Skip to main content
Log in

Embedding nonlinear systems with two or more harmonic phase terms near the Hopf–Hopf bifurcation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Nonlinear problems involving phases occur ubiquitously throughout applied mathematics andphysics, ranging from neuronal models to the search for elementary particles. The phase variables present in such models usually enter as harmonic terms and, being unbounded, pose an open challenge for studying bifurcations in these systems through standard numerical continuation techniques. Here, we propose to transform and embed the original model equations involving phases into structurally stable generalized systems that are more suitable for analysis via standard predictor–corrector numerical continuation methods. The structural stability of the generalized system is achieved by replacing each harmonic term in the original system by a supercritical Hopf bifurcation normal form subsystem. As an illustration of this general approach, specific details are provided for the ac-driven, Stewart–McCumber model of a single Josephson junction. It is found that the dynamics of the junction is underpinned by a two-parameter Hopf–Hopf bifurcation, detected in the generalized system. The Hopf–Hopf bifurcation gives birth to an invariant torus through Neimark–Sacker bifurcation of limit cycles. Continuation of the Neimark–Sacker bifurcation of limit cycles in the two-parameter space provides a complete picture of the overlapping Arnold tongues (regions of frequency-locked periodic solutions), which are in precise agreement with the widths of the Shapiro steps that can be measured along the current–voltage characteristics of the junction at various fixed values of the ac-drive amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Notes

  1. Generally, a 2-torus can be embedded into three-dimensional state space. Here, the state space of a single nonlinear oscillator is two-dimensional; therefore, the state space is at least four-dimensional, since the oscillators are distinguished.

  2. In such 2-d views, and especially in more mathematical texts, the areas formed by the Shapiro steps are often referred to as Arnold tongues since the rational ratio of harmonics exists due to the Arnold tongues emanating from the N–S bifurcation manifold as we will see later in the text.

  3. In fact, the N–S manifold \(p=0\) does not give birth to Arnold tongues in a generic way, since the multipliers of the cycle depend exclusively on \(\omega \); parameter a influences their amplitude only.

References

  1. Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Chemistry Series. Dover, New York (1984)

    MATH  Google Scholar 

  2. Winfree, A.T.: The Geometry of Biological Time. Springer, New York (2001)

    MATH  Google Scholar 

  3. Welp, U., Kadowaki, K., Kleiner, R.: Superconducting emitters of THz radiation. Nat. Photon. 7, 702 (2013)

    Google Scholar 

  4. Braginski, A.I.: Superconductor Electronics: Status and Outlook. J. Supercond. Nov. Magn. 32, 23–44 (2019)

    Google Scholar 

  5. Sturgis-Jensen, B., Buono, P.-L., Palacios, A., Turtle, J., In, V., Longhini, P.: On the synchronization phenomenon of a parallel array of spin torque nano-oscillators. Phys. D 396, 71–81 (2019)

    MathSciNet  MATH  Google Scholar 

  6. Mallick, A., et al.: Using synchronized oscillators to compute the maximum independent set. Nat Commun. 11, 4689 (2020)

    Google Scholar 

  7. Huiwen, J., Neiman, A.B., Shilnikov, A.L.: Bottom-up approach to torus bifurcation in neuron models. Chaos 28(10), 106317 (2018)

    MathSciNet  MATH  Google Scholar 

  8. Sue Ann Campbell and Zhen Wang: Phase models and clustering in networks of oscillators with delayed coupling. Phys. D 363, 44–55 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Alinejad, H., Yang, D.-P., Robinson, P.A.: Mode-locking dynamics of corticothalamic system response to periodic external stimuli. Phys. D 402, 132231 (2020)

    MathSciNet  Google Scholar 

  10. Yan, J., Beck, C.: Nonlinear dynamics of coupled axion-Josephson junction systems. Phys. D 403, 132294 (2020)

    MathSciNet  MATH  Google Scholar 

  11. Strogatz, S.: SYNC The Emerging Science of Spontaneous Order. Hyperion, New York (2003)

    Google Scholar 

  12. Abrams, D.M., Strogatz, S.H.: Chimera states for coupled oscillators. Phys. Rev. Lett. 93, 174102 (2004)

    Google Scholar 

  13. Josephson, B.D.: Possible new effects in superconductive tunnelling. Phys. Lett. 1, 251 (1962)

    MATH  Google Scholar 

  14. Barone, A., Paterno, G.: Physics and Applications of the Josephson Effect. Wiley, New York (1982)

    Google Scholar 

  15. Likharev, K.K.: Dynamics of Josephson Junctions and Circuits. Gordon and Breach Science Pubisher, New York (1986)

    Google Scholar 

  16. Crotty, P., Schult, D., Segall, K.: Josephson junction simulation of neurons. Phys. Rev. E 82, 011914 (2010)

    Google Scholar 

  17. Jun, M., Long, H., Zhen-Bo, X., Wang, C.: Simulated test of electric activity of neurons by using Josephson junction based on synchronization scheme. Commun. Nonlinear Sci. Numer. Simul. 17, 2659 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Segall, K., Guo, S., Crotty, P., Schult, D., Millera, M.: Phase-flip bifurcation in a coupled Josephson junction neuron system. Phys. B Condens. Matter 455, 71 (2014)

    Google Scholar 

  19. Kleiner, R., Zhou, X., Dorsch, E., Zhang, X., Koelle, D., Jin, D.: Space-time crystalline order of a high-critical-temperature superconductor with intrinsic Josephson junctions. Nat. Commun. 12, 6038 (2021)

    Google Scholar 

  20. Saha, S., Dana, S.K.: Smallest chimeras under repulsive interactions. Front. Netw. Physiol. 1, 778597 (2021)

    Google Scholar 

  21. Mishra, A., Ghosh, S., Kumar, S., Kapitaniak, T., Hens, C.: Neuron-like spiking and bursting in Josephson junctions: a review. Chaos 31, 052102 (2021)

    MathSciNet  Google Scholar 

  22. Dimitrios, C., Johanne, H.: Dynamical properties of neuromorphic Josephson junctions (2022). https://doi.org/10.48550/ARXIV.2203.13198,

  23. Nashaat, M., Sameh, M., Botha, A.E., Kulikov, K.V., Shukrinov, Y.M.: Bifurcation structure and chaos in dynamics of nanomagnet coupled to Josephson junction. Chaos 32, 093142 (2022). https://doi.org/10.1063/5.0095009

  24. Filatrella, G.: Josephson junctions as a prototype for synchronization of nonlinear oscillators. In: Sergei, S (ed.), New developments in Josephson junctions research, pp. 83–106. Transworld Research Network, Kerala, India (2010)

  25. Wiesenfeld, K., Colet, P., Strogatz, S.H.: Frequency locking in Josephson arrays: connection with the Kuramoto model. Phys. Rev. E 57, 1563–1569 (1998)

    Google Scholar 

  26. Sakaguchi, H., Kuramoto, Y.: A soluble active rotater model showing phase transitions via mutual entertainment. Prog. Theor. Phys. 76, 576 (1986)

    Google Scholar 

  27. Kuramoto, Y., Battogtokh, D.: Coexistence of coherence and incoherence in nonlocally coupled phase oscillators. Nonlinear Phenom. Complex Syst. 5, 380 (2002)

    Google Scholar 

  28. Bolotov, M.I., Munyaev, V.O., Smirnov, L.A., Hramov, A.E.: Symmetry broken states in an ensemble of globally coupled pendulums. Phys. D 402, 132266 (2020)

    MathSciNet  MATH  Google Scholar 

  29. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, Volume 112 of Applied Mathematical Sciences, 2nd edn. Springer, New York (1998)

    Google Scholar 

  30. Govaerts, W., Kuznetsov, Y.A.: Interactive continuation tools. In: Krauskopf, B., Osinga, H.M., Galán-Vioque, J. (eds.) Numerical Continuation Methods for Dynamical Systems. Understanding Complex Systems, pp. 51–75. Springer, Dordrecht (2007)

    Google Scholar 

  31. Dhooge, A., Govaerts, W., Kuznetsov, Y.A.: MatCont: a MATLAB package for numerical bifurcation analysis of ODEs. ACM Trans. Math. Softw. 29(2), 141–164 (2003)

    MathSciNet  MATH  Google Scholar 

  32. Dhooge, A., Govaerts, W., Kuznetsov, Y.A., Meijer, H.G.E., Sautois, B.: New features of the software MatCont for bifurcation analysis of dynamical systems. Math. Comput. Model. Dyn. Syst. 14(2), 147–175 (2008)

    MathSciNet  MATH  Google Scholar 

  33. Roussel, M.R.: Nonlinear Dynamics: A Hands-on Introductory Survey. Morgan & Claypool Publishers, San Rafael (2019)

    MATH  Google Scholar 

  34. Bizzarri, F., Linaro, D., Storace, M., Brambilla, A.: Continuation analysis of a phase/quadrature electronic oscillator. J. Circuits Syst. Comput. 19, 773–85 (2010)

    Google Scholar 

  35. Bizzarri, F., Linaro, D., Oldeman, B., Storace, M.: Harmonic analysis of oscillators through standard numerical continuation tools. Int. J. Bifurc. Chaos 20, 4029–37 (2010)

    MathSciNet  MATH  Google Scholar 

  36. Sancho, S., Suarez, A.: Frequency-domain analysis of the periodically-forced Josephson-junction circuit. IEEE Trans. Circ. Syst. 61, 512 (2014)

    Google Scholar 

  37. Panaggio, M.J., Abrams, D.M.: Chimera states on the surface of a sphere. Phys. Rev. E 91, 022909 (2015)

    MathSciNet  Google Scholar 

  38. Renault, A., Thomas, O., Mahé, H.: Numerical antiresonance continuation of structural systems. Mech. Syst. Signal Proc. 116, 963–84 (2019)

    Google Scholar 

  39. Guillot, L., Cochelin, B., Vergez, C.: A taylor series-based continuation method for solutions of dynamical systems. Nonlinear Dyn. 98(4), 2827–2845 (2019)

    MATH  Google Scholar 

  40. Romain, V.: BifurcationKit.jl. HAL Open science. https://hal.archives-ouvertes.fr/hal-02902346. Accessed 07 Sept 2022 (2020)

  41. Aronson, D.G., Golubitsky, M., Krupa, M.: Coupled arrays of Josephson junctions and bifurcation of maps with S\(_{N}\) symmetry. Nonlinearity 4, 861 (1991)

    MathSciNet  MATH  Google Scholar 

  42. Aronson, D.G., Doedel, E.J., Terman, D.H.: A codimension-two point associated with coupled josephson junctions. Nonlinearity 10(5), 1231 (1997)

    MathSciNet  MATH  Google Scholar 

  43. Eusebius, J.D., Alan, R.C., Thomas, F.F., Yuri, A.K., Bjorn, S., Xianjun, W..: AUTO 97: continuation and bifurcation software for ordinary differential equations (with homcont) (1997)

  44. Xueping, L., Jingli, R., Sue, A.C., Gail, S.K.W., Huaiping, Z.: How seasonal forcing influences the complexity of a predator-prey system. Discrete Contin. Dyn. Syst.-B 23(2), 785 (2018)

    MathSciNet  MATH  Google Scholar 

  45. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, 7th edn. Springer, New York (2002)

    MATH  Google Scholar 

  46. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd edn. Springer, New York (2003)

    MATH  Google Scholar 

  47. Cameron, T.M., Griffin, J.H.: An alternating frequency/time domain method for calculating the steady-state response of nonlinear dynamic systems. J. Appl. Mech. 561, 149–154 (1989). https://doi.org/10.1115/1.3176036

  48. Sarrouy, E., Grolet, A., Thouverez, F.: Global and bifurcation analysis of a structure with cyclic symmetry. Int. J. Non-Linear Mech. 46(5), 727–737 (2011)

    Google Scholar 

  49. Xie, L., Baguet, S., Prabel, B., Dufour, R.: Bifurcation tracking by harmonic balance method for performance tuning of nonlinear dynamical systems. Mech. Syst. Signal Process. 88, 445–461 (2017)

    Google Scholar 

  50. Lazarus, A., Thomas, O.: A harmonic-based method for computing the stability of periodic solutions of dynamical systems. Comptes Rendus Méc. 338(9), 510–517 (2010)

    MATH  Google Scholar 

  51. Kleiner, R., Buckel, W.: Superconductivity: An Introduction, 3rd edn. Wiley, Weinheim (2016)

    Google Scholar 

  52. Stewart, W.C.: Current-voltage characteristics of Josephson junctions. Appl. Phys. Lett. 12, 277 (1968)

    Google Scholar 

  53. McCumber, D.E.: Effect of ac impedance on dc voltage-current characteristics of supercond weak-link junctions. J. Appl. Phys. 39, 3113 (1968)

    Google Scholar 

  54. Shukrinov, Y.M., Botha, A.E., Medvedeva, S.Y., Kolahchi, M.R., Irie, A.: Structured chaos in a devil’s staircase of the Josephson junction. Chaos 24, 033115 (2014)

    MathSciNet  Google Scholar 

  55. Botha, A.E., Shukrinov, Y.M., Kolahchi, M.R.: A Farey staircase from the two-extremum return map of a Josephson junction. Nonlinlear Dyn. 84, 1363–1372 (2016)

    MathSciNet  Google Scholar 

  56. Kautz, R.L.: Noise, chaos, and the Josephson voltage standard. Rep. Prog. Phys. 59, 935 (1996)

    Google Scholar 

  57. Rüfenacht, A., Flowers-Jacobs, N.E., Benz, S.P.: Impact of the latest generation of Josephson voltage standards in ac and dc electric metrology. Metrologia 55, S152 (2018)

    Google Scholar 

  58. De Witte, V., Govaerts, W., Kuznetsov, Y.A., Friedman, M.: Interactive initialization and continuation of homoclinic and heteroclinic orbits in matlab. ACM Trans. Math. Softw. 38(3), 1–34 (2012)

    MathSciNet  MATH  Google Scholar 

  59. Champneys, A.R., Kuznetsov, Y.A., Sandstede, B.: A numerical toolbox for homoclinic bifurcation analysis. Int. J. Bifurc. Chaos 6, 867–887 (1995)

    MathSciNet  MATH  Google Scholar 

  60. Golubitsky, M., Stewart, I., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory, 1st edn. Springer, New York (1988)

  61. Koyama, T., Tachiki, M.: I–V characteristics of Josephson-coupled layered superconductors with longitudinal plasma excitations. Phys. Rev. B 54, 16183 (1996)

    Google Scholar 

  62. Matsumoto, H., Sakamoto, S., Wajima, F., Koyama, T., Machida, M.: Simulation of I–V hysteresis branches in an intrinsic stack of Josephson junctions in high-Tc superconductors. Phys. Rev. B 60, 3666 (1999)

    Google Scholar 

  63. Shukrinov, Y.M., Mahfouzi, F., Pedersen, N.F.: Investigation of the breakpoint region in stacks with a finite number of intrinsic Josephson junctions. Phys. Rev. B 75, 104508 (2007)

    Google Scholar 

  64. Frank, S., Peckham, B.B.: Computing Arnol’d tongue scenarios. J. Comput. Phys. 220(2), 932–951 (2007)

    MathSciNet  MATH  Google Scholar 

  65. Li, F., Liu, Q., Guo, H., Zhao, Y., Tang, J., Ma, J.: Simulating the electric activity of FitzHugh–Nagumo neuron by using Josephson junction model. Nonlinear Dyn. 69, 2169–2179 (2012)

    MathSciNet  Google Scholar 

  66. Ma, J., Tang, J.: A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 89, 1569 (2017)

    MathSciNet  Google Scholar 

  67. Ma, J., Zhou, P., Ahmad, B., Ren, G., Wang, C.: Chaos and multi-scroll attractors in RCL-shunted junction coupled Jerk circuit connected by memristor. PLoS ONE 13, e0191120 (2018)

    Google Scholar 

  68. Shukrinov, Y.M., Rahmonov, I.R., Kulikov, K.V.: Double resonance in the system of coupled Josephson junctions. JETP Lett. 96, 588 (2012)

    Google Scholar 

  69. Shukrinov, Y.M., Abouhaswa, A.S., Botha, A.E.: Double and triple resonance behaviour in large systems of LC-shunted intrinsic Josephson junctions. Phys. Lett. A 387, 127025 (2021)

    Google Scholar 

  70. Botha, A.E., Shukrinov, Y.M., Tekić, J.: Chaos along the rc-branch of RLC-shunted intrinsic Josephson junctions. Chaos Solitons Fractals 156, 111865 (2022)

    Google Scholar 

Download references

Funding

The work has received financial support from Mathematical and Statistical modeling project MUNI/A/ 1615/2020, MUNI/A/1342/2021. V. E. also received financial support from the RECETOX research infrastructure (Ministry of Education, Youth and Sports of the Czech Republic: LM2018121), the CETOCOEN EXCELLENCE (CZ.02.1.01/0.0/0.0/17_043/0009632), RECETOX RI project (CZ.02.1.01/0.0/0.0/16_013/0001761).

Author information

Authors and Affiliations

Authors

Contributions

A. E. B. conceived the original idea and research problem and generated Fig. 1 using Python codes. L. P. suggested the use of the supercritical Hopf bifurcation normal form to facilitate the use of numerical continuation software (MATCONT). V. E. performed the numerical calculations in MATCONT and generated all the remaining figures. All authors contributed equally to writing and revising the manuscript for final publication.

Corresponding author

Correspondence to V. Eclerová.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 722 KB)

Appendices

Appendix A: transformation

The original system (1) can be transformed into system (5) by noting that

$$\begin{aligned} \begin{aligned} x\left( \varphi \right)&=\sqrt{p}\cos {\varphi } \\ y\left( \varphi \right)&=\sqrt{p}\sin {\varphi } \end{aligned} \end{aligned}$$
(7)

is the solution to

$$\begin{aligned} \begin{aligned} \frac{{\mathrm{d}}x}{{\mathrm{d}}\varphi }&=px-y-x\left( x^2+y^2\right) ,\\ \frac{{\mathrm{y}}x}{{\mathrm{y}}\varphi }&=x+py-y\left( x^2+y^2\right) , \end{aligned} \end{aligned}$$
(8)

for \(p>0\) and with the initial condition

$$\begin{aligned} x\left( 0\right)&=\sqrt{p}, \, \, \, y\left( 0\right) =0. \end{aligned}$$
(9)

We apply the chain rule to the system (8), and using the first equation of (1), to find

$$\begin{aligned} \begin{aligned} \frac{{\mathrm{d}}x}{{\mathrm{d}}t}&=\frac{{\mathrm{d}}x}{{\mathrm{d}}\varphi }\frac{{\mathrm{d}}\varphi }{{\mathrm{d}}t}=\left( px-y-x\left( x^2+y^2\right) \right) V, \\ \frac{{\mathrm{d}}y}{{\mathrm{d}}t}&=\frac{{\mathrm{y}}x}{{\mathrm{y}}\varphi }\frac{{\mathrm{d}}\varphi }{{\mathrm{d}}t}=\left( x+py-y\left( x^2+y^2\right) \right) V. \end{aligned} \end{aligned}$$
(10)

The system (10) is a normal form of the Hopf bifurcation with parameter p that gives birth to a limit cycle with amplitude \(\sqrt{p}\) for \(p>0\). Hopf bifurcation from \(p=0\) can be easily continued in a parametric space as well as the limit cycle with continuation software (e.g., MATCONT).

Similarly, we can replace the harmonic oscillations

$$\begin{aligned} \begin{aligned} u\left( \theta \right)&= \sqrt{a} \cos {\theta } \\ w\left( \theta \right)&= \sqrt{a} \sin {\theta } \end{aligned} \end{aligned}$$
(11)

with a system

$$\begin{aligned} \begin{aligned} \frac{{\mathrm{d}}u}{{\mathrm{d}}\theta }&= a u-w-u\left( u^2+w^2\right) \\ \frac{{\mathrm{d}}w}{{\mathrm{d}}\theta }&=u+ a w-w\left( u^2+w^2\right) \end{aligned} \end{aligned}$$
(12)

and the initial condition

$$\begin{aligned} \begin{aligned} u\left( 0\right)&=\sqrt{a} \, \, \, \, , w\left( 0\right) = 0, \end{aligned} \end{aligned}$$
(13)

where \( \sqrt{a} = A\). Once again, we apply the chain rule to the system to obtain a generalized system in the Hopf bifurcation normal form

$$\begin{aligned} \begin{aligned} \frac{{\mathrm{d}}u}{{\mathrm{d}}t}&=\frac{{\mathrm{d}}u}{{\mathrm{d}}\theta }\frac{{\mathrm{d}}\theta }{{\mathrm{d}}t}=\left( au-w-u\left( u^2+w^2\right) \right) \omega \\ \frac{{\mathrm{d}}w}{{\mathrm{d}}t}&=\frac{{\mathrm{w}}\theta }{{\mathrm{d}}\theta }\frac{{\mathrm{d}}\theta }{{\mathrm{d}}t}=\left( u+aw-w\left( u^2+w^2\right) \right) \omega . \end{aligned} \end{aligned}$$
(14)

Equations (14) constitute the last two equations of the system (5) and can be interpreted as a master subsystem of the coupled oscillators. Similarly, (8) form part of the slave subsystem, consisting of the first three equations in (5). Since (8) and (14) each have their own Hopf bifurcation point (at \(p=0\) and \(a=0\), respectively), together they produce a Hopf–Hopf bifurcation in the overall system  (5), giving birth to a torus for \(p>0\) and \(a>0\).

Appendix B: generalizations of other coupled systems

As alluded to in the main text, the present technique may be applicable to a wide range of systems involving phase variables. As further examples of how the method may be applied to more complicated systems, we give generalizations for two additional systems related to Josephson junctions.

1.1 B.1 Generalization for RLC-shunted intrinsic Josephson junctions

For a stack of N intrinsic Josephson junctions, in parallel with resistive (R), inductive (L) and capacitive (C) shunting elements, the dimensionless form of the system equations can be written as [68,69,70],

$$\begin{aligned} \begin{aligned} \frac{\mathrm {d}\varphi _{\ell }}{\mathrm {d}t}&= V_{\ell }-\alpha (V_{\ell +1}+V_{\ell -1}-2V_{\ell }), \\ \frac{\mathrm {d}V_{\ell }}{\mathrm {d}t}&= I-\sin \varphi _{\ell }-\beta \frac{\mathrm {d}\varphi _{\ell }}{\mathrm {d}t}-CU, \\ \frac{\mathrm {d}u_{c}}{\mathrm {d}t}&= U, \\ \frac{\mathrm {d}U}{\mathrm {d}t}&= \frac{1}{LC}\left( \sum \limits _{i=1}^{N}V_{i}-u_{c}\right) -\frac{R}{L}U, \end{aligned} \end{aligned}$$
(15)

where \(V_{l}\) is the voltage difference, \(\varphi _{l}\) is the gauge-invariant phase difference [63], both between superconducting layers \(l+1\) and l, with \(\ell = 1,2,\ldots , N\). In this model, \(u_{c}\) is the voltage across the shunt capacitance, and there is no ac-drive. Once again, we can transform the system into the Cartesian representation by setting

$$\begin{aligned} \begin{aligned} x_{\ell }&= \cos \varphi _{\ell }\text { and } y_{\ell } =\sin \varphi _{\ell }{.} \end{aligned} \end{aligned}$$
(16)

This produces

$$\begin{aligned} \begin{aligned} \frac{\mathrm {d}x_{\ell }}{\mathrm {d}t}&= -\sin \varphi _{\ell }\frac{ \mathrm {d}\varphi _{\ell }}{\mathrm {d}t}\\&=-y_{\ell }\left[ V_{\ell }-\alpha (V_{\ell +1}+V_{\ell -1}-2V_{\ell })\right] \\ \ \frac{\mathrm {d}y_{\ell }}{\mathrm {d}t}&= \cos \varphi _{\ell } \frac{\mathrm {d}\varphi _{\ell }}{\mathrm {d}t}\\&=x_{\ell }\left[ V_{\ell }-\alpha (V_{\ell +1}+V_{\ell -1}-2V_{\ell })\right] \end{aligned} \end{aligned}$$
(17)

from which it is easy to obtain the generalized system of \(3N+2\) equations:

$$\begin{aligned} \frac{\mathrm {d}x_{\ell }}{\mathrm {d}t}&=\left( px_{\ell }-y_{\ell }-x_{\ell }\left( x_{\ell }^{2}+y_{\ell }^{2}\right) \right) \nonumber \\&\quad \times \left[ V_{\ell }-\alpha (V_{\ell +1}+V_{\ell -1}-2V_{\ell })\right] , \nonumber \\ \frac{\mathrm {d}y_{\ell }}{\mathrm {d}t}&=\left( x_{\ell }+py_{\ell }-y_{\ell }\left( x_{\ell }^{2}+y_{\ell }^{2}\right) \right) \nonumber \\&\quad \times \left[ V_{\ell }-\alpha (V_{\ell +1}+V_{\ell -1}-2V_{\ell })\right] , \nonumber \\ \frac{\mathrm {d}V_{\ell }}{\mathrm {d}t}&=I-y_{\ell }-\beta \frac{\mathrm {d} \varphi _{\ell }}{\mathrm {d}t}-CU, \nonumber \\ \frac{\mathrm {d}u_{c}}{\mathrm {d}t}&=U, \nonumber \\ \frac{\mathrm {d}U}{\mathrm {d}t}&=\frac{1}{LC}\left( \sum \limits _{i=1}^{N}V_{i}-u_{c}\right) -\frac{R}{L}U. \end{aligned}$$
(18)

The generalized representation (18) reduces to the original when \(p=1\).

1.2 B.2 Generalization for the coupled axion-Josephson junction system

Consider the model for a classical axion field that is capacitively coupled into a Josephson junction [10]. In this model, \(\varphi \) is the Josephson phase difference, \(\theta \) the axion misalignment angle, and the interaction strength is proportional to \(c (\ddot{\varphi }-\ddot{\theta })\). Since the coupling constant \(c>0\), equations (1) of Ref. [10] can be expressed as a first-order system in the form

$$\begin{aligned} \begin{aligned} \dot{\varphi }&= u, \dot{\theta } = v, \\ \dot{u}&= d\left( ua_{1}+b_{1}\left( 1+c\right) \sin \varphi +cua_{1}+cva_{2}+cb_{2}\sin \theta \right) , \\ \dot{v}&= d\left( va_{2}+b_{2}\left( 1+c\right) \sin \theta +cua_{1}+cva_{2}+cb_{1}\sin \varphi \right) , \end{aligned} \end{aligned}$$
(19)

where \(d = -1/(1+2c)\). By making the transformation

$$\begin{aligned} \begin{aligned} x_{1}&= \cos \varphi {, } y_{1} = \sin \varphi , \\ x_{2}&= \cos \theta {, }y_{2}=\sin \theta , \end{aligned} \end{aligned}$$
(20)

we eliminate the phases to obtain

$$\begin{aligned} \begin{aligned} \dot{x}_{1}&= -y_{1}u, \dot{y}_{1} = x_{1}u, \\ \dot{u}&= d\left( ua_{1}+b_{1}\left( 1+c\right) y_{1}+cua_{1}+cva_{2}+cb_{2}y_{2}\right) , \\ \dot{v}&= d\left( va_{2}+b_{2}\left( 1+c\right) y_{2}+cua_{1}+cva_{2}+cb_{1}y_{1}\right) , \\ \dot{x}_{2}&= -y_{2}v{, } \dot{y}_{2} = x_{2}v, \end{aligned} \end{aligned}$$
(21)

which easily generalizes to

$$\begin{aligned} \begin{aligned} \dot{x}_{1}&= \left[ px_{1}-y_{1}-x_{1}\left( x_{1}^{2}+y_{1}^{2}\right) \right] u, \\ \dot{y}_{1}&= \left[ x_{1}+py_{1}-y_{1}\left( x_{1}^{2}+y_{1}^{2}\right) \right] u, \\ \dot{u}&= d\left( ua_{1}+b_{1}\left( 1+c\right) y_{1}+cua_{1}+cva_{2}+cb_{2}y_{2}\right) , \\ \dot{v}&= d\left( va_{2}+b_{2}\left( 1+c\right) y_{2}+cua_{1}+cva_{2}+cb_{1}y_{1}\right) , \\ \dot{x}_{2}&= \left[ qx_{2}-y_{2}-x_{2}\left( x_{2}^{2}+y_{2}^{2}\right) \right] v{, } \\ \dot{y}_{2}&= \left[ x_{2}+qy_{2}-y_{2}\left( x_{2}^{2}+y_{2}^{2}\right) \right] v. \end{aligned} \end{aligned}$$
(22)

The generalized representation (22) reduces to the original when \(p=q=1\). We note that a similar transformation may also be applied to a closely related system, namely, the Josephson junction neuron [22].

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eclerová, V., Přibylová, L. & Botha, A.E. Embedding nonlinear systems with two or more harmonic phase terms near the Hopf–Hopf bifurcation. Nonlinear Dyn 111, 1537–1551 (2023). https://doi.org/10.1007/s11071-022-07906-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07906-5

Keywords

Navigation