IEEE Trans. Neural Netw. Learn. Syst. 26(7), 1532–1538 (2015)

    Google Scholar 

  36. Zhu, Q., Liu, Y., Wen, G.: Adaptive neural network control for time-varying state constrained nonlinear stochastic systems with input saturation. Inf. Sci. 527, 191–209 (2020)

    MATH  Google Scholar 

  37. Ma, L., Huo, X., Zhao, X., Zong, G.: Observer-based adaptive neural tracking control for output-constrained switched MIMO nonstrict-feedback nonlinear systems with unknown dead zone. Nonlinear Dyn. 99(2), 1019–1036 (2020)

    MATH  Google Scholar 

  38. Ge, S.S., Wang, C.: Adaptive neural control of uncertain MIMO nonlinear systems. IEEE Trans. Neural Netw. 15(3), 674–692 (2004)

    Google Scholar 

  39. Liu, Y., Liu, X., Jing, Y.: Adaptive neural networks finite-time tracking control for non-strict feedback systems via prescribed performance. Inf. Sci. 468, 29–46 (2018)

    MATH  Google Scholar 

  40. Cui, Y., Zhang, H., Wang, Y., Gao, W.: Adaptive control for a class of uncertain strict-feedback nonlinear systems based on a generalized fuzzy hyperbolic model. Fuzzy Sets Syst. 302, 52–64 (2016)

    MATH  Google Scholar 

  41. Carroll, J.J., Dawson, D.M.: Integrator backstepping techniques for the tracking control of permanent magnet brush DC motor. IEEE Trans. Ind. Appl. 31(2), 248–255 (1995)

    Google Scholar 

  42. Abad, E.C., Alonso, J.M., García, M.J.G., Garcí a-Prada, J.C.: Methodology for the navigation optimization of a terrain-adaptive unmanned ground vehicle. Int. J. Adv. Robot. Syst. 15(1), 1–11 (2018)

    Google Scholar 

  43. Corral, E., García, M.J.G., Castejon, C., Meneses, J., Gismeros, R.: Dynamic modeling of the dissipative contact and friction forces of a passive biped-walking robot. Appl. Sci. 10(7), 1–16 (2020)

    Google Scholar 

  44. Corral, E., Moreno, R., García, G., Castej óa, C.: Nonlinear phenomena of contact in multibody systems dynamics: a review. Nonlinear Dyn. 104(2), 1269–1295 (2021)

    Google Scholar 

  45. Wang, C., Hill, D.J., Ge, S.S., Chen, G.R.: An ISS-modular approach for adaptive neural control of pure-feedback systems. Automatica 42(5), 723–731 (2006)

    MATH  Google Scholar 

Download references

Funding

This work is supported by the Natural Science Foundation of Liaoning Province, under Grant 20180550319, the Education Foundation of Liaoning Province, under Grant 2019LNJC09, and in part by the Doctoral Start-up Foundation of Liaoning Province, under Grant 2019-BS-126.

Author information

Authors and Affiliations

Authors

Contributions

HL and XL proposed the idea and method. HL carried out the experiments. HL wrote the original draft, and XL revised it. XPL proposed some improvable suggestions.

Corresponding author

Correspondence to Xiaohua Li.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix I: Proof of \(\Lambda \le 0\)

Proof

\(\Lambda \) in (48) can be rewritten as

$$\begin{aligned} \Lambda&= b_{m}\sum _{i=2}^{n-1}\eta _{i}\left( \xi _{i}({\varvec{Z}}_{i})-\frac{ \partial \alpha _{i-1}}{\partial {\hat{\beta }}}\dot{{\hat{\beta }}}\right) \nonumber \\&\quad +b_{m}\eta _{n}\frac{1}{\lambda }\left( \lambda \xi _{n}({\varvec{Z}}_{n}) -\frac{\partial \alpha _{n-1}}{\partial {\hat{\beta }}}\dot{{\hat{\beta }}}\right) \nonumber \\&= b_{m}\sum \limits _{i=2}^{n}\eta _{i}\xi _{i}({\varvec{Z}}_{i})-b_{m}\sum \limits _{i=2}^{n-1}\eta _{i}\frac{\partial \alpha _{i-1}}{\partial \hat{\beta }}\dot{{\hat{\beta }}}\nonumber \\&\quad -b_{m}\frac{\eta _{n}}{\lambda }\frac{\partial \alpha _{n-1}}{\partial {\hat{\beta }}}\dot{{\hat{\beta }}}-b_{m}\frac{1}{\lambda } \sum \limits _{i=2}^{n-1}\eta _{i}\frac{\partial \alpha _{i-1}}{\partial \hat{ \beta }}\dot{{\hat{\beta }}}\nonumber \\&\quad +b_{m}\frac{1}{\lambda }\sum \limits _{i=2}^{n-1}\eta _{i}\frac{\partial \alpha _{i-1}}{\partial {\hat{\beta }}}\dot{{\hat{\beta }}} \nonumber \\&= b_{m}\sum \limits _{i=2}^{n}\eta _{i}\xi _{i}({\varvec{Z}}_{i})-b_{m}\frac{1}{ \lambda }\sum \limits _{i=2}^{n}\eta _{i}\frac{\partial \alpha _{i-1}}{ \partial {\hat{\beta }}}\dot{{\hat{\beta }}}\nonumber \\&\quad -b_{m}\frac{1}{\lambda }(\lambda -1)\sum \limits _{i=2}^{n-1}\eta _{i}\frac{\partial \alpha _{i-1}}{\partial {\hat{\beta }}}\dot{{\hat{\beta }}}, \end{aligned}$$
(61)

where the terms \(-b_{m}\frac{1}{\lambda }\sum _{i=2}^{n}\eta _{i}\frac{\partial \alpha _{i-1}}{\partial {\hat{\beta }}}\dot{{\hat{\beta }}}\) and \(-b_{m}\frac{1}{\lambda }(\lambda -1)\sum _{i=2}^{n-1}\eta _{i} \frac{\partial \alpha _{i-1}}{\partial {\hat{\beta }}}\dot{{\hat{\beta }}}\) need to be handled. Employing (25) and [45, Lemma 1] obtains

$$\begin{aligned}&-\frac{b_{m}}{\lambda }\sum _{i=2}^{n}\eta _{i}\frac{\partial \alpha _{i-1} }{\partial {\hat{\beta }}}\dot{{\hat{\beta }}} \nonumber \\&\quad = -\frac{b_{m}}{\lambda }\sum _{i=2}^{n}\left( -\eta _{i}\frac{\partial \alpha _{i-1}}{\partial {\hat{\beta }}}{\hat{\beta }}+\eta _{i}\frac{\partial \alpha _{i-1}}{\partial {\hat{\beta }}} \right. \nonumber \\&\quad \quad \left. \left( \sum \limits _{k=1}^{i-1}\frac{1}{ 2}\eta _{k}^{2}{\varvec{S}}_{k}^{\text {T}}({\varvec{Z}}_{k}){\varvec{S}}_{k}({\varvec{Z}} _{k})+\sum \limits _{k=i}^{n}\frac{1}{2}\eta _{k}^{2}{\varvec{S}}_{k}^{\text {T}}( {\varvec{Z}}_{k}){\varvec{S}}_{k}({\varvec{Z}}_{k})\right) \right) \nonumber \\&\quad \le -\frac{b_{m}}{\lambda }\sum _{i=2}^{n}\left( -\eta _{i}\frac{\partial \alpha _{i-1}}{\partial {\hat{\beta }}}{\hat{\beta }}+\eta _{i}\frac{\partial \alpha _{i-1}}{\partial {\hat{\beta }}}\right. \nonumber \\&\quad \quad \left. \sum _{k=1}^{i-1}\frac{1}{2}\eta _{k}^{2}{\varvec{S}}_{k}^{\text {T}}({\varvec{Z}}_{k}){\varvec{S}}_{k}({\varvec{Z}}_{k})-\frac{1}{ 2}\eta _{i}^{2}{\varvec{S}}_{i}^{\text {T}}({\varvec{Z}}_{i}){\varvec{S}}_{i}({\varvec{Z}} _{i}) \right. \nonumber \\&\quad \quad \left. \sum _{k=2}^{i}\left| \eta _{k}\frac{\partial \alpha _{k-1}}{ \partial {\hat{\beta }}}\right| \right) \nonumber \\&\quad \le -\frac{b_{m}}{\lambda }\sum _{i=2}^{n}\left( -\eta _{i}\frac{\partial \alpha _{i-1}}{\partial {\hat{\beta }}}{\hat{\beta }}+\eta _{i}\frac{\partial \alpha _{i-1}}{\partial {\hat{\beta }}}\right. \nonumber \\&\quad \quad \left. \sum _{k=1}^{i-1}\frac{1}{2}\eta _{k}^{2}{\varvec{S}}_{k}^{\text {T}}({\varvec{Z}}_{k}){\varvec{S}}_{k}({\varvec{Z}}_{k})-\frac{1}{ 2}\eta _{i}^{2}s^{2}\sum _{k=2}^{i}\left| \eta _{k}\frac{\partial \alpha _{k-1}}{\partial {\hat{\beta }}}\right| \right) \nonumber \\&\quad = -b_{m}\sum _{i=2}^{n}\eta _{i}\Xi _{i}, \end{aligned}$$
(62)

where

$$\begin{aligned} \Xi _{i}= & {} \frac{1}{\lambda }\left( -\frac{\partial \alpha _{i-1}}{\partial \hat{ \beta }}{\hat{\beta }}+\frac{\partial \alpha _{i-1}}{\partial {\hat{\beta }}} \sum _{k=1}^{i-1}\frac{1}{2}\eta _{k}^{2}{\varvec{S}}_{k}^{\text {T}}({\varvec{Z}} _{k}){\varvec{S}}_{k}({\varvec{Z}}_{k}) \right. \\{} & {} \left. -\frac{1}{2}\eta _{i}s^{2}\sum _{k=2}^{i}\left| \eta _{k}\frac{\partial \alpha _{k-1}}{ \partial {\hat{\beta }}}\right| \right) ,\quad 2\le i \le n, \end{aligned}$$

s is the upper bound of \(\left\| {\varvec{S}}_{i}({\varvec{Z}}_{i})\right\| \), and

$$\begin{aligned}&-\frac{b_{m}(\lambda -1)}{\lambda }\sum \limits _{i=2}^{n-1}\eta _{i}\frac{ \partial \alpha _{i-1}}{\partial {\hat{\beta }}}\dot{{\hat{\beta }}} \nonumber \\&\quad = -\frac{b_{m}(\lambda -1)}{\lambda }\sum \limits _{i=2}^{n-1}\eta _{i}\frac{ \partial \alpha _{i-1}}{\partial {\hat{\beta }}}\nonumber \\&\qquad \left( \sum \limits _{i=1}^{n} \frac{1}{2}\eta _{i}^{2}{\varvec{S}}_{i}^{\text {T}}({\varvec{Z}}_{i}){\varvec{S}}_{i}( {\varvec{Z}}_{i})-{\hat{\beta }}\right) \nonumber \\&\quad = -\frac{b_{m}(\lambda -1)}{\lambda }\sum \limits _{i=2}^{n-1}\eta _{i}\frac{ \partial \alpha _{i-1}}{\partial {\hat{\beta }}}\nonumber \\&\qquad \left( -{\hat{\beta }} +\sum \limits _{k=1}^{i-1}\frac{1}{2}\eta _{k}^{2}{\varvec{S}}_{k}^{\text {T}}( {\varvec{Z}}_{k}){\varvec{S}}_{k}({\varvec{Z}}_{k}) \right. \nonumber \\&\quad \left. +\sum \limits _{k=i}^{n}\frac{1}{ 2}\eta _{k}^{2}{\varvec{S}}_{k}^{\text {T}}({\varvec{Z}}_{k}){\varvec{S}}_{k}({\varvec{Z}}_{k})\right) \nonumber \\&\quad \le -b_{m}\sum \limits _{i=2}^{n-1}\left( -\frac{(\lambda -1)}{\lambda } \eta _{i}\frac{\partial \alpha _{i-1}}{\partial {\hat{\beta }}}{\hat{\beta }} \right. \nonumber \\&\qquad +\eta _{i}\frac{\partial \alpha _{i-1}}{\partial {\hat{\beta }}}\frac{ (\lambda -1)}{\lambda }\sum \limits _{k=1}^{i-1}\frac{1}{2}\eta _{k}^{2} {\varvec{S}}_{k}^{\text {T}}({\varvec{Z}}_{k}){\varvec{S}}_{k}({\varvec{Z}}_{k}) \nonumber \\&\qquad \left. -\frac{\left| \lambda -1\right| }{\lambda }\left| \eta _{i}\frac{\partial \alpha _{i-1}}{\partial {\hat{\beta }}}\right| \right. \nonumber \\&\quad \left. \sum \limits _{k=i}^{n}\frac{1}{2}\eta _{k}^{2}{\varvec{S}}_{k}^{\text {T}}( {\varvec{Z}}_{k}){\varvec{S}}_{k}({\varvec{Z}}_{k})\right) \nonumber \\&\quad \le -b_{m}\sum _{i=2}^{n-1}\left( -\frac{(\lambda -1)}{\lambda }\eta _{i} \frac{\partial \alpha _{i-1}}{\partial {\hat{\beta }}}{\hat{\beta }} \right. \nonumber \\&\qquad \left. +\eta _{i}\frac{\partial \alpha _{i-1}}{\partial {\hat{\beta }}}\frac{ (\lambda -1)}{\lambda }\sum _{k=1}^{i-1}\frac{1}{2}{\varvec{S}}_{k}^{\text {T}}( {\varvec{Z}}_{k}){\varvec{S}}_{k}({\varvec{Z}}_{k})\right) \nonumber \\&\qquad +b_{m}\frac{\left| \lambda -1\right| }{\lambda }\sum \limits _{i=2}^{n}\frac{1}{2}\eta _{i}^{2}s^{2}\sum \limits _{k=2}^{i}\left| \eta _{k}\frac{\partial \alpha _{k-1}}{\partial {\hat{\beta }}}\right| \nonumber \\&\quad = -b_{m}\sum \limits _{i=2}^{n}\eta _{i}\Upsilon _{i}, \end{aligned}$$
(63)

where

$$\begin{aligned} \Upsilon _{i}=&-\frac{(\lambda -1)}{\lambda } \frac{\partial \alpha _{i-1}}{\partial {\hat{\beta }}}{\hat{\beta }}+\frac{(\lambda -1)}{ \lambda }\frac{\partial \alpha _{i-1}}{\partial {\hat{\beta }}}\nonumber \\&\quad \sum _{k=1}^{i-1} \eta _{k}^{2}\frac{1}{2} {\varvec{S}}_{k}^{\text {T}}({\varvec{Z}}_{k}){\varvec{S}}_{k}({\varvec{Z}}_{k}) - \frac{1}{2}\frac{\left| \lambda -1\right| }{\lambda }\eta _{i}s^{2}\nonumber \\&\quad \sum _{k=2}^{i}\left| \eta _{k}\frac{\partial \alpha _{k-1}}{ \partial {\hat{\beta }}}\right| ,i=2,\ldots ,n-1, \end{aligned}$$
(64)
$$\begin{aligned} \Upsilon _{n}=&- \frac{1}{2}\frac{\left| \lambda -1\right| }{\lambda }\eta _{n}s^{2}\sum _{k=2}^{n}\left| \eta _{k}\frac{\partial \alpha _{k-1}}{\partial {\hat{\beta }}}\right| . \end{aligned}$$
(65)

Substituting (62) and (63) into (61), we have

$$\begin{aligned} \Lambda&\le b_{m}\sum \limits _{i=2}^{n}\eta _{i}\xi _{i}({\varvec{Z}} _{i})-b_{m}\sum _{i=2}^{n}\eta _{i}\Xi _{i}-b_{m}\sum \limits _{i=2}^{n}\eta _{i}\Upsilon _{i} \nonumber \\&= b_{m}\sum \limits _{i=2}^{n}\eta _{i}\left( \xi _{i}({\varvec{Z}}_{i})-\Xi _{i}-\Upsilon _{i}\right) . \end{aligned}$$
(66)

If the auxiliary functions \(\xi _{i}({\varvec{Z}}_{i})\), \(i=2,\) \(\ldots \)n, are chosen as \(\xi _{i}({\varvec{Z}}_{i})=\Xi _{i}+\Upsilon _{i}\), then \(\Lambda \le 0.\)

Appendix II: Controller design based on method in [30]

The design process is presented as follows. From (5), the rigid robot manipulator in (58) can be rewritten as

$$\begin{aligned} \left\{ \begin{array}{l} {\dot{x}}_{1}=x_{2},\\ {\dot{x}}_{2}=f_{2}+g_{2}(\lambda v+\Delta (v))+d_{2}, \\ y=x_{1}. \end{array}\right. \end{aligned}$$
(67)

Define the coordinate transformation

$$\begin{aligned} e_{1}=x_{1}-y_{r},\quad e_{2}=x_{2}-\alpha _{1}, \end{aligned}$$
(68)

where \(e_{1}\) is the tracking error, \(y_{r}\) is the reference signal and \( \alpha _{1}\) is the virtual control. The shifting function is chosen as

$$\begin{aligned} \varphi (t)=\left\{ \begin{array}{ll} 1-\left( {{\frac{T-t}{T}}}\right) {^{4}},&{}\quad 0\le t<T \\ 1,&{}\quad t\ge T\end{array}\right. \end{aligned}$$
(69)

and

$$\begin{aligned} {{\zeta }_{1}}(t)=\varphi (t){e_{1}}(t). \end{aligned}$$
(70)

Step 1. Choose a barrier Lyapunov function candidate as

$$\begin{aligned} {V}_{{1}}=\frac{{{b}_{m}}\zeta _{1}^{2}}{\left( {{F}_{1}}+{{\zeta }_{1}} \right) \left( {{F}_{2}}-{{\zeta }_{1}}\right) }+\frac{1}{2}b_{m}^{2}{{ {\tilde{\beta }}}^{2},} \end{aligned}$$
(71)

where \({{b}_{m}}\) and \({{{\tilde{\beta }}}}\) are the same as the definition in this paper, and \({{F}_{1}}\) and \({{F}_{2}}\) are the prescribed constraint functions of \({{\zeta }_{1}}\).

Then, the time derivative of \({V}_{{1}}\) is

$$\begin{aligned} {{{\dot{V}}}_{1}}&= {{b}_{m}}{M}_{1}{{\zeta }_{1}}({\dot{\varphi }}{e_{1}} +\varphi {{\alpha }_{1}}+\varphi {e}_{{2}} -\varphi {{{{\dot{y}}}}_{r}} +\varphi {e_{1}{\eta }_{1}})\nonumber \\&\quad -b_{m}^{2}{\tilde{\beta }}\dot{{\hat{\beta }}}, \end{aligned}$$
(72)

where

$$\begin{aligned} {M}_{1}= & {} \frac{2{{F}_{1}F}_{{2}}+{{\zeta }_{1}F}_{{2}}-F_{1}{{\zeta }_{1}}}{ \left( {{F}_{1}}(t)+{{\zeta }_{1}}(t)\right) ^{2}\left( {{F}_{2}}(t)-{{\zeta }_{1}}(t)\right) ^{2}}, \nonumber \\ {{\eta }_{1}}= & {} \frac{\left( -{{{{\dot{F}}}}_{1}}{{F}_{2} }-{{F}_{1}}{{{{\dot{F}}}}_{2}}+\left( {{{{\dot{F}}}}_{1}}-{{{{\dot{F}}}}_{2}} \right) {{\zeta }_{1}}\right) }{\left( 2{{F}_{1}}{{F}_{2}}+{{\zeta }_{1}}{{F} _{2}}-{{F}_{1}}{{\zeta }_{1}}\right) }. \end{aligned}$$
(73)

From Young’s inequality, we can derive that

$$\begin{aligned} -{{b}_{m}}{{M}_{1}{\zeta }_{1}}{\dot{\varphi }}{{e}_{1}}&\le \frac{1}{2}b_{m}^{2}{M}_{1}^{2}{{{\dot{\varphi }}}^{2}}\zeta _{1}^{2}e_{1}^{2}+\frac{1 }{2} \nonumber \\&=\frac{1}{2}b_{m}^{2}{M}_{1}^{2}{{{\dot{\varphi }}}^{2}{ \zeta }_{1}}\varphi e_{1}^{3}+\frac{1}{2}. \end{aligned}$$
(74)

Substituting (74) into (72) gives

$$\begin{aligned} {{{\dot{V}}}_{1}}&\le {b}_{m}{M}_{1}{{\zeta }_{1}}\varphi (\alpha _{1}+{{ {\bar{f}}}_{1}}\left( {{{\varvec{Z}}}_{1}}\right) )+{{b}_{m}}{M}_{1}{{\zeta }_{1}} \varphi e_{2} \nonumber \\&\quad -\frac{1}{2}{{\left( {{b}_{m}}{M}_{{1}}{{\zeta }_{1}}\varphi \right) }^{2}}+\frac{1}{{2}}, \end{aligned}$$
(75)

where

$$\begin{aligned}{} & {} {\varvec{Z}}_{1}=[x_{1},y_{r},{\dot{y}}_{r},F_{1}, {\dot{F}}_{1},F_{2},{\dot{F}}_{2}]^{\text {T}}, \end{aligned}$$
(76)
$$\begin{aligned}{} & {} {{{\bar{f}}}_{1}}\left( {{{\varvec{Z}}}_{1}}\right) =\frac{1}{2}{{b}_{m}{M} _{1}{{\dot{\varphi }}}^{2}}z_{1}^{3}-{{{{\dot{y}}}}_{r}}+{{e}_{1}{\eta }_{1}}\nonumber \\{} & {} \quad +\frac{1}{2}{{b}_{m}{M}_{1}{\zeta }_{1}}\varphi . \end{aligned}$$
(77)

Step 2. Consider a Lyapunov function candidate as

$$\begin{aligned} {V}_{{2}}=\frac{1}{2\lambda }b_{m}e_{2}^{2}. \end{aligned}$$
(78)

Then

$$\begin{aligned} {{{\dot{V}}}_{2}}&=\frac{1}{\lambda }{{b}_{m}e_{2}}\left( {{g}_{2}}\lambda v+\Delta v+{{f}_{2}}+{{d}_{2}}-{{{{\dot{\alpha }}}}_{1}}\right) \nonumber \\&=\frac{1}{\lambda }{{b}_{m}{e}_{2}}\left( {{g}_{2}}\lambda v+\Delta v+{{f} _{2}}+{{d}_{2}}-{{\xi }_{1}}-\frac{\partial {{\alpha }_{1}}}{\partial \hat{ \beta }}\dot{{\hat{\beta }}}\right) , \end{aligned}$$
(79)

where

$$\begin{aligned} {{\xi }_{1}}&=\frac{\partial {{\alpha }_{1}}}{\partial {{x}_{1}}}{{x}_{2}} +\sum \limits _{j=0}^{i-1}{\frac{\partial {{\alpha }_{1}}}{\partial y_{r}^{(j)} }}y_{r}^{(j+1)}+\sum \limits _{j=0}^{1}{\frac{\partial {{\alpha }_{1}}}{ \partial {{\varphi }^{(j)}}}}{{\varphi }^{(j+1)}} \nonumber \\&\quad +\sum \limits _{k=1}^{2}\sum \limits _{j=0}^{1}{\frac{\partial {{\alpha }_{1}}}{\partial F_{k}^{(j)}}}F_{k}^{(j+1)}. \end{aligned}$$
(80)

Applying Young’s inequality, we obtain

$$\begin{aligned}{} & {} \frac{1}{\lambda }{{b}_{m}}{{e}_{2}}{{d}_{2}}\le \frac{1}{2\lambda ^{2}}{{b} _{m}^{2}}e_{2}^{2}+\frac{1}{2}d_{2}^{2}, \end{aligned}$$
(81)
$$\begin{aligned}{} & {} \frac{1}{\lambda }{{b}_{m}{e}_{2}}\Delta v\le \frac{1}{2\lambda ^{2}}{{b} _{m}^{2}{e}_{2}^{2}}+\frac{1}{2}\Delta _{\max }^{2}. \end{aligned}$$
(82)

Substituting (81)−(82) into (79), it follows that

$$\begin{aligned} {{{\dot{V}}}_{2}}&\le \frac{1}{\lambda }{{b}_{m}{e}_{2}}\left( {{g}_{2}} \lambda v+{{{{\bar{f}}}}_{2}}\left( {{{\varvec{Z}}}_{2}}\right) \right) +\frac{1}{2}d_{2}^{2}+\frac{1}{2}\Delta _{\max }^{2}\nonumber \\&\quad -{{b}_{m}}{M}_{1}{{\zeta }_{1}}\varphi {{e}_{2} } -\frac{1}{2\lambda ^{2}}{{b} _{m}^{2}}e_{2}^{2}+\frac{1}{\lambda }{{b}_{m}{ e}_{2}}\left( {{\xi }_{2}} \right. \nonumber \\&\quad \left. \left( {{{\varvec{Z}}}_{2}}\right) -\frac{\partial {{ \alpha }_{1}}}{\partial {\hat{\beta }}}\dot{{\hat{\beta }}}\right) , \end{aligned}$$
(83)

where

$$\begin{aligned} {\varvec{Z}}_{2}= & {} [x_{1}, x_{2},{\hat{\beta }},y_{r}, {\dot{y}}_{r},\ddot{y}_{r},F_{1},{\dot{F}}_{1},\nonumber \\{} & {} {\ddot{F}}_{1},F_{2},{\dot{F}}_{2},{\ddot{F}}_{2}]^{\text {T}},\end{aligned}$$
(84)
$$\begin{aligned} {{{\bar{f}}}_{2}}\left( {{{\varvec{Z}}}_{2}}\right)= & {} {{f}_{2}}-{{\xi }_{1}}+\frac{3}{ 2\lambda }{{b}_{m}e}{_{2}}+\lambda {{M}_{1}}{{\zeta }_{1}}\varphi \nonumber \\{} & {} -{{\xi } _{2}}\left( {{{\varvec{Z}}}_{2}}\right) ,\end{aligned}$$
(85)
$$\begin{aligned} {{\xi }_{2}}\left( {{{\varvec{Z}}}_{2}}\right)= & {} \frac{\partial {{\alpha }_{1}}}{ \partial {\hat{\beta }}}\frac{1}{2}{({{M}_{1}{\zeta }_{1}\varphi ) ^{2}}} {\varvec{S}}_{1}^{\text {T}}\left( {{{\varvec{Z}}}_{1}}\right) {{\varvec{S}}_{1}}\left( {{{\varvec{Z}} }_{1}}\right) \nonumber \\{} & {} -\left| \frac{\partial {{\alpha }_{1}}}{\partial \hat{\beta }} e_{2}\right| \frac{1}{2}{{e}_{2}}s^{2}-\frac{\partial {{\alpha }_{1}}}{\partial {\hat{\beta }}}{\hat{\beta }}, \end{aligned}$$
(86)

where s is the upper bound of \(\left\| {\varvec{S}}_{2}({\varvec{Z}}_{2})\right\| \). The unknown function \({{{{\bar{f}}}}_{i}}\left( {{{\varvec{Z}}}_{i}}\right) \) can be approximated by a neural network, i.e., \({{{{\bar{f}}}}_{i}}\left( {{ {\varvec{Z}}}_{i}}\right) ={\varvec{W}}_{i}^{*\text {T}}{{\varvec{S}}_{i}}\left( {{{\varvec{Z}}} _{i}}\right) +{{\delta }_{i}}\left( {{{\varvec{Z}}}_{i,}}\right) ,\) \(i=1,\) 2. Applying Young’s inequality, we obtain

$$\begin{aligned}&{{b}_{m}{M}}_{{1}}{{\zeta }_{1}}\varphi {{{{\bar{f}}}}_{1}}\left( {{{\varvec{Z}}}_{1} }\right) ={{b}_{m}}{M}_{{1}}{{\zeta }_{1}}\varphi \left( {\varvec{W}}_{1}^{*\text {T}}{{{\varvec{S}}}_{1}}\left( {{{\varvec{Z}}}_{1}}\right) +{{\delta }_{1}}\left( {{ {\varvec{Z}}}_{1}}\right) \right) \nonumber \\&\quad = {{b}_{m}}{M}_{1}{{\zeta }_{1}}\varphi {\varvec{W}}_{1}^{*\text {T}}{{{\varvec{S}}} _{1}}\left( {{{\varvec{Z}}}_{1}}\right) +{{b}_{m}}{M}_{{1}}{{\zeta }_{1}}\varphi {{ \delta }_{1}}\left( {{{\varvec{Z}}}_{1}}\right) \nonumber \\&\quad \le \frac{1}{2}{{\left( {{b}_{m}{M}}_{1}{{\zeta }_{1}}\varphi \right) }^{2}}{\varvec{W}}_{1}^{*\text {T}}{{\varvec{W}}}_{1}^{*}{\varvec{S}}_{1}^{ \text {T}}\left( {{{\varvec{Z}}}_{1}}\right) {{{\varvec{S}}}_{1}}\left( {{{\varvec{Z}}}_{1}} \right) \nonumber \\&\quad +\frac{1}{2} +\frac{1}{2}{{\left( {{b}_{m}{M}}_{1}{{\zeta } _{1}}\varphi \right) }^{2}}+\frac{1}{2}\varepsilon _{1}^{2} \nonumber \\&\quad \le \frac{1}{2}{{\left( {{b}_{m}}{{M}_{{1}}{\zeta }_{1}}\varphi \right) }^{2}}\beta {\varvec{S}}_{1}^{\text {T}}\left( {{{\varvec{Z}}}_{1}}\right) {{ {\varvec{S}}}_{1}}\left( {{{\varvec{Z}}}_{1}}\right) \nonumber \\&\quad +\frac{1}{2} +\frac{1}{2}{{ \left( {{b}_{m}}{M}_{{1}}{{\zeta }_{1}}\varphi \right) }^{2}}+\frac{1}{2}\varepsilon _{1}^{2}, \end{aligned}$$
(87)
$$\begin{aligned}&\quad \frac{1}{\lambda }{{b}_{m}{e}_{2}}{{{{\bar{f}}}}_{2}}\left( {{\varvec{Z}}_{2}} \right) =\frac{1}{\lambda }{{b}_{m}{e}_{2}}\left( {\varvec{W}}_{2}^{*\text {T}} {{{\varvec{S}}}_{2}}\left( {{{\varvec{Z}}}_{2}}\right) +{{\delta }_{2}}\left( {{{\varvec{Z}}} _{2}}\right) \right) \nonumber \\&\quad =\frac{1}{\lambda }{{b}_{m}{e}_{2}}{\varvec{W}}_{2}^{*\text {T}}{{{\varvec{S}}}_{2}} \left( {{{\varvec{Z}}}_{2}}\right) +\frac{1}{\lambda }{{b}_{m}{e}_{2}}{{\delta } _{2}}\left( {{{\varvec{Z}}}_{2}}\right) \nonumber \\&\quad \le \frac{b_{m}^{2}}{2}{{{{e}_{2}^{2}}}}{\varvec{W}}_{2}^{*\text {T}} {{{\varvec{W}}}_{2}}^{*}{\varvec{S}}_{2}^\text {T}\left( {{{\varvec{Z}}}_{2}}\right) {{{\varvec{S}}} _{2}}\left( {{{\varvec{Z}}}_{2}}\right) \nonumber \\&\quad +\frac{1}{2{{\lambda }^{2}}}+\frac{ 1}{2\lambda ^{2}}{{b}_{m}^{2}{e}_{2}^{2}}+\frac{1}{2}\varepsilon _{2}^{2} \nonumber \\&\quad \le \frac{b_{m}^{2}}{2}{{{{e}_{2}^{2}}}}\beta {\varvec{S}}_{2}^{\text {T} }\left( {{{\varvec{Z}}}_{2}}\right) {{{\varvec{S}}}_{2}}\left( {{{\varvec{Z}}}_{2}}\right) + \frac{1}{2{{\lambda }^{2}}}\nonumber \\&\quad +\frac{1}{2\lambda ^{2}}{{b}_{m}^{2}{e} _{2}^{2}}+\frac{1}{2}\varepsilon _{2}^{2}. \end{aligned}$$
(88)

The total Lyapunov function of system (67) is

$$\begin{aligned} V=V_{1}+V_{2}. \end{aligned}$$
(89)

Based on (75), (83), (87) and (88), we obtain

$$\begin{aligned} {\dot{V}}&= {{{{\dot{V}}}}_{1}}+{{{{\dot{V}}}}_{2}} \le {{b}_{m}{M}_{1}{\zeta }_{1}}\varphi \left( {{\alpha }_{1}}+{{{{\bar{f}}} }_{1}}\left( {{{\varvec{Z}}}_{1}}\right) \right) \nonumber \\&\quad +\frac{1}{\lambda }{{b}_{m}{e}_{2}}\left( {{g}_{2}}\lambda v+{{{{\bar{f}}}}_{2}}\left( {{{\varvec{Z}}}_{2}}\right) \right) +1\nonumber \\&\quad +\frac{1}{2}d_{2}^{2}+\frac{1}{2}\Delta _{\max }^{2}+\frac{1}{2\lambda ^2}{+} \frac{1}{2}\varepsilon _{1}^{2}+\frac{1}{2}\varepsilon _{2}^{2} \nonumber \\&\quad +\frac{1}{\lambda }{{b}_{m}{e}_{2}}\left( {{\xi }_{2}}\left( {{{\varvec{Z}}}_{2}}\right) -\frac{\partial {{\alpha } _{1}}}{\partial {\hat{\beta }}}\dot{{\hat{\beta }}}\right) -b_{m}^{2}{\tilde{\beta }} \dot{{\hat{\beta }}}. \end{aligned}$$
(90)

According to (90), we design the virtual control

$$\begin{aligned} {{\alpha }_{1}}=-{{c}_{1}{e}_{1}}-\frac{1}{2}{{\zeta }_{1}}{M} _{1}\varphi {\hat{\beta }}{\varvec{S}}_{1}^{\text {T}}\left( {{{\varvec{Z}}}_{1}}\right) {{ {\varvec{S}}}_{1}}\left( {{{\varvec{Z}}}_{1}}\right) , \end{aligned}$$
(91)

control input

$$\begin{aligned} v=-{{c}_{2}{e}_{2}}-\frac{1}{2}{{e}_{2}}{\hat{\beta }}{\varvec{S}}_{2}^{\text { T}}\left( {{{\varvec{Z}}}_{2}}\right) {{{\varvec{S}}}_{2}}\left( {{{\varvec{Z}}}_{2}}\right) , \end{aligned}$$
(92)

and adaptive law

$$\begin{aligned} \dot{{\hat{\beta }}}= & {} \frac{{1}}{2}{{\left( {M}_{1}{{\zeta }_{1}} \varphi \right) }^{2}}{\varvec{S}}_{1}^{\text {T}}\left( {{{\varvec{Z}}}_{1}}\right) {{ {\varvec{S}}}_{1}}\left( {{{\varvec{Z}}}_{1}}\right) \nonumber \\{} & {} +\frac{{1}}{2}{{e}_{2}^{2}} {\varvec{S}}_{2}^{\text {T}}\left( {{{\varvec{Z}}}_{2}}\right) {{{\varvec{S}}}_{2}}\left( {{ {\varvec{Z}}}_{2}}\right) -{\hat{\beta }}, \end{aligned}$$
(93)

where \({{c}_{1}}\) and \({{c}_{2}}\) are positive design parameters. It can be deduced from (86) and (93) and [45, Lemma 1] that

$$\begin{aligned}&\frac{1}{\lambda }{b}_{m}{e}_{2}\left( {{\xi }_{2}}\left( {{{\varvec{Z}}}_{2}} \right) -\frac{\partial {{\alpha }_{1}}}{\partial {\hat{\beta }}}\dot{\hat{\beta }}\right) \nonumber \\&\quad = \frac{1}{\lambda }{{b}_{m}{e}_{2}}\left( {{\xi }_{2}}\left( {{{\varvec{Z}}}_{2}} \right) -\frac{\partial {{\alpha }_{1}}}{\partial {\hat{\beta }}}\frac{{1}}{2}{{\left( {M}_{1}{{\zeta }_{1}}\varphi \right) }^{2}}\right. \nonumber \\&\quad \quad \left. {\varvec{S}}_{1}^{\text { T}}\left( {{{\varvec{Z}}}_{1}}\right) {{{\varvec{S}}}_{1}}\left( {{{\varvec{Z}}}_{1}}\right) \right. \nonumber \\&\quad \quad \left. - \frac{\partial {{\alpha }_{1}}}{\partial {\hat{\beta }}}\frac{{1}}{2}{{ e}_{2}^{2}}{\varvec{S}}_{2}^{\text {T}}\left( {{{\varvec{{\varvec{Z}}}}}_{2}}\right) {{{\varvec{S}}} _{2}}\left( {{{\varvec{Z}}}_{2}}\right) +\frac{\partial {{\alpha }_{1}}}{\partial {\hat{\beta }}}{{\hat{\beta }}}\right) \nonumber \\&\quad \le \frac{1}{\lambda }{{b}_{m}{e}_{2}}\left( {{\xi }_{2}}\left( {{{\varvec{Z}}} _{2}}\right) -\frac{\partial {{\alpha }_{1}}}{\partial {\hat{\beta }}}\frac{{1} }{2}({{{{M}_{1}{\zeta }_{1}\varphi })^{2}}} \right. \nonumber \\&\quad \left. {\varvec{S}}_{1}^{\text {T}}\left( {{{\varvec{Z}}}_{1}}\right) {{{\varvec{S}}}_{1}}\left( {{{\varvec{Z}}}_{1}}\right) +\left| \frac{\partial {{\alpha }_{1}}}{\partial {\hat{\beta }}}e_{2}\right| \frac{{1}}{2}{{e}_{2}}s^{2}+\frac{\partial {{\alpha }_{1}}}{\partial \hat{ \beta }}{{\hat{\beta }}}\right) \nonumber \\&\quad =\ 0, \end{aligned}$$
(94)

i.e.,

$$\begin{aligned} \frac{1}{\lambda }{{b}_{m}{e}_{2}}\left( {{\xi }_{2}}\left( {{{\varvec{Z}}}_{2}} \right) -\frac{\partial {{\alpha }_{1}}}{\partial {\hat{\beta }}}\dot{\hat{\beta }}\right) \le 0. \end{aligned}$$
(95)

Substituting (91)−(95) into (90), it is derived that

$$\begin{aligned} {\dot{V}}&\le -{{c}_{1}}b_{m}^{2}{{M}_{1}}\zeta _{1}^{2}-{{c}_{2}}b_{m}^{2}{e }_{2}^{2}+b_{m}^{2}{\tilde{\beta }}{\hat{\beta }}+\frac{1}{2}+\frac{1}{2}d_{2}^{2}\nonumber \\&\quad +\frac{1}{2}\Delta _{\max }^{2}+\frac{1}{2}+\frac{1}{2{{\lambda }^{2}}}{+}\frac{1}{2}\varepsilon _{1}^{2}+\frac{1}{2}\varepsilon _{2}^{2} \nonumber \\&\le -{{c}_{1}}b_{m}^{2}\frac{\zeta _{1}^{2}}{\left( {{F}_{1}}+{{\zeta } _{1}}\right) \left( {{F}_{2}}-{{\zeta }_{1}}\right) }-{{c}_{2}}b_{m}^{2}{e} _{2}^{2}\nonumber \\&\quad -\frac{1}{2}b_{m}^{2}{\tilde{\beta }}^{2} +\frac{1}{2}b_{m}^{2}\beta ^{2}+1+\frac{1}{2}d_{2}^{2}+\frac{1}{2}\Delta _{\max }^{2}\nonumber \\&\quad +\frac{1}{2{{\lambda }^{2}}}{+}\frac{1}{2}\varepsilon _{1}^{2}+\frac{1}{2}\varepsilon _{2}^{2} \nonumber \\&\le -aV+b\rho (t), \end{aligned}$$
(96)

where \(a=\min \{{{c}_{1}}b_{m},\lambda {{c}_{2}}b_{m}\)}, \(b=1\), \(\rho (t)=\frac{1}{2} b_{m}^{2}\beta ^{2}+1+\frac{1}{2}d_{2}^{2}+\frac{1}{2}\Delta _{\max }^{2}+\frac{1}{2{{\lambda }^{2}}}{+}\frac{1}{2}\varepsilon _{1}^{2}+\frac{1}{2}\varepsilon _{2_{}}^{2^{}}\). According to Lemma 1, V is bounded, and furthermore,

$$\begin{aligned} -F_{1}(t)<{{\zeta }_{1}(t)<{F}_{2}}(t). \end{aligned}$$
(97)

When \(t\ge T,\) it follows from (69) and (70) that

$$\begin{aligned} -F_{1}(t)<{e_{1}(t)<{F}_{2}}(t). \end{aligned}$$
(98)

Hence, \(F_{1}\) and \(F_{2}\) will become the prescribed performance functions of the tracking error \({e_{1}.}\) The constraint control for \(e_1(t)\) is achieved.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Li, X. & Liu, X. A bounded-mapping-based prescribed constraint tracking control method without initial condition. Nonlinear Dyn 111, 3451–3468 (2023). https://doi.org/10.1007/s11071-022-08012-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08012-2

Keywords

Navigation