Skip to main content
Log in

Flexible multibody dynamic analysis of shells with an edge center-based strain smoothing MITC method

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this study, a dynamic analysis method for flexible multibody systems using Reissner–Mindlin shells was developed, and an edge center-based strain smoothing mixed interpolation of tensorial components (MITC) method that described the deformation of flexible shells was presented. Three primary achievements were completed. First, a new dynamics equation for Reissner–Mindlin shells based on the floating frame of reference formulation was modeled, in which the coupling of the bending and membrane deformations with rigid motion was considered comprehensively. Second, an edge center-based strain smoothing (ECSS) method that effectively improved the membrane and bending behavior for MITC3 elements was proposed. Third, the ECSS method was designed to construct a linear strain field within an element to ensure the strain consistency at the junction center of the element, resulting in a smoother stress field. The superior performance of the proposed method was verified by convergence analyses, and its advantages for flexible multibody dynamics analyses were also highlighted numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

Data Availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

\(O - xyz\) :

The inertial coordinate system

\(\overline{O}^{I} - \overline{x}^{I} \overline{y}^{I} \overline{z}^{I}\) :

The floating coordinate system

\(e - \hat{x}\hat{y}\hat{z}\) :

The local coordinate system of element \(e\)

\({\mathbf{r}}_{{P_{f} }}\), \({\dot{\mathbf{r}}}_{{P_{f} }}\) and \({\ddot{\mathbf{r}}}_{{P_{f} }}\) :

The spatial position, velocity, and acceleration of point \(P_{f}\)

\({\mathbf{R}}^{I}\) :

The translational displacement of \(\overline{O}^{I} - \overline{x}^{I} \overline{y}^{I} \overline{z}^{I}\) with respect to \(O - xyz\)

\({{\varvec{\uptheta}}}^{I}\), \({{\varvec{\upomega}}}^{I}\) and \({{\varvec{\upvarepsilon}}}^{I}\) :

The rotational displacement, angular velocity and angular acceleration of \(\overline{O}^{I} - \overline{x}^{I} \overline{y}^{I} \overline{z}^{I}\) with respect to \(O - xyz\)

\({\mathbf{A}}^{I}\) :

The coordinate transformation matrix between two coordinate systems

\({\overline{\mathbf{u}}}_{f}\) :

Deformation displacement in \(\overline{O}^{I} - \overline{x}^{I} \overline{y}^{I} \overline{z}^{I}\)

\({\hat{\mathbf{u}}}_{f}\) :

Deformation displacement in \(e - \hat{x}\hat{y}\hat{z}\)

\({\overline{\mathbf{q}}}_{f}\) :

The global nodal displacement vector

\({\mathbf{N}}^{e}\) :

Element shape function matrix

\({{\varvec{\tilde \varepsilon }}}_{{\text{m}}}\), \({{\varvec{\tilde \varepsilon }}}_{{\text{b}}}\) and \({{\varvec{\upvarepsilon}}}_{{\text{s}}}\) :

Respectively corresponding to the smoothed membrane strain, smoothed bending strain, and shear strain

\({\tilde{\mathbf{B}}}_{{\text{m}}}^{e}\), \({\tilde{\mathbf{B}}}_{{\text{b}}}^{e}\) and \({\mathbf{B}}_{{\text{s}}}^{e}\) :

Respectively corresponding to the smoothed membrane strain matrix, smoothed bending strain matrix, and shear strain with MITC

\({\mathbf{M}}^{I}\) and \({\mathbf{K}}^{I}\) :

Mass matrix and stiffness matrix

\({\mathbf{Q}}_{{\text{l}}}^{I}\) and \({\mathbf{Q}}_{{\text{v}}}^{I}\) :

External load vector and velocity coupling vector

References

  1. Timoshenko, S.: Theory of Plates and Shells. McGraw-Hill, New York (1964)

    MATH  Google Scholar 

  2. Calladine, C.R.: Theory of Shell Structures. Cambridge University Press, Cambridge (1983)

    MATH  Google Scholar 

  3. Kirchhoff, G.: Uber das Gleichgewicht und die Bewegung einer elastichen Scheibe. J. Reine Angew. Math. 40, 51–88 (1850)

    Google Scholar 

  4. Reissner, E.: The effect of transverse shear deformation on the bending of elastic plates. J. Appl. Mech. 12(3), 69–76 (1945)

    MATH  Google Scholar 

  5. Mindlin, R.D.: Influence of rotatory inertia and shear in flexural motions of isotropic elastic plates. J. Appl. Mech. 18(1), 31–38 (1951)

    MATH  Google Scholar 

  6. Tessler, A., Hughes, T.J.R.: A three-node Mindlin plate element with improved transverse shear. Comput. Methods Appl. Mech. Eng. 50, 71–101 (1985)

    MATH  Google Scholar 

  7. Tang, J.S., Qian, L.F., Chen, G.S.: A smoothed GFEM based on taylor expansion and constrained mls for analysis of Reissner–Mindlin plate. Int. J. Comput. Methods (2021). https://doi.org/10.1142/S0219876221500481

    Article  MATH  Google Scholar 

  8. You, B., Yu, X., Liang, D., et al.: Numerical and experimental investigation on dynamics of deployable space telescope experiencing deployment and attitude adjustment motions coupled with laminated composite shell. Mech. Based Des. Struct. Mach. 50(1), 268–287 (2022)

    Google Scholar 

  9. Torabi, J., Niiranen, J., Ansari, R.: Nonlinear finite element analysis within strain gradient elasticity: Reissner–Mindlin plate theory versus three-dimensional theory. Eur. J. Mech. A. Solids 87, 104221 (2021)

    MATH  Google Scholar 

  10. Ye, X., Zhang, S.Y., Zhang, Z.M.: A locking-free weak Galerkin finite element method for Reissner–Mindlin plate on polygonal meshes. Comput. Math. Appl. 80, 906–916 (2020)

    MATH  Google Scholar 

  11. Dwivedy, S.K., Eberhard, P.: Dynamic analysis of flexible manipulators, a literature review. Mech. Mach. Theory 41(7), 749–777 (2006)

    MATH  Google Scholar 

  12. He, G.P., Lu, Z.: Nonlinear dynamic analysis of planar flexible underactuated manipulators. Chin. J. Aeronaut. 18(1), 78–82 (2005)

    Google Scholar 

  13. Winfry, R.C.: Elastic link mechanism dynamics. ASME J. Eng. Ind. 93, 268–272 (1971)

    Google Scholar 

  14. Winfry, R.C.: Dynamics analysis of elastic link mechanisms by reduction of coordinates. ASME J. Eng. Ind. 94, 577–582 (1972)

    Google Scholar 

  15. Agrawal, O.P., Shabana, A.A.: Application of deformable-body mean axis to flexible multibody system dynamics. Comput. Methods Appl. Mech. Eng. 56(2), 217–245 (1986)

    MATH  Google Scholar 

  16. Shabana, A.A.: Flexible multibody dynamics: review of past and recent developments. Multibody Syst. Dyn. 1(2), 189–222 (1997)

    MATH  Google Scholar 

  17. Reissner, E.: On one-dimensional finite-strain beam theory: The plane problem. J. Appl. Math. Phys. (ZAMP) 23, 795–804 (1972)

    MATH  Google Scholar 

  18. Simo, J.C.: A finite strain beam formulation. The three-dimensional dynamic problem. Part I. Comput. Methods Appl. Mech. Eng. 49, 55–70 (1985)

    MATH  Google Scholar 

  19. Simo, J.C., Vu-Quoc, L.: A three-dimensional finite-strain rod model. Part II: computational aspects. Comput. Methods Appl. Mech. Eng. 58, 79–116 (1986)

    MATH  Google Scholar 

  20. Shabana, A.A.: Dynamics of Multibody Systems. Cambridge University Press, New York (2005)

    MATH  Google Scholar 

  21. Otsuka, K., Makihara, K., Sugiyama, H.: Recent advances in the absolute nodal coordinate formulation: literature review from 2012 to 2020. J. Comput. Nonlinear Dyn. 17(8), 080803 (2022)

    Google Scholar 

  22. Chen, Y.Z., Guo, X., Zhang, D.G., et al.: A novel radial point interpolation method for thin plates in the frame of absolute nodal coordinate formulation. J. Sound Vib. 469, 115132 (2020)

    Google Scholar 

  23. Betsch, P., Sänger, N.: On the use of geometrically exact shells in a conserving framework for flexible multibody dynamics. Comput. Methods Appl. Mech. Eng. 189, 1609–1630 (2009)

    MATH  Google Scholar 

  24. Santarpia, E., Testa, C., Demasi, L., et al.: A hierarchical generalized formulation for the large-displacement dynamic analysis of rotating plates. Comput. Mech. 68, 1325–1347 (2021)

    MATH  Google Scholar 

  25. Wang, T.: Two new triangular thin plate/shell elements based on the absolute nodal coordinate formulation. Nonlinear Dyn. 99(4), 2707–2725 (2020)

    MATH  Google Scholar 

  26. Vaziri Sereshk, M., Salimi, M.: Comparison of finite element method based on nodal displacement and absolute nodal coordinate formulation (ANCF) in thin shell analysis. Int. J. Numer. Methods Biomed. Eng. 27(8), 1185–1198 (2011)

    MATH  Google Scholar 

  27. Pappalardo, C.M., Zhang, Z., Shabana, A.A.: Use of independent volume parameters in the development of new large displacement ANCF triangular plate/shell elements. Nonlinear Dyn. 91(4), 2171–2202 (2018)

    Google Scholar 

  28. Liang, G.M., Huang, Y.B., Li, H.Y., et al.: L1-norm based dynamic analysis of flexible multibody system modeled with trimmed isogeometry. Comput. Methods Appl. Mech. Eng. 394, 114760 (2022)

    MATH  Google Scholar 

  29. Cammarata, A., Sinatra, R., Maddìo, P.D.: Interface reduction in flexible multibody systems using the Floating Frame of Reference Formulation. J. Sound Vib. 523, 116720 (2022)

    Google Scholar 

  30. Cammarata, A.: Global flexible modes for the model reduction of planar mechanisms using the finite-element floating frame of reference formulation. J. Sound Vib. 489, 115668 (2020)

    Google Scholar 

  31. Cammarata, A., Pappalardo, C.M.: On the use of component mode synthesis methods for the model reduction of flexible multibody systems within the floating frame of reference formulation. Mech. Syst. Signal Process. 142, 106745 (2020)

    Google Scholar 

  32. Pugh, E.D., Hinton, E., Zienkiewicz, O.C.: A study of triangular plate bending element with reduced integration. Int. J. Numer. Methods Eng. 12, 1059–1078 (1978)

    MATH  Google Scholar 

  33. Kim, J.H., Kim, Y.H.: Three-node macro triangular shell element based on the assumed natural trains. Comput. Mech. 29, 441–458 (2002)

    MATH  Google Scholar 

  34. Cardoso, R.P.R., Yoon, J.W., Mahardika, M., et al.: Enhanced assumed strain (EAS) and assumed natural strain (ANS) methods for one-point quadrature solid-shell elements. Int. J. Numer. Methods Eng. 75, 156–187 (2008)

    MATH  Google Scholar 

  35. Bletzinger, K.U., Bischoff, M., Ramm, E.: A unified approach for shear-locking-free triangular and rectangular shell finite elements. Comput. Struct. 75, 321–334 (2000)

    Google Scholar 

  36. Li, S., Zhang, J., Cui, X.: Nonlinear dynamic analysis of shell structures by the formulation based on a discrete shear gap. Acta Mech. 230(10), 3571–3591 (2019)

    MATH  Google Scholar 

  37. Yang, G., Hu, D., Han, X., et al.: An extended edge-based smoothed discrete shear gap method for free vibration analysis of cracked Reissner–Mindlin plate. Appl. Math. Model. 51, 477–504 (2017)

    MATH  Google Scholar 

  38. Bathe, K.J., Dvorkin, E.N.: A formulation of general shell elements—the use of mixed interpolation of tensorial components. Int. J. Numer. Methods Eng. 22(3), 697–722 (1986)

    MATH  Google Scholar 

  39. Lee, Y., Lee, P.S., Bathe, K.J.: The MITC3+ shell element and its performance. Comput. Struct. 138, 12–23 (2014)

    Google Scholar 

  40. Ko, Y., Lee, P.S., Bathe, K.J.: The MITC4+ shell element and its performance. Comput. Struct. 169, 57–68 (2016)

    Google Scholar 

  41. Chen, J.S., Wu, C.T., Yoon, S., et al.: A stabilized conforming nodal integration for Galerkin mesh-free methods. Int. J. Numer. Methods Eng. 50(2), 435–466 (2001)

    MATH  Google Scholar 

  42. Liu, G.R., Nguyen-Thoi, T.: Smoothed Finite Element Methods. CRC Press, London (2010)

    Google Scholar 

  43. Liu, G.R., Nguyen-Thoi, T., Nguyen-Xuan, H., et al.: A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems. Comput. Struct. 87, 14–26 (2009)

    MATH  Google Scholar 

  44. Nguyen-Thoi, T., Liu, G.R., Nguyen-Xuan, H.: Additional properties of the node-based smoothed finite element method (NS-FEM) for solid mechanics problems. Int. J. Comput. Methods 6, 633–666 (2009)

    MATH  Google Scholar 

  45. Liu, G.R., Nguyen, T.T., Lam, K.Y.: An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids. J. Sound Vib. 320(4), 1100–1130 (2009)

    Google Scholar 

  46. Nguyen-Xuan, H., Rabczuk, T., Nguyen-Thanh, N., et al.: A node-based smoothed finite element method with stabilized discrete shear gap technique for analysis of Reissner–Mindlin plates. Comput. Methods 46, 679–701 (2010)

    MATH  Google Scholar 

  47. Nguyen-Hoang, S., Nguyen-Hoang, P., Natarajan, S., et al.: A combined scheme of edge-based and node-based smoothed finite element methods for Reissner–Mindlin flat shells. Eng. Comput. 32, 267–284 (2016)

    Google Scholar 

  48. Chau-Dinh, T., Nguyen-Duy, Q., Nguyen-Xuan, H.: Improvement on MITC3 plate finite element using edge-based strain smoothing enhancement for plate analysis. Acta Mech. 228, 2141–2163 (2017)

    MATH  Google Scholar 

  49. Lee, C., Lee, P.S.: A new strain smoothing method for triangular and tetrahedral finite elements. Comput. Methods Appl. Mech. Eng. 341, 939–955 (2018)

    MATH  Google Scholar 

  50. Lee, C., Lee, P.S.: The strain-smoothed MITC3+ shell finite element. Comput. Struct. 223, 106096 (2019)

    Google Scholar 

  51. Lee, C., Lee, D.H., Lee, P.S.: The strain-smoothed MITC3+ shell element in nonlinear analysis. Comput. Struct. 265, 106768 (2022)

    Google Scholar 

  52. Tang, J.S., Chen, G.S., Ge, Y.: An edge center-based strain-smoothing triangular and tetrahedral element for analysis of elasticity. Eur. J. Mech./A Solids 95, 104606 (2022)

    MATH  Google Scholar 

  53. Chen, G.S., Chen, L.M., Tang, J.S.: An edge center based strain-smoothing element with discrete shear gap for the analysis of Reissner–Mindlin shell. Thin-Walled Struct. 175, 109140 (2022)

    Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 11472137) and the Fundamental Research Funds for the Central Universities (Grant Nos. 309181A8801 and 30919011204).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. J-ST and G-SC performed formula derivation, numerical calculation, and data collection. J-ST and YL performed data analyses. The first draft of the manuscript was written by J-ST. YL, L-FQ and L-MC commented on and revised the previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Guang-Song Chen.

Ethics declarations

Conflict of interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

1.1 Integral of the element mass matrix

After the structure is discretized, the symmetrical mass matrix can be expressed as follows:

$$ {\mathbf{M}}^{I} = \sum\limits_{e} {\int_{{\Omega_{e}^{I} }} {\rho^{I} \left( {{\mathbf{L}}^{I} } \right)^{{\text{T}}} {\mathbf{L}}^{I} {\text{d}}\Omega^{I} } } = \sum\limits_{e} {{\mathbf{M}}_{\mathrm{e}}^{I} } $$

where \({\mathbf{M}}_{\mathrm{e}}^{I}\) represents the element mass matrix, which is symmetric. It can be decomposed into the following block matrices, which represent the rigid translation, rigid rotation, flexible deformation and the coupling among them, respectively.

$$ {\mathbf{M}}_{\mathrm{e}}^{I} = \sum\limits_{e} {\int_{{\Omega_{e}^{I} }} {\rho^{I} \left( {{\mathbf{L}}^{I} } \right)^{{\text{T}}} {\mathbf{L}}^{I} {\text{d}}\Omega^{I} } } = \left[ {\begin{array}{*{20}l} {{\mathbf{M}}_{\mathrm{e}RR}^{I} } & {{\mathbf{M}}_{\mathrm{e}R\theta }^{I} } & {{\mathbf{M}}_{\mathrm{e}Rf}^{I} } \\ {\left( {{\mathbf{M}}_{\mathrm{e}R\theta }^{I} } \right)^{{\text{T}}} } & {{\mathbf{M}}_{\mathrm{e}\theta \theta }^{I} } & {{\mathbf{M}}_{\mathrm{e}\theta f}^{I} } \\ {\left( {{\mathbf{M}}_{\mathrm{e}Rf}^{I} } \right)^{{\text{T}}} } & {\left( {{\mathbf{M}}_{\mathrm{e}\theta f}^{I} } \right)^{{\text{T}}} } & {{\mathbf{M}}_{\mathrm{eff}}^{I} } \\ \end{array} } \right] $$

Based on the formula of \({\mathbf{L}}^{I} = \left[ {\begin{array}{*{20}l} {\mathbf{I}} & { - {\tilde{\mathbf{r}}}_{{\overline{O}^{I} P_{f} }} } & {{\mathbf{A}}^{I} {{\varvec{\uplambda}}}^{e} {\overline{\mathbf{S}}}} \\ \end{array} } \right]\) derived in Sect. 2, the formula of each block matrix in \({\mathbf{M}}_{\mathrm{e}}^{I}\) is presented in detail below.


(1) \({\mathbf{M}}_{\mathrm{e}RR}^{I} = \int_{{\Omega_{e}^{I} }} {\rho^{I} {\mathbf{I}}{\text{d}}\Omega^{I} } = m_{\mathrm{e}}^{I} {\mathbf{I}}\)where \(m_{\mathrm{e}}^{I} = \int_{{\Omega_{e}^{I} }} {\rho^{I} {\text{d}}\Omega^{I} }\) denotes the element mass.


(2) \({\mathbf{M}}_{\mathrm{e}R\theta }^{I} = - \int_{{\Omega_{e}^{I} }} {\rho^{I} {\tilde{\mathbf{r}}}_{{\overline{O}^{I} P_{f} }} {\text{d}}\Omega^{I} }\).

Considering Eq. (24):

$$ \begin{aligned} {\mathbf{M}}_{\mathrm{e}R\theta }^{I} &= - \int_{{\Omega_{e}^{I} }} {\rho^{I} \left( {{\tilde{\mathbf{r}}}_{{\overline{O}^{I} P_{f} }}^{0} + {\tilde{\mathbf{r}}}_{{\overline{O}^{I} P_{f} }}^{m} + \hat{z}{\tilde{\mathbf{r}}}_{{\overline{O}^{I} P_{f} }}^{b} } \right){\text{d}}\Omega^{I} } \\ & = - \int_{{A_{e} }} {\int_{{ - \frac{h}{2}}}^{\frac{h}{2}} {\rho^{I} \left( {{\tilde{\mathbf{r}}}_{{\overline{O}^{I} P_{f} }}^{0} + {\tilde{\mathbf{r}}}_{{\overline{O}^{I} P_{f} }}^{m} + \hat{z}{\tilde{\mathbf{r}}}_{{\overline{O}^{I} P_{f} }}^{b} } \right)} {\text{d}}\hat{z}{\text{d}}A} \\ & = - \rho^{I} h^{I} \int_{{A_{e} }} {\left( {{\tilde{\mathbf{r}}}_{{\overline{O}^{I} P_{f} }}^{0} + {\tilde{\mathbf{r}}}_{{\overline{O}^{I} P_{f} }}^{m} } \right){\text{d}}A} \end{aligned} $$

where \(h^{I}\) is the element thickness.


(3) \({\mathbf{M}}_{\mathrm{e}Rf}^{I} = - \int_{{\Omega_{e}^{I} }} {\rho^{I} {\mathbf{A}}^{I} {{\varvec{\uplambda}}}^{e} {\overline{\mathbf{S}}}{\text{d}}\Omega^{I} }\).

Considering Eq. (16):

$$ \begin{aligned} {\mathbf{M}}_{\mathrm{e}Rf}^{I} &= - \rho^{I} {\mathbf{A}}^{I} {{\varvec{\uplambda}}}^{e} \int_{{\Omega_{e}^{I} }} {{\overline{\mathbf{S}}}{\text{d}}\Omega^{I} } \\ & = - \rho^{I} {\mathbf{A}}^{I} {{\varvec{\uplambda}}}^{e} \int_{{A_{e} }} {\int_{{ - \frac{h}{2}}}^{\frac{h}{2}} {\left( {{\overline{\mathbf{S}}}_{m} + \hat{z}{\overline{\mathbf{S}}}_{b} } \right){\text{d}}\hat{z}} {\text{d}}A} \\ & = - \rho^{I} h^{I} {\mathbf{A}}^{I} {{\varvec{\uplambda}}}^{e} \int_{{A_{e} }} {{\overline{\mathbf{S}}}_{m} {\text{d}}A} \\ \end{aligned} $$

(4) \({\mathbf{M}}_{\mathrm{e}\theta \theta }^{I} = \int_{{\Omega_{e}^{I} }} {\rho^{I} {\tilde{\mathbf{r}}}_{{\overline{O}^{I} P_{f} }}^{T} {\tilde{\mathbf{r}}}_{{\overline{O}^{I} P_{f} }} {\text{d}}\Omega^{I} } = - \int_{{\Omega_{e}^{I} }} {\rho^{I} {\tilde{\mathbf{r}}}_{{\overline{O}^{I} P_{f} }} {\tilde{\mathbf{r}}}_{{\overline{O}^{I} P_{f} }} {\text{d}}\Omega^{I} }\).

Considering Eq. (24):

$$ {\mathbf{M}}_{\mathrm{e}\theta \theta }^{I} = \left\{ \begin{gathered} - \rho^{I} h^{I} \int_{{A_{e} }} {\left( {{\tilde{\mathbf{r}}}_{{\overline{O}^{I} P_{f} }}^{0} + {\tilde{\mathbf{r}}}_{{\overline{O}^{I} P_{f} }}^{m} } \right)\left( {{\tilde{\mathbf{r}}}_{{\overline{O}^{I} P_{f} }}^{0} + {\tilde{\mathbf{r}}}_{{\overline{O}^{I} P_{f} }}^{m} } \right){\text{d}}A} \hfill \\ - \rho^{I} \frac{{\left( {h^{I} } \right)^{3} }}{12}\int_{{A_{e} }} {{\tilde{\mathbf{r}}}_{{\overline{O}^{I} P_{f} }}^{b} {\tilde{\mathbf{r}}}_{{\overline{O}^{I} P_{f} }}^{b} {\text{d}}A} \hfill \\ \end{gathered} \right\} $$

(5) \({\mathbf{M}}_{\mathrm{e}\theta f}^{I} = - \int_{{\Omega_{e}^{I} }} {\rho^{I} {\tilde{\mathbf{r}}}_{{\overline{O}^{I} P_{f} }}^{{\text{T}}} {\mathbf{A}}^{I} {{\varvec{\uplambda}}}^{e} {\overline{\mathbf{S}}}{\text{d}}} \Omega^{I} = \int_{{\Omega_{e}^{I} }} {\rho^{I} {\tilde{\mathbf{r}}}_{{\overline{O}^{I} P_{f} }} {\mathbf{A}}^{I} {{\varvec{\uplambda}}}^{e} {\overline{\mathbf{S}}}{\text{d}}\Omega^{I} }\).

Similarly:

$$ \begin{aligned} {\mathbf{M}}_{\mathrm{e}\theta f}^{I} &= \int_{{A_{e} }} {\int_{{ - \frac{{h^{I} }}{2}}}^{{\frac{{h^{I} }}{2}}} {\rho^{I} \left( {{\tilde{\mathbf{r}}}_{{\overline{O}^{I} P_{f} }}^{0} + {\tilde{\mathbf{r}}}_{{\overline{O}^{I} P_{f} }}^{m} + \hat{z}{\tilde{\mathbf{r}}}_{{\overline{O}^{I} P_{f} }}^{b} } \right){\mathbf{A}}^{I} {{\varvec{\uplambda}}}^{e} \left( {{\overline{\mathbf{S}}}_{m} + \hat{z}{\overline{\mathbf{S}}}_{b} } \right){\text{d}}\hat{z}{\text{d}}A} } \hfill \\ & = \left\{ \begin{gathered} \rho^{I} h^{I} \int_{{A_{e} }} {\left( {{\tilde{\mathbf{r}}}_{{\overline{O}^{I} P_{f} }}^{0} + {\tilde{\mathbf{r}}}_{{\overline{O}^{I} P_{f} }}^{m} } \right){\mathbf{A}}^{I} {{\varvec{\uplambda}}}^{I} {\overline{\mathbf{S}}}_{m} {\text{d}}A} \hfill \\ + \rho^{I} \frac{{\left( {h^{I} } \right)^{3} }}{12}\int_{{\Omega^{e} }} {{\tilde{\mathbf{r}}}_{{\overline{O}^{I} P_{f} }}^{b} {\mathbf{A}}^{I} {{\varvec{\uplambda}}}^{e} {\overline{\mathbf{S}}}_{b} {\text{d}}\Omega^{e} } \hfill \\ \end{gathered} \right\} \\ \end{aligned} $$

(6) \({\mathbf{M}}_{\mathrm{eff}}^{I} = \int_{{\Omega_{e}^{I} }} {\rho^{I} \left( {{\mathbf{A}}^{I} {{\varvec{\uplambda}}}^{e} {\overline{\mathbf{S}}}} \right)^{{\text{T}}} \left( {{\mathbf{A}}^{I} {{\varvec{\uplambda}}}^{e} {\overline{\mathbf{S}}}} \right){\text{d}}\Omega^{I} }\).

Since \(\left( {{\mathbf{A}}^{I} } \right)^{{\text{T}}} {\mathbf{A}}^{I} = \left( {{{\varvec{\uplambda}}}^{e} } \right)^{{\text{T}}} {{\varvec{\uplambda}}}^{e} = {\mathbf{I}}\):

$$ \begin{aligned} {\mathbf{M}}_{\mathrm{eff}}^{I} &= \int_{{\Omega_{e}^{I} }} {\rho^{I} {\overline{\mathbf{S}}}^{{\text{T}}} {\overline{\mathbf{S}}}{\text{d}}\Omega^{I} } \\ & = \int_{{A_{e} }} {\int_{{ - \frac{{h^{I} }}{2}}}^{{\frac{{h^{I} }}{2}}} {\rho^{I} \left( {{\overline{\mathbf{S}}}_{m} + \hat{z}{\overline{\mathbf{S}}}_{b} } \right)^{{\text{T}}} \left( {{\overline{\mathbf{S}}}_{m} + \hat{z}{\overline{\mathbf{S}}}_{b} } \right){\text{d}}\hat{z}{\text{d}}A} } \hfill \\ &= \rho^{I} h^{I} \int_{{A_{e} }} {{\overline{\mathbf{S}}}_{m}^{{\text{T}}} {\overline{\mathbf{S}}}_{m} {\text{d}}A} + \rho^{I} \frac{{\left( {h^{I} } \right)^{3} }}{12}\int_{{A_{e} }} {{\overline{\mathbf{S}}}_{b}^{{\text{T}}} {\overline{\mathbf{S}}}_{b} {\text{d}}A} \\ \end{aligned} $$

1.2 Integral of the element velocity coupling vector

The specific expression for \({\mathbf{Q}}_{\mathrm{v}}^{I}\) can be similarly decomposed:

$$ {\mathbf{Q}}_{\mathrm{v}}^{I} = \sum\limits_{e} {\int_{{\Omega_{e}^{I} }} {\rho^{I} \left( {{\mathbf{L}}^{I} } \right)^{{\text{T}}} {\mathbf{a}}_{v}^{I} {\text{d}}\Omega^{I} } } = \sum\limits_{e} {\left[ {\begin{array}{*{20}l} {{\mathbf{Q}}_{evR}^{I} } \\ {{\mathbf{Q}}_{ev\theta }^{I} } \\ {{\mathbf{Q}}_{evf}^{I} } \\ \end{array} } \right]} $$

Similarly, consider Eqs. (16), (24) and (25) to integrate the above vectors:

$$ \begin{aligned} {\mathbf{Q}}_{evR}^{I} &= \int_{{\Omega_{e}^{I} }} {\rho^{I} {\mathbf{a}}_{v}^{I} {\text{d}}\Omega^{I} } \\ & = \rho^{I} h^{I} \int_{{A_{e} }} {{\mathbf{a}}_{v}^{I0} + {\mathbf{a}}_{v}^{Im} {\text{d}}A} \\ \end{aligned} $$
$$ \begin{aligned} {\mathbf{Q}}_{ev\theta }^{I} &= - \int_{{\Omega_{e}^{I} }} {\rho^{I} {\tilde{\mathbf{r}}}_{{\overline{O}^{I} P_{f} }}^{{\text{T}}} {\mathbf{a}}_{v}^{I} {\text{d}}\Omega^{I} } \\ & = \int_{{\Omega_{e}^{I} }} {\rho^{I} {\tilde{\mathbf{r}}}_{{\overline{O}^{I} P_{f} }} {\mathbf{a}}_{v}^{I} {\text{d}}\Omega^{I} } \\ & = \left\{ \begin{gathered} \rho^{I} h^{I} \int_{{A_{e} }} {\left( {{\tilde{\mathbf{r}}}_{{\overline{O}^{I} P_{f} }}^{0} + {\tilde{\mathbf{r}}}_{{\overline{O}^{I} P_{f} }}^{m} } \right)\left( {{\mathbf{a}}_{v}^{I0} + {\mathbf{a}}_{v}^{Im} } \right){\text{d}}A} \hfill \\ + \rho^{I} \frac{{\left( {h^{I} } \right)^{3} }}{12}\int_{{A_{e} }} {{\tilde{\mathbf{r}}}_{{\overline{O}^{I} P_{f} }}^{b} {\mathbf{a}}_{v}^{Ib} {\text{d}}A} \hfill \\ \end{gathered} \right\} \\ \end{aligned} $$
$$ \begin{aligned} {\mathbf{Q}}_{evf}^{I} &= \int_{{\Omega_{e}^{I} }} {\rho^{I} \left( {{\mathbf{A}}^{I} {{\varvec{\uplambda}}}^{e} {\overline{\mathbf{S}}}} \right)^{{\text{T}}} {\mathbf{a}}_{v}^{I} {\text{d}}\Omega^{I} } \\ & = \left\{ \begin{gathered} \rho^{I} h^{I} \int_{{A_{e} }} {\left[ {{\mathbf{A}}^{I} {{\varvec{\uplambda}}}^{e} \left( {{\overline{\mathbf{S}}}_{0} + {\overline{\mathbf{S}}}_{m} } \right)} \right]^{{\text{T}}} \left( {{\mathbf{a}}_{v}^{I0} + {\mathbf{a}}_{v}^{Im} } \right){\text{d}}A} \hfill \\ + \rho^{I} \frac{{\left( {h^{I} } \right)^{3} }}{12}\int_{{A_{e} }} {\left( {{\mathbf{A}}^{I} {{\varvec{\uplambda}}}^{e} {\overline{\mathbf{S}}}_{b} } \right)^{{\text{T}}} {\mathbf{a}}_{v}^{Ib} {\text{d}}A} \hfill \\ \end{gathered} \right\} \\ \end{aligned} $$

Appendix B

By solving the generalized eigenvalue equation \(\omega^{2} {\mathbf{M}}_{ff}^{I} {\mathbf{\varphi }}^{I} = {\mathbf{K}}_{ff}^{I} {\mathbf{\varphi }}^{I}\), the modal shape \({\mathbf{\varphi }}_{j}^{I}\) corresponding to the \(j{{{\text{th}}}}\) natural frequency of flexible body \(I\) can be obtained. The physical coordinates \({\overline{\mathbf{q}}}_{f}^{I}\) can be converted to the modal space by selecting the first M-order modes:

$$ {\overline{\mathbf{q}}}_{f}^{I} = {\mathbf{V}}_{M} {\mathbf{p}}^{I} $$

where \({\mathbf{p}}^{I}\) indicates the modal coordinates, and \({\mathbf{V}}_{M} = \left[ {\begin{array}{*{20}l} {{\mathbf{\varphi }}_{1}^{I} } & {{\mathbf{\varphi }}_{2}^{I} } & \cdots & {{\mathbf{\varphi }}_{M}^{I} } \\ \end{array} } \right]\) consists of the first M-order modes.

In general, the employed modal order M is far less than the DOFs of the discrete flexible body. Therefore, the original governing equation Eq. (87) can be reduced to the following equation:

$$ \left[ {\begin{array}{*{20}l} {{\mathbf{M}}_{RR}^{I} } & {{\mathbf{M}}_{R\theta }^{I} } & {{\tilde{\mathbf{M}}}_{Rf}^{I} } \\ {\left( {{\mathbf{M}}_{R\theta }^{I} } \right)^{{\text{T}}} } & {{\mathbf{M}}_{\theta \theta }^{I} } & {{\tilde{\mathbf{M}}}_{\theta f}^{I} } \\ {\left( {{\tilde{\mathbf{M}}}_{Rf}^{I} } \right)^{{\text{T}}} } & {\left( {{\tilde{\mathbf{M}}}_{\theta f}^{I} } \right)^{{\text{T}}} } & {{\tilde{\mathbf{M}}}_{ff}^{I} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}l} {{\ddot{\mathbf{R}}}^{I} } \\ {{{\varvec{\upvarepsilon}}}^{I} } \\ {{\ddot{\mathbf{p}}}^{I} } \\ \end{array} } \right] + \left[ {\begin{array}{*{20}l} {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {{\tilde{\mathbf{K}}}_{ff}^{I} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}l} {{\mathbf{R}}^{I} } \\ {{{\varvec{\uptheta}}}^{I} } \\ {{\mathbf{p}}^{I} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}l} {{\mathbf{Q}}_{R}^{I} } \\ {{\mathbf{Q}}_{\theta }^{I} } \\ {{\tilde{\mathbf{Q}}}_{f}^{I} } \\ \end{array} } \right] $$

where \({\tilde{\mathbf{M}}}_{Rf}^{I} = {\mathbf{M}}_{Rf}^{I} {\mathbf{V}}_{M}\), \({\tilde{\mathbf{M}}}_{\theta f}^{I} = {\mathbf{M}}_{\theta f}^{I} {\mathbf{V}}_{M}\), \({\tilde{\mathbf{M}}}_{ff}^{I} = {\mathbf{V}}_{M}^{{\text{T}}} {\mathbf{M}}_{ff}^{I} {\mathbf{V}}_{M}\), \({\tilde{\mathbf{K}}}_{ff}^{I} = {\mathbf{V}}_{M}^{{\text{T}}} {\mathbf{K}}_{ff}^{I} {\mathbf{V}}_{M}\), \({\tilde{\mathbf{Q}}}_{f}^{I} = {\mathbf{V}}_{M}^{{\text{T}}} {\mathbf{Q}}_{f}^{I}\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, JS., Qian, LF., Chen, LM. et al. Flexible multibody dynamic analysis of shells with an edge center-based strain smoothing MITC method. Nonlinear Dyn 111, 3253–3277 (2023). https://doi.org/10.1007/s11071-022-07992-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07992-5

Keywords

Navigation