Skip to main content
Log in

Stability analysis of multiple solutions of nonlinear Schrödinger equation with \(\mathbf {\mathcal{PT}\mathcal{}}\)-symmetric potential

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Exact stationary solutions of nonlinear Schrödinger equation in the presence of complex deformed supersymmetric potential have been obtained in terms of bright soliton and dark soliton. As an example, \(\mathcal{PT}\mathcal{}\)-symmetric Scarf potential has been considered. Then the corresponding spectrum of linear Schrödinger equation has been investigated, and the \(\mathcal{PT}\mathcal{}\) broken and unbroken regions of linear Schrödinger equation have been delineated analytically. The bright soliton and a bright-dark soliton solutions of the nonlinear Schrödinger equation are retrieved analytically with real eigenvalues. Moreover, the stability of these solutions is corroborated by means of linear stability analysis which are validated by direct numerical simulations in terms of a wide range of potential amplitudes for focusing as well as defocusing cases. Finally, we illustrate the strength of stability of bright and dark solitons through the adiabatic transformations on system parameters. Then connected and disconnected stable regions of bright and dark solitons are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bender, C.M., Boettcher, S.: Real spectra in Non-Hermitian Hamiltonians having \(\cal{PT} \) symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998)

    MathSciNet  MATH  Google Scholar 

  2. Bender, C.M., Brody, D.C., Jones, H.F.: Complex extension of quantum mechanics. Phys. Rev. Lett. 89, 270401–4 (2002)

    MathSciNet  MATH  Google Scholar 

  3. Bender, C.M., Boettcher, S., Meisinger, P.N.: \(\cal{PT} \)-symmetric quantum mechanics. J. Math. Phys. 40, 2201–2229 (1999)

    MathSciNet  MATH  Google Scholar 

  4. Bender, C.M.: Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947–1018 (2007)

    MathSciNet  Google Scholar 

  5. Makris, K.G., El-Ganainy, R., Christodoulides, D.N.: Beam dynamics in \(\cal{PT} \) symmetric optical lattices. Phys. Rev. Lett. 100, 103904–4 (2008)

    Google Scholar 

  6. Tiofack, C.G.L., Tchepemen, N.N., Mohamadou, A., Kofané, T.C.: Stability of Gaussian-type soliton in the cubic-quintic nonlinear media with fourth-order diffraction and \(\cal{PT} \)-symmetric potentials. Nonlinear Dyn. 98, 317–326 (2019)

    MATH  Google Scholar 

  7. Dai, C.Q., Wang, Y.Y., Fan, Y., Yu, D.G.: Reconstruction of stability for Gaussian spatial solitons in quintic-septimal nonlinear materials under \(\cal{PT} \)-symmetric potentials. Nonlinear Dyn. 92, 1351–1358 (2018)

    Google Scholar 

  8. El-Ganainy, R., Makris, K.G., Christodoulides, D.N., Musslimani, Z.H.: Theory of coupled optical \(\cal{PT} \)-symmetric structures. Opt. Lett. 32, 2632–2634 (2007)

  9. Wu, H.Y., Jiang, L.H., Wu, Y.F.: The stability of two-dimensional spatial solitons in cubic-quintic-septimal nonlinear media with different diffractions and \(\cal{PT} \)-symmetric potentials. Nonlinear Dyn. 87, 1667–1674 (2017)

    Google Scholar 

  10. Zhu, H.P., Pan, Z.H.: Stability of Gaussian-type light bullets in the cubic-quintic-septimal nonlinear media with different diffractions under \(\cal{PT} \)-symmetric potentials. Nonlinear Dyn. 89, 1745–1752 (2017)

    MathSciNet  Google Scholar 

  11. Klaiman, S., Gunther, U., Moiseyev, N.: Visualization of branch points in \(\cal{PT} \)-symmetric waveguides. Phys. Rev. Lett. 101, 080402–4 (2008)

    MathSciNet  MATH  Google Scholar 

  12. Longhi, S.: Bloch oscillations in complex crystals with \(\cal{PT} \) symmetry. Phys. Rev. Lett. 103, 123601–4 (2009)

    Google Scholar 

  13. Longhi, S.: \(\cal{PT} \)-symmetric laser absorber. Phys. Rev. A 82, 031801(R)–4 (2010)

    Google Scholar 

  14. Ramezani, H., Christodoulides, D.N., Kovanis, V., Vitebskiy, I., Kottos, T.: \(\cal{PT} \)-symmetric talbot effects. Phys. Rev. Lett. 109, 033902–5 (2012)

    Google Scholar 

  15. Miri, M.A., Regensburger, A., Peschel, U., Christodoulides, D.N.: Optical mesh lattices with \(\cal{PT} \) symmetry. Phys. Rev. A 86, 023807–12 (2012)

    Google Scholar 

  16. Guo, A., Salamo, G.J., Duchesne, D., Morandotti, R., Volatier-Ravat, M., Aimez, V., Siviloglou, G.A., Christodoulides, D.N.: Observation of \(\cal{PT} \)-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902–4 (2009)

    Google Scholar 

  17. Reuter, C.E., Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Segev, M., Kip, D.: Observation of parity-time symmetry in optics. Nat. Phys. 6, 192–195 (2010)

    Google Scholar 

  18. Regensburger, A., Bersch, C., Miri, M.A., Onishchukov, G., Christodoulides, D.N., Peschel, U.: Parity-time synthetic photonic lattices. Nature 488, 167–171 (2012)

    Google Scholar 

  19. Li, X., Chen, Y., Yan, Z.: Fundamental solitons and dynamical analysis in the defocusing Kerr medium and \(\cal{PT} \)-symmetric rational potential. Nonlinear Dyn. 91, 853–861 (2018)

    MathSciNet  Google Scholar 

  20. Zhang, J.R., Zhang, J.Q., Zheng, Z.L., Lin, D., Shen, Y.J.: Dynamic behavior and stability analysis of nonlinear modes in the fourth-order generalized Ginzburg-Landau model with near \(\cal{PT} \)-symmetric potentials. Nonlinear Dyn. (2022). https://doi.org/10.1007/s11071-022-07441-3

    Article  Google Scholar 

  21. Davidson, R.C.: Methods in Nonlinear Plasma Theory. Academic Press, New York (1972)

    Google Scholar 

  22. Schindler, J., Lin, Z., Lee, J.M., Ramezani, H., Ellis, F.M., Kotto, T.: \(\cal{PT} \)-symmetric electronics. J. Phys. A: Math. Theor. 45, 444029 (2012)

    MATH  Google Scholar 

  23. Cartarius, H., Wunner, G.: Model of a \(\cal{PT} \)-symmetric Bose–Einstein condensate in a \(\delta \)-function double-well potential. Phys. Rev. A 86, 013612–5 (2012)

    Google Scholar 

  24. Graefe, E.-M.: Stationary states of a \(\cal{PT} \)-symmetric two-mode Bose–Einstein condensate. J. Phys. A: Math. Theor. 45, 444015 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Dast, D., Haag, D., Cartarius, H., Main, J., Wunner, G.: Eigenvalue structure of a Bose–Einstein condensate in a-symmetric double well. J. Phys. A: Math. Theor. 46, 375301 (2013)

    MathSciNet  MATH  Google Scholar 

  26. Musslimani, Z.H., Makris, K.G., El-Ganainy, R., Christodoulides, D.N.: Optical solitons in periodic potentials. Phys. Rev. Lett. 100, 030402–4 (2008)

    Google Scholar 

  27. Berry, M.V.: Optical lattices with \(\cal{PT} \)-symmetry are not transparent. J. Phys. A 41, 244007 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Kivshar, Y.S., Agrawal, G.P.: Optical Solitons: From Fibers to Photonic Crystals. Academic, San Diego (2003)

    Google Scholar 

  29. Chen, Y.: One-dimensional optical solitons in cubic-quintic-septimal media with \(\cal{PT} \)-symmetric potentials. Nonlinear Dyn. 87, 1629–1635 (2017)

    Google Scholar 

  30. Midya, B., Roychoudhury, R.: Nonlinear localized modes in \(\cal{PT} \)-symmetric Rosen–Morse potential wells. Phys. Rev. A 87, 045803–5 (2013)

    Google Scholar 

  31. Zhong, W.P., Belic, M.R., Huang, T.: Two-dimensional accessible solitons in \(\cal{PT} \)-symmetric potentials. Nonlinear Dyn. 70, 2027–2034 (2012)

    MathSciNet  Google Scholar 

  32. Musslimani, Z.H., Makris, K.G., El-Ganainy, R., Christodoulides, D.N.: Analytical solutions to a class of nonlinear Schrödinger equations with-like potentials. J. Phys. A 41, 244019 (2008)

    MathSciNet  MATH  Google Scholar 

  33. Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Musslimani, Z.H.: \(\cal{PT} \)-symmetric periodic optical potentials. Int. J. Theo. Phys. 50, 1019–1041 (2011)

    MathSciNet  MATH  Google Scholar 

  34. Abdullaev, FKh., Konotop, V.V., Salerno, M., Yulin, A.V.: Dissipative periodic waves, solitons, and breathers of the nonlinear Schrödinger equation with complex potentials. Phys. Rev. E 82, 056606–6 (2010)

    Google Scholar 

  35. Khare, A., Al-Marzoug, S.M., Bahlouli, H.: Solitons in \(\cal{PT} \)-symmetric potential with competing nonlinearity. Phys. Lett. A 376, 2880–2886 (2012)

    MathSciNet  Google Scholar 

  36. Achilleos, V., Kevrekidis, P.G., Frantzeskakis, D.J., Carretero-González, R.: Dark solitons and vortices in \(\cal{PT} \)-symmetric nonlinear media: from spontaneous symmetry breaking to nonlinear \(\cal{PT} \) phase transitions. Phys. Rev. A 86, 013808 (2012)

    Google Scholar 

  37. Khare, A., Saxena, A.: Linear superposition for a class of nonlinear equations. Phys. Lett. A 377, 2761–2765 (2013)

    MathSciNet  MATH  Google Scholar 

  38. Mayteevarunyoo, T., Malomed, B.A., Reoksabutr, A.: Solvable model for solitons pinned to a parity-time-symmetric dipole. Phys. Rev. E 88, 022919–11 (2013)

    Google Scholar 

  39. Midya, B., Roychoudhury, R.: Nonlinear localized modes in \(\cal{PT} \)-symmetric optical media with competing gain and loss. Ann. Phys. 341, 12–20 (2014)

    MATH  Google Scholar 

  40. Konotop, V.V., Zezyulin, D.A.: Families of stationary modes in complex potentials. Opt. Lett. 39, 5535–5538 (2014)

    Google Scholar 

  41. Sarma, A.K., Miri, M.A., Musslimani, Z.H., Christodoulides, D.N.: Continuous and discrete Schrödinger systems with parity-time-symmetric nonlinearities. Phys. Rev. A 89, 052918–7 (2014)

    Google Scholar 

  42. Dai, C.Q., Wang, Y.Y.: Nonautonomous solitons in parity-time symmetric potentials. Opt. Commun. 315, 303–309 (2014)

    Google Scholar 

  43. Yan, Z., Wen, Z., Hang, C.: Spatial solitons and stability in self-focusing and defocusing Kerr nonlinear media with generalized parity-time-symmetric Scarff-II potentials. Phys. Rev. E 92, 022913–10 (2015)

    MathSciNet  Google Scholar 

  44. Nath, D., Roy, B., Roychoudhury, R.: \(\cal{PT} \)-symmetric nonlinear optical lattice: analytical solutions. Chaos, Solitons & Fractals 81, 91–97 (2015)

    MathSciNet  MATH  Google Scholar 

  45. Das, A., Ghosh, N., Nath, D.: Stable modes of derivative nonlinear Schrödinger equation with super-Gaussian and parabolic potential. Phys. Lett. A 384, 126681 (2020)

    MathSciNet  MATH  Google Scholar 

  46. Nath, D., Roy, P.: Exact localized solutions of \((1+1)\)-dimensional nonlinear Schrödinger equation with complex \(\cal{PT} \)-symmetric potentials and power-law nonlinearity. J. Nonlinear Optic. Phys. Mat. 25, 1650036 (2016)

    Google Scholar 

  47. Nath, D., Roy, P.: Nonlinear Schrödinger equation with complex supersymmetric potentials. Phys. of Part. Nucl. Lett. 14, 347–356 (2017)

    Google Scholar 

  48. Midya, B.: Analytical stable Gaussian soliton supported by a parity-time symmetric potential with power-law nonlinearity. Nonlinear Dyn. 79, 409–415 (2015)

    MathSciNet  Google Scholar 

  49. Dai, C.Q., Wang, Y.Y.: Coupled spatial periodic waves and solitons in the photovoltaic photorefractive crystals. Nonlinear Dyn. 102, 1733–1741 (2020)

    Google Scholar 

  50. Wen, X.K., Wu, G.Z., Liu, W., Dai, C.Q.: Dynamics of diverse data-driven solitons for the three component coupled nonlinear Schrödinger model by the MPS-PINN method. Nonlinear Dyn. (2022). https://doi.org/10.1007/s11071-022-07583-4

    Article  Google Scholar 

  51. Fang, Y., Wu, G.Z., Wen, X.K., Wang, Y.Y., Dai, C.Q.: Predicting certain vector optical solitons via the conservation-law deep-learning method. Opt. Laser Technol. 155, 108428 (2022)

    Google Scholar 

  52. Wang, R.R., Wang, Y.Y., Dai, C.Q.: Influence of higher-order nonlinear effects on optical solitons of the complex Swift–Hohenberg model in the mode-locked fiber laser. Opt. Laser Technol. 152, 108103 (2022)

    Google Scholar 

  53. Chen, Y.X.: Combined optical soliton solutions of a \((1+1)\)-dimensional time fractional resonant cubic-quintic nonlinear Schrödinger equation in weakly nonlocal nonlinear media. Optik 203, 163898 (2020)

    Google Scholar 

  54. Cooper, F., Khare, A., Sukhatme, U.: Supersymmetry and quantum mechanics. Phys. Rep. 251, 267–385 (1995)

    MathSciNet  MATH  Google Scholar 

  55. Cannata, F., Junker, G., Trost, J.: Schr\(\ddot{o}\)dinger operators with complex potential but real spectrum. Phys. Lett. A 246, 219–266 (1998)

    MathSciNet  MATH  Google Scholar 

  56. Sinha, A., Roychoudhury, R.: Isospectral partners of a complex \(\cal{PT}\)-invariant potential. Phys. Lett. A 301, 163–172 (2002)

    MathSciNet  MATH  Google Scholar 

  57. Fernández, C.D.J., Salinas-Hernández, E.: The confluent algorithm in second-order supersymmetric quantum mechanics. J. Phys. A: Math. Gener. 36, 2537 (2003)

    MathSciNet  MATH  Google Scholar 

  58. Miri, M.-A., Heinrich, M., El-Ganainy, R., Christodoulides, D.N.: Supersymmetric optical structures. Phys. Rev. Lett. 110, 233902 (2013)

    Google Scholar 

  59. Cooper, F., Khare, A., Sukhatme, U.: Supersymmetry in Quantum Mechanics. Pub. Co., Pte. Ltd., World Scientific (2001)

  60. Kivshar, Y.S., Luther-Davies, B.: Dark optical solitons: physics and applications. Phys. Rep. 298, 81–197 (1998)

    Google Scholar 

  61. Heidemann, R., Zhdanov, S., Stterlin, R., Thomas, H.M., Morfill, G.E.: Dissipative dark soliton in a complex plasma. Phys. Rev. Lett. 102, 135002–4 (2009)

    Google Scholar 

  62. Xu, T., Tian, B., Li, L.L., Lv, X., Zhang, C.: Dynamics of Alfvén solitons in inhomogeneous plasmas. Phys. Plasmas 15, 102307–6 (2008)

    Google Scholar 

  63. Tsurumi, T., Wadati, M.: Soliton propagation in a Bose–Einstein condensate. J. Phys. Soc. Jpn. 97, 2294–2299 (1998)

  64. Wadati, M., Tsuchida, N.: Wave propagations in the \(F=1\) spinor Bose–Einstein condensates. J. Phys. Soc. Jpn. 75, 014301 (2006)

    Google Scholar 

  65. Mandelik, D., Morandotti, R., Aitchison, J.S., Silberberg, Y.: Gap solitons in waveguide arrays. Phys. Rev. Lett. 92, 093904–4 (2004)

    Google Scholar 

  66. Chen, Y., Yan, Z.: Solitonic dynamics and excitations of the nonlinear Schrödinger equation with third-order dispersion in non-Hermitian \(\cal{PT} \)-symmetric potentials. Sci. Rep. 6, 23478 (2016)

    Google Scholar 

  67. Li, X., Wang, L., Zhou, Z., Chen, Y., Yan, Z.: Stable dynamics and excitations of single- and double-hump solitons in the Kerr nonlinear media with \(\cal{PT} \)-symmetric HHG potentials. Nonlinear Dyn. 108, 4045–4056 (2022)

    Google Scholar 

  68. Yan, Z., Chen, Y.: The nonlinear Schrödinger equation with generalized nonlinearities and \(\cal{PT} \)-symmetric potentials: Stable solitons, interactions, and excitations. Chaos 27, 073114 (2017)

    MathSciNet  MATH  Google Scholar 

  69. Yan, Z., Wen, Z., Konotop, V.V.: Solitons in a nonlinear Schrödinger equation with \(\cal{PT} \)-symmetric potentials and inhomogeneous nonlinearity: Stability and excitation of nonlinear modes. Phys. Rev. A 92, 023821–8 (2015)

    Google Scholar 

  70. Chen, Y., Yan, Z.: Stable parity-time-symmetric nonlinear modes and excitations in a derivative nonlinear Schrödinger equation. Phys. Rev. E 95, 012205–11 (2017)

    MathSciNet  Google Scholar 

  71. Chen, Y., Yan, Z.: Multi-dimensional stable fundamental solitons and excitations in \(\cal{PT} \)-symmetric harmonic-Gaussian potentials with unbounded gain-and-loss distributions. Commun Nonlinear Sci Numer Simulat 57, 34–46 (2018)

    MathSciNet  MATH  Google Scholar 

  72. Chen, Y., Yan, Z., Mihalache, D., Malomed, B.A.: Families of stable solitons and excitations in the \(\cal{PT} \)-symmetric nonlinear Schrödinger equations with position-dependent effective masses. Sci. Rep. 7, 1257 (2017)

    Google Scholar 

  73. Zhou, H., Chen, Y., Tang, X., Li, Y.: Complex excitations for the derivative nonlinear Schrödinger equation. Nonlinear Dyn. (2022). https://doi.org/10.1007/s11071-022-07521-4

    Article  Google Scholar 

  74. Wen, X., Feng, R., Lin, J., Liu, W., Chen, F., Yang, Q.: Distorted light bullet in a tapered graded-index waveguide with \(\cal{PT} \)-symmetric potentials. Optik 248, 168092 (2021)

    Google Scholar 

  75. Nixon, S., Ge, L., Yang, J.: Stability analysis for solitons in \(\cal{PT} \)-symmetric optical lattices. Phys. Rev. A. 85, 023822–10 (2012)

    Google Scholar 

  76. Shi, Z., Jiang, X., Zhu, X., Li, H.: Bright spatial solitons in defocusing Kerr media with \(\cal{PT} \)-symmetric potentials. Phys. Rev. A 84, 053855–4 (2011)

    Google Scholar 

  77. Yang, J.: Nonlinear Waves in Integrable and Nonintegrable Systems. SIAM, Philadelphia (2010)

    MATH  Google Scholar 

  78. Zezyulin, D.A., Kartashov, Y.V., Konotop, V.V.: Stability of solitons in \(\cal{PT} \)-symmetric nonlinear potentials. Euro. Phys. Lett. 96, 64003 (2011)

    Google Scholar 

  79. Nath, D., Roy, B., Roychoudhury, R.: Periodic waves and their stability in competing cubic-quintic nonlinearity. Opt. Commun. 393, 224–231 (2017)

  80. Nath, D., Saha, N., Roy, B.: Stability of \((1+ 1)\)-dimensional coupled nonlinear Schrödinger equation with elliptic potentials. Eur. Phys. J. Plus 133, 504 (2018)

    Google Scholar 

  81. Vakhitov, M., Kolokolov, A.: Stationary solutions of the wave equation in the medium with nonlinearity saturation. Radiophys. Quantum Electron. 16, 783–789 (1973)

    Google Scholar 

  82. Bao, W., Tang, Q., Xu, Z.: Numerical methods and comparison for computing dark and bright solitons in the nonlinear Schrödinger equation. J. Comput. Phys. 235, 423–445 (2013)

  83. Nath, D., Gao, Y., Mareeswaran, R.B., Kanna, T., Roy, B.: Bright-dark and dark-dark solitons in coupled nonlinear Schrödinger equation with \(\cal{PT} \)-symmetric potentials. Chaos 27, 123102–10 (2017)

Download references

Acknowledgements

DN dedicates this article to the memory of his kind brother, late Raj Kumar Nath. AD gratefully acknowledges financial support from SERB-DST, Govt. of India (EEQ/2017/000150), and DST PURSE-II University of Kalyani.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debraj Nath.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This study was funded by Science and Engineering Research Board (EEQ/2017/000150).

Data availability

All data generated or analyzed during this study are included in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, N., Das, A. & Nath, D. Stability analysis of multiple solutions of nonlinear Schrödinger equation with \(\mathbf {\mathcal{PT}\mathcal{}}\)-symmetric potential. Nonlinear Dyn 111, 1589–1605 (2023). https://doi.org/10.1007/s11071-022-07900-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07900-x

Keywords

Navigation