Skip to main content
Log in

Dynamic behavior and stability analysis of nonlinear modes in the fourth-order generalized Ginzburg–Landau model with near \(\mathcal{PT}\)-symmetric potentials

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We investigate the fourth-order generalized Ginzburg–Landau equation and the nonlinear modes modulated by \(\mathcal{PT}\)-symmetric potentials. By means of Hirota method, we obtained the bilinear form of the equation and further derived the analytic soliton solution. Dynamic behaviors of the solitons under the modulation of near \(\mathcal{PT}\)-symmetric potentials were studied by numerical simulation: The nonlinear modes tend to be unstable when the potential is closer to conventional \(\mathcal{PT}\)-symmetric potential, and the amplitude of the nonlinear modes oscillates periodically when the imaginary part of the \(\mathcal{PT}\)-symmetric potentials is sufficiently large. Moreover, we obtained new nonlinear modes that are different from the above analytic soliton solutions by numerical excitation and tested their stability. These new findings of nonlinear modes in the generalized Ginzburg–Landau model can be potentially applied to hydrodynamics, optics and matter waves in Bose–Einstein condensates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The authors declare that the manuscript has no associated data.

References

  1. Ablowitz, M.J., Segur, H.: Solitons and the Inverse Scattering Transform. SIAM, Philadelphia (1981)

    MATH  Google Scholar 

  2. Ablowitz, M.J., Clarkson, P.A.: Solitons. Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    MATH  Google Scholar 

  3. Musslimani, Z., Makris, K.G., El-Ganainy, R., Christodoulides, D.N.: Optical solitons in \(\cal{PT}\) periodic potentials. Phys. Rev. Lett. 100, 030402 (2008)

    Google Scholar 

  4. Konotop, V.V., Yang, J., Zezyulin, D.A.: Nonlinear waves in \(\cal{PT}\)-symmetric systems. Rev. Mod. Phys. 88, 035002 (2016)

    Google Scholar 

  5. Kartashov, Y.V., Astrakharchik, G.E., Malomed, B.A., Torner, L.: Frontiers in multidimensional self-trapping of nonlinear fields and matter. Nature Rev. Phys. 1, 185–197 (2019)

    Google Scholar 

  6. Mihalache, D.: Localized structures in optical and matter-wave media: a selection of recent studies. Rom. Rep. Phys. 73, 403 (2021)

    Google Scholar 

  7. Nozaki, K., Bekki, N.: Pattern Selection and Spatiotemporal Transition to Chaos in the Ginzburg-Landau Equation. Phys. Rev. Lett. 12, 2154 (1983)

    Google Scholar 

  8. Haken, H.: Generalized Ginzburg-Landau equations for phase transitionlike phenomena in lasers, nonlinear optics, hydrodynamics and chemical reactions. Z. Phys. B 21, 105 (1975)

    Google Scholar 

  9. Aranson, I.S., Kramer, L.: The world of the complex Ginzburg-Landau equation. Rev. Mod. Phys. 74, 99–143 (2002)

    MathSciNet  MATH  Google Scholar 

  10. Chen Y., Yan Z., Liu W.: Impact of near-\(\cal{PT}\) symmetry on exciting solitons and interactions based on a complex Ginzburg-Landau model. Opt. Express, 2625 (2018)

  11. Ipsen, M., Kramer, L., Sørensen, P.G.: Amplitude equations for description of chemical reaction-diffusion systems. Phys. Rep. 337, 193–235 (2000)

    MATH  Google Scholar 

  12. van Hecke, M.: Coherent and incoherent structures in systems described by the 1D CGLE: experiments and identification. Phys. D 174, 134–151 (2003)

    MathSciNet  MATH  Google Scholar 

  13. Akhmediev, N., Ankiewicz, A., Soto-Crespo, J.: Multisoliton solutions of the complex Ginzburg-Landau equation. Phys. Rev. Lett. 79, 4047 (1997)

    MathSciNet  MATH  Google Scholar 

  14. Akhmediev, N., Soto-Crespo, J.M.: Exploding solitons and Shil’nikov’s theorem. Phys. Lett. A 317, 287–292 (2003)

    MathSciNet  MATH  Google Scholar 

  15. Skarka, V., Aleksic, N., Leblond, H., Malomed, B., Mihalache, D.: Varieties of stable vortical solitons in Ginzburg-Landau media with radially inhomogeneous losses. Phys. Rev. Lett. 105, 213901 (2010)

    Google Scholar 

  16. He, Y., Mihalache, D.: Lattice solitons in optical media described by the complex Ginzburg-Landau model with \(\cal{PT}\)-symmetric periodic potentials. Phys. Rev. A 87, 013812 (2013)

    Google Scholar 

  17. Soto-Crespo, J.M., Akhmediev, N., Chiang, K.S.: Simultaneous existence of a multiplicity of stable and unstable solitons in dissipative systems. Phys. Lett. A 291, 115–123 (2001)

    MATH  Google Scholar 

  18. Zhang, H.Q., Tian, B., Meng, X.H., Lü, X., Liu, W.J.: Conservation laws, soliton solutions and modulational instability for the higher-order dispersive nonlinear Schrödinger equation. Eur. Phys. J. B 72, 233–239 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Akhmediev, N., Soto-Crespo, J.M., Town, G.: Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: Complex Ginzburg-Landau equation approach. Phys. Rev. E 63, 056602 (2001)

    Google Scholar 

  20. Zong, F.D., Dai, C.Q., Yang, Q., Zhang, J.F.: Soliton solutions for variable coefficient nonlinear Schrödinger equation for optical fiber and their application. Acta Phys. Sin. 55, 3805 (2006)

    MATH  Google Scholar 

  21. Liu, W.J., Tian, B., Jiang, Y., Sun, K., Wang, P., Li, M., Qu, Q.X.: Soliton solutions and Bäcklund transformation for the complex Ginzburg-Landau equation. Appl. Math. Comput. 2017, 4369–4376 (2011)

    MATH  Google Scholar 

  22. Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian Hamiltonians having \(\cal{PT}\) symmetry. Phys. Rev. Lett. 80, 5243 (1998)

    Article  MathSciNet  Google Scholar 

  23. Bender, C.M., Brody, D.C., Jones, H.F.: Must a Hamiltonian be Hermitian? Am. J. Phys 71, 1095–1102 (2003)

    MathSciNet  MATH  Google Scholar 

  24. Bender, C.M.: Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947–1018 (2007)

    MathSciNet  Google Scholar 

  25. Guo, A., Salamo, G., Duchesne, D., Morandotti, R., Volatier-Ravat, M., Aimez, V., Siviloglou, G., Christodoulides, D.: Observation of \(\cal{PT}\)-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009)

    Google Scholar 

  26. Rüter, C.E., Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Segev, M., Kip, D.: Observation of parity-time symmetry in optics. Nat. Phys. 6, 192–195 (2010)

    Google Scholar 

  27. Regensburger, A., Bersch, C., Miri, M.A., Onishchukov, G., Christodoulides, D.N., Peschel, U.: Parity-time synthetic photonic lattices. Nature 488, 167–171 (2012)

    Google Scholar 

  28. Castaldi, G., Savoia, S., Galdi, V., Alù, A., Engheta, N.: \(\cal{PT}\) metamaterials via complex-coordinate transformation optics. Phys. Rev. Lett. 110, 173901 (2013)

    Google Scholar 

  29. Regensburger, A., Miri, M.A., Bersch, C., Näger, J., Onishchukov, G., Christodoulides, D.N., Peschel, U.: Observation of defect states in \(\cal{PT}\)-symmetric optical lattices. Phys. Rev. Lett. 110, 223902 (2013)

    Google Scholar 

  30. Peng, B., Özdemir, S.K., Lei, F., Monifi, F., Gianfreda, M., Long, G.L., Fan, S., Nori, F., Bender, C.M., Yang, L.: Parity-time-symmetric whispering-gallery microcavities. Nat. Phys. 10, 394–398 (2014)

    Google Scholar 

  31. Zyablovsky, A.A., Vinogradov, A.P., Pukhov, A.A., Dorofeenko, A.V., Lisyansky, A.A.: \(\cal{PT}\)-symmetry in optics. Phys. Usp. 57, 1063 (2014)

    Google Scholar 

  32. Chen, P.Y., Jung, J.: \(\cal{PT}\) Symmetry and Singularity-Enhanced Sensing Based on Photoexcited Graphene Metasurfaces. Phys. Rev. Appl 5, 064018 (2016)

    Google Scholar 

  33. Takata, K., Notomi, M.: \(\cal{PT}\)-Symmetric Coupled-Resonator Waveguide Based on Buried Heterostructure Nanocavities. Phys. Rev. Appl 7, 054023 (2017)

    Google Scholar 

  34. Lumer, Y., Plotnik, Y., Rechtsman, M.C., Segev, M.: Nonlinearly induced \(\cal{PT}\) transition in photonic systems. Phys. Rev. Lett. 111, 263901 (2013)

    Google Scholar 

  35. Chen, H., Hu, S.: The asymmetric solitons in two-dimensional parity-time symmetric potentials. Phys. Lett. A 380, 162 (2016)

    MathSciNet  Google Scholar 

  36. Kominis, Y.: Soliton dynamics in symmetric and non-symmetric complex potentials. Opt. Commun. 334, 265–272 (2015)

    Google Scholar 

  37. Kominis, Y.: Dynamic power balance for nonlinear waves in unbalanced gain and loss landscapes. Phys. Rev. A 92, 063849 (2015)

    Google Scholar 

  38. Tsoy, E.N., Allayarov, I.M., Abdullaev, F.K.: Stable localized modes in asymmetric waveguides with gain and loss. Opt. Lett. 39, 4215–4218 (2014)

    Google Scholar 

  39. Yan, Z., Chen, Y., Wen, Z.: On stable solitons and interactions of the generalized Gross-Pitaevskii equation with \(\cal{PT}\)-and non-\({mathcal PT}\)-symmetric potentials. Chaos 26, 083109 (2016)

    MathSciNet  MATH  Google Scholar 

  40. Konotop, V.V., Zezyulin, D.A.: Families of stationary modes in complex potentials. Opt. Lett. 39, 5535–5538 (2014)

    Google Scholar 

  41. Nixon, S.D., Yang, J.: Bifurcation of soliton families from linear modes in non-\(\cal{PT}\)-symmetric complex potentials. Stud. Appl. Math. 136, 459–483 (2016)

    MathSciNet  MATH  Google Scholar 

  42. Yang, J., Nixon, S.: Stability of soliton families in nonlinear schrödinger equations with non-parity-time-symmetric complex potentials. Phys. Lett. A 380, 3803–3809 (2016)

    MathSciNet  MATH  Google Scholar 

  43. Kominis, Y., Cuevas-Maraver, J., Kevrekidis, P.G., Frantzeskakis, D.J., Bountis, A.: Continuous families of solitary waves in non-symmetric complex potentials: a Melnikov theory approach. Chaos Solitons Fractals 118, 222–233 (2019)

    MathSciNet  MATH  Google Scholar 

  44. Midya, B., Roychoudhury, R.: Nonlinear localized modes in \(\cal{PT}\)-symmetric Rosen-Morse potential wells. Phys. Lett. A 87, 045803 (2013)

    Google Scholar 

  45. Hari, K., Manikandan, K., Sankaranarayanan, R.: Dissipative optical solitons in asymmetric Rosen-Morse potential. Phys. Lett. A 384, 126104 (2020)

    MathSciNet  MATH  Google Scholar 

  46. Hirota, R.: The Direct Method in Soliton Theory. Springer, Berlin (1980)

    Google Scholar 

  47. Yang, J.: Nonlinear Waves in Integrable and Nonintegrable Systems. SIAM, Philadelphia (2010)

    MATH  Google Scholar 

  48. Chen, Y., Yan, Z., Mihalache, D.: Stable flat-top solitons and peakons in the \(\cal{PT}\)-symmetric \(\delta \)-signum potentials and nonlinear media. Chaos 29, 083108 (2019)

    MathSciNet  MATH  Google Scholar 

  49. Cartarius, H., Wunner, G.: Model of a \(\cal{PT}\)-symmetric Bose-Einstein condensate in a \(\delta \)-function double-well potential. Phys. Rev. A 86, 013612 (2012)

    Google Scholar 

  50. Shen, Y.J., Wen, Z.C., Yan, Z.Y., Hang, C.: Effect of symmetry on nonlinear waves for three-wave interaction models in the quadratic nonlinear media. Chaos 28, 043104 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to the editor, referees and all the members of our discussion group for their valuable comments. This work was supported by the National Training Program of Innovation (Grant numbers 202210019045). The funding body plays an important role in the design of the study, in analysis, calculation, and in writing of the manuscript.

Funding

This work was supported by the National Training Program of Innovation (Grant numbers 202210019045). The funding body plays an important role in the design of the study, in analysis, calculation, and in writing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Jia Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, JR., Zhang, JQ., Zheng, ZL. et al. Dynamic behavior and stability analysis of nonlinear modes in the fourth-order generalized Ginzburg–Landau model with near \(\mathcal{PT}\)-symmetric potentials. Nonlinear Dyn 109, 1005–1017 (2022). https://doi.org/10.1007/s11071-022-07441-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07441-3

Keywords

Mathematics Subject Classification

Navigation