Skip to main content
Log in

Design of active network filters as hysteretic sensors

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This work aims to propose and design a class of networks of coupled linear and nonlinear oscillators, in which short bursts of exogenous excitation result in sustained endogenous network activity that returns to a quiescent state only after a characteristic time and along a different path than when originally excited. The desired hysteretic behavior is obtained through the coupling of self-excited oscillations with purposely designed rate laws for slowly varying nodal parameters, governed only by local interactions in the network. The proposed architecture and the sought dynamics take inspiration from complex biological systems that combine endogenous energy sources with a paradigm for distributed sensing and information processing. In this paper, the network design problem considers arbitrary topologies and investigates the dependence of the desired response on model parameters, as well as on the placement of a single nonlinear node in an otherwise linear network. Perturbation analysis in various asymptotic parameter limits is used to define the proposed internal dynamics. Parameter continuation techniques validate the asymptotic results numerically and demonstrate their robustness over finite ranges of parameter values. Both approaches suggest a nontrivial dependence of the optimal distribution of nonlinearity on the network topology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Carroll, R.E., Little, J.A., Mann, B.P., Arnold, D.P.: Demonstration of tunable energy propagation using magneto-mechanical oscillator arrays. In: 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), pp. 873–876 (2017)

  2. Chen, J.Y., Pandurangan, G.: Almost-optimal gossip-based aggregate computation. SIAM J. Comput. 41(3), 455–483 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Crall, J.D., Gravish, N., Mountcastle, A.M., Kocher, S.D., Oppenheimer, R.L., Pierce, N.E., Combes, S.A.: Spatial fidelity of workers predicts collective response to disturbance in a social insect. Nat. Commun. 9(1), 1–13 (2018)

    Google Scholar 

  4. Dankowicz, H., Schilder, F.: Recipes for Continuation. Society for Industrial and Applied Mathematics, Philadelphia (2013)

    Book  MATH  Google Scholar 

  5. Defontaines, A.D., Pomeau, Y., Rostand, B.: Chain of coupled bistable oscillators: a model. Physica D 46(2), 201–216 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dombovari, Z., Munoa, J., Kuske, R., Stepan, G.: Milling stability for slowly varying parameters. Proc. CIRP 77, 110–113 (2018)

    Article  Google Scholar 

  7. Duarte, A., Weissing, F.J., Pen, I., Keller, L.: An evolutionary perspective on self-organized division of labor in social insects. Annu. Rev. Ecol. Evol. Syst. 42, 91–110 (2011)

    Article  Google Scholar 

  8. Engler, H., Kaper, H.G., Kaper, T.J., Vo, T.: Dynamical systems analysis of the Maasch–Saltzman model for glacial cycles. Physica D 359, 1–20 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gallage, R.S.: Approximation of continuously distributed delay differential equations. Master’s thesis, Southern Illinois University at Carbondale (2017)

  10. Huang, K., Hossein-Zadeh, M.: Detection and sensing using coupled oscillatory systems at the synchronization edge. IEEE Sens. J. 20(21), 12992–12998 (2020)

    Article  Google Scholar 

  11. Johnson, B.R., Scott, S.K., Thompson, B.W.: Modelling complex transient oscillations for the BZ reaction in a batch reactor. Chaos Interdiscip. J. Nonlinear Sci. 7(2), 350–358 (1997)

    Article  MATH  Google Scholar 

  12. Kasai, Y., Yabuno, H., Yamamoto, Y., Matsumoto, S.: Ultra-sensitive minute mass sensing using a microcantilever virtually coupled with a virtual cantilever. Sensors 20(7), 1823 (2020)

    Article  Google Scholar 

  13. Khasawneh, F.A., Mann, B.P.: Stability of delay integro-differential equations using a spectral element method. Math. Comput. Model. 54(9–10), 2493–2503 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lulec, S.Z., Adiyan, U., Yaralioglu, G.G., Leblebici, Y., Urey, H.: MEMS cantilever sensor array oscillators: theory and experiments. Sens. Actuat. A 237, 147–154 (2016)

    Article  Google Scholar 

  15. Manav, M., Phani, A.S., Cretu, E.: Mode localization and sensitivity in weakly coupled resonators. IEEE Sens. J. 19(8), 2999–3007 (2019)

    Article  Google Scholar 

  16. Mao, Y., Dankowicz, H.: Topology-dependent excitation response of networks of linear and nonlinear oscillators. J. Comput. Nonlinear Dyn. 16(4), 041001 (2021)

    Article  Google Scholar 

  17. Marquez, S., Alvarez, M., Plaza, J.A., Villanueva, L.G., Dominguez, C., Lechuga, L.M.: Asymmetrically coupled resonators for mass sensing. Appl. Phys. Lett. 111(11), 113101 (2017)

    Article  Google Scholar 

  18. Masuda, A., Inoue, M., Fujiwara, Y.: Self-powered oscillation of piezoelectric ultrasonic active sensors. In: Sensors and Smart Structures Technologies for Civil. Mechanical, and Aerospace Systems 2020, vol. 11379, pp. 136–145. International Society for Optics and Photonics, SPIE (2020)

  19. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1995)

    Book  MATH  Google Scholar 

  20. Pyles, C.S., Bajaj, N., Rhoads, J.F., Weinstein, D., Quinn, D.D.: Threshold color sensing using coupled oscillator networks. In: 2019 IEEE Sensors, pp. 1–4 (2019)

  21. Roongthumskul, Y., Fredrickson-Hemsing, L., Kao, A., Bozovic, D.: Multiple-timescale dynamics underlying spontaneous oscillations of saccular hair bundles. Biophys. J . 101(3), 603–610 (2011)

  22. Saghafi, M., Dankowicz, H., Tabor, W.: Emergent task differentiation on network filters. SIAM J. Appl. Dyn. Syst. 16(3), 1686–1709 (2017)

  23. Spletzer, M., Raman, A., Wu, A.Q., Xu, X., Reifenberger, R.: Ultrasensitive mass sensing using mode localization in coupled microcantilevers. Appl. Phys. Lett. 88(25), 254102 (2006)

    Article  Google Scholar 

  24. Storti, D.W., Rand, R.H.: Dynamics of two strongly coupled van der pol oscillators. Int. J. Non-Linear Mech. 17(3), 143–152 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  25. Urasaki, S., Yabuno, H., Yamamoto, Y., Matsumoto, S.: Sensorless self-excited vibrational viscometer with two hopf bifurcations based on a piezoelectric device. Sensors 21(4), 1127 (2021)

    Article  Google Scholar 

  26. Wang, C.Q., Pumir, A., Garnier, N.B., Liu, Z.H.: Explosive synchronization enhances selectivity: example of the cochlea. Front. Phys. 12(5), 1–9 (2017)

    Article  Google Scholar 

  27. Wood, G.S., Zhao, C., Pu, S.H., Boden, S.A., Sari, I., Kraft, M.: Mass sensor utilising the mode-localisation effect in an electrostatically-coupled MEMS resonator pair fabricated using an SOI process. Microelectron. Eng. 159, 169–173 (2016)

    Article  Google Scholar 

  28. Yashin, V.V., Levitan, S.P., Balazs, A.C.: Coupling mechanics to chemical reactions to create “materials that compute” In: Mechanochemistry in Materials, pp. 167–193. The Royal Society of Chemistry (2018)

  29. Zhang, L., Niknejad, A.M.: Design and analysis of a microwave-optical dual modality biomolecular sensing platform. IEEE J. Solid-State Circuits 55(3), 639–649 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. BCS-1246920. Part of the editing of this paper was performed while the second author served at the National Science Foundation. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Mao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Nomenclature

\(\delta \) :

A small offset for damping dynamics

\(\epsilon \) :

Scaling parameter of linear and nonlinear damping in the network model

\(\eta \) :

Nonlinear damping parameter of the nonlinear oscillator in the network model

\(\mu \) :

Damping parameter for linear oscillator at each node when \(\zeta _k=\mu \) for all k

\(\nu \) :

Linear damping parameter of the nonlinear oscillator in the network model

\(\omega _k\) :

Natural frequency of k-th mode in the network model

\(\phi (\epsilon t)\) :

Phase of \(\mathcal {O}(1)\) solution in multiple-scale analysis

\(\tau \) :

A large time scale for damping dynamics

\(\tilde{\zeta }\) :

A damping parameter in bifurcation analysis, \(\tilde{\zeta }=\sum _{k\ne Q}\frac{K_{Q,k}K_{k,Q}}{\epsilon ^2\zeta _k K_{Q,Q}}\)

\(\tilde{C}(x)\) :

Modal damping matrix

\(\tilde{K}\) :

Modal stiffness matrix

\(\zeta \) :

A damping parameter in bifurcation analysis, \(\zeta =\sum _{k\ne Q}P^2_{k,I}\zeta _k\)

\(\zeta _k\) :

Damping parameter for linear oscillator at node k in the network model

\(\zeta _{\text {HB}}\), \(\tilde{\zeta }_{\text {HB}}\), \(\mu _{\text {HB}}\):

Damping parameter at Hopf bifurcation

\(\zeta _{\text {SN}}\), \(\tilde{\zeta }_{\text {SN}}\), \(\mu _{\text {SN}}\):

Damping parameter at saddle-node bifurcation

\(A(\epsilon t)\) :

Amplitude of \(\mathcal {O}(1)\) solution in multiple-scale analysis

\(A_k(t)\) :

Amplitude of node k in the network

C(u):

Damping matrix of the network model

f :

Amplitude vector for exogenous excitation

F(t):

Time-dependent exogenous excitation vector

\(I_N\) :

\(N\times N\) identity matrix

K :

Stiffness matrix of the network model, determined by network topology

L :

The Laplacian matrix of network

P :

An orthogonal matrix whose columns span the eigenspace of the network Laplacian

Q :

The index of the nonlinear oscillator node in the network model

u(t):

Nodal displacement vector in the network model

x :

Modal coordinate vector

Appendix B: Multiple-scales perturbation analysis for the 4-node network with small linear damping

In this appendix, we present a detailed derivation of the slow-flow dynamics in Eqs. (7) and (8) in the limit of \(\epsilon \ll 1\) using the method of multiple scales [19]. For the case of constant \(\zeta _2,\zeta _3,\zeta _4\sim \mathcal {O}(1)\), we seek to arrive at a zeroth-order (in \(\epsilon \)) description of the displacement vector u that mirrors the form of the corresponding linear normal-mode, albeit with slowly varying amplitude and phase. To this end, we assume two time scales \(t_0=t\) and \(t_1=\epsilon t\) and, per Eq. (6), a response of the form

$$\begin{aligned} u&=\frac{A(t_1)}{\sqrt{2}}\begin{pmatrix}1\\ 0\\ 0\\ -1\end{pmatrix}\cos \left( 2t_0+\phi (t_1)\right) +\epsilon v(t_0,t_1) \end{aligned}$$
(61)

and compute derivatives using the relationship

$$\begin{aligned} \frac{d}{dt}=\frac{\partial }{\partial t_0}+\epsilon \frac{\partial }{\partial t_1}. \end{aligned}$$
(62)

Using this notation, we obtain

$$\begin{aligned} \dot{u}_1&=-\sqrt{2}A(t_1)\sin \left( 2t_0+\phi (t_1)\right) \nonumber \\&\qquad +\epsilon \frac{A'(t_1)}{\sqrt{2}}\cos \left( 2t_0+\phi (t_1)\right) \nonumber \\&\qquad -\epsilon \phi '(t_1)\frac{A(t_1)}{\sqrt{2}}\sin \left( 2t_0+\phi (t_1)\right) \nonumber \\&\qquad +\left( \frac{\partial }{\partial t_0}+\epsilon \frac{\partial }{\partial t_1}\right) \epsilon v_1(t_0,t_1) \end{aligned}$$
(63)

and so on. Substitution into the governing equation (1) with \(F=0\) results in the perfect cancellation of all \(\mathcal {O}(1)\) terms. A similar cancellation of all terms of \(\mathcal {O}(\epsilon )\) requires that

$$\begin{aligned} \frac{\partial ^2 v}{\partial t_0^2} + K v = q(t_0,t_1) \end{aligned}$$
(64)

where

$$\begin{aligned} q_1&= \frac{5 A(t_1)^5 }{8 \sqrt{2}}s_1+\frac{15 A(t_1)^5 }{16 \sqrt{2}}s_3 +\frac{5 A(t_1)^5 }{16 \sqrt{2}}s_5\nonumber \\&\qquad -\frac{5 A(t_1)^3 }{2 \sqrt{2}}s_1 -\frac{5 A(t_1)^3 }{2 \sqrt{2}}s_3+2 \sqrt{2} A(t_1) \phi ' c_1\nonumber \\&\qquad -\sqrt{2} A(t_1) s_1+2 \sqrt{2} A'(t_1) s_1 \end{aligned}$$
(65)
$$\begin{aligned} q_2&= q_3=0 \end{aligned}$$
(66)
$$\begin{aligned} q_4&= -\sqrt{2} A(t_1) \zeta _4 s_1-2 \sqrt{2} A(t_1) \phi ' c_1\nonumber \\&\qquad -2 \sqrt{2} A'(t_1) s_1, \end{aligned}$$
(67)

where we use the shorthand \(c_k=\cos \left( 2kt_0+k\phi (t_1)\right) \) and \(s_k=\sin \left( 2kt_0+k\phi (t_1)\right) \). It follows that

$$\begin{aligned} \frac{\partial ^2 w}{\partial t_0^2}&+ 4w = \frac{5}{16} A^5(t_1) s_1+\frac{15}{32} A^5(t_1) s_3+\frac{5}{32} A^5(t_1) s_5\nonumber \\&\qquad -\frac{5}{4} A^3(t_1) s_1-\frac{5}{4} A^3(t_1) s_3+A(t_1) \zeta _4 s_1\nonumber \\&\qquad +4 A(t_1) \phi '(t_1) c_1-A(t_1) s_1+4 A'(t_1) s_1, \end{aligned}$$
(68)

where \(w=(v_1-v_4)/\sqrt{2}\). For a consistent approximation, the secular terms on the right-hand side proportional to \(\cos (2t_0+\phi (t_1))\) and \(\sin (2t_0+\phi (t_1))\), respectively, must cancel, resulting in the conditions

$$\begin{aligned} 4 A(t_1)\phi '(t_1)=0 \end{aligned}$$
(69)

and

$$\begin{aligned} 4 A'(t_1)-(1-\zeta _4)A(t_1)-\frac{5}{4}A^3(t_1)+\frac{5}{16}A^5(t_1)=0 . \end{aligned}$$
(70)

Appendix C: 4-node network with small linear damping and \(Q=2\), 3, and 4, respectively

The existence of a subcritical Hopf bifurcation and an associated branch of limit cycles found in the case of \(Q=1\) carries over also to other configurations of the network with the nonlinear oscillator located at node 2, 3, or 4. Indeed, when the nonlinear oscillator is located at node 4 with \(\zeta _1,\zeta _2,\zeta _3\sim \mathcal {O}(1)\), the network symmetry results in an identical set of results with \(\zeta _4\) replaced by \(\zeta _1\). In contrast, if the nonlinear oscillator is located at node 2 with \(\zeta _1,\zeta _3,\zeta _4\sim \mathcal {O}(1)\), the complex exponential rates in Eq. (6) become

$$\begin{aligned} \begin{aligned} \lambda _{1,2}&=\pm {j}+\frac{1-\zeta _1-\zeta _3-\zeta _4}{8}\epsilon +\mathcal {O}(\epsilon ^2),\\ \lambda _{3,4}&=\pm \sqrt{2}{j}-\frac{\zeta _1+4\zeta _3+\zeta _4}{12}\epsilon +\mathcal {O}(\epsilon ^2),\\ \lambda _{5,6}&=\pm 2{j}-\frac{\zeta _1+\zeta _4}{4}\epsilon +\mathcal {O}(\epsilon ^2),\\ \lambda _{7,8}&=\pm \sqrt{5}{j}+\frac{9-\zeta _1-\zeta _3-\zeta _4}{24}\epsilon +\mathcal {O}(\epsilon ^2). \end{aligned} \end{aligned}$$
(71)

In this case, with \(\zeta :=\zeta _1+\zeta _3+\zeta _4\), \(u=0\) is asymptotically stable for \(\zeta >9\) and unstable for \(\zeta <9\). Substitution of the ansatz

$$\begin{aligned} \begin{aligned}&u_1(t)=\frac{1}{2\sqrt{3}}A(\epsilon t)\cos \left( \sqrt{5}t+\phi (\epsilon t )\right) +\epsilon v_1(t),\\&u_2(t)=-\frac{\sqrt{3}}{2}A(\epsilon t)\cos \left( \sqrt{5}t+\phi (\epsilon t )\right) +\epsilon v_2(t),\\&u_3(t)=\frac{1}{2\sqrt{3}}A(\epsilon t)\cos \left( \sqrt{5}t+\phi (\epsilon t )\right) +\epsilon v_3(t),\\&u_4(t)=\frac{1}{2\sqrt{3}}A(\epsilon t)\cos \left( \sqrt{5}t+\phi (\epsilon t )\right) +\epsilon v_4(t) \end{aligned} \end{aligned}$$
(72)

into the fully nonlinear governing equations then yields the differential equation

$$\begin{aligned} A'=\frac{1}{24}(9-\zeta )A+\frac{45}{64}A^3-\frac{135}{512}A^5 \end{aligned}$$
(73)

governing the slow dynamics of the amplitude A with nonzero equilibria obtained from

$$\begin{aligned} A^2=\frac{4}{3}\pm \frac{4}{9}\sqrt{\frac{81-4\zeta }{5}}, \end{aligned}$$
(74)

i.e., for \(\zeta \in [0,81/4]\) with two co-existing solutions on the interval \(\zeta \in [9,81/4)\). We obtain the equivalent of Eq. (10), for example, by letting

$$\begin{aligned} \zeta _{1,3,4}'=\tau ^{-1}\left( -\zeta _{1,3,4}+\frac{1}{3}\delta +3+\frac{45}{16}A^2\right) , \end{aligned}$$
(75)

since these imply that

$$\begin{aligned} \zeta '=\tau ^{-1}\left( -\zeta +\delta +9+\frac{135}{16}A^2\right) . \end{aligned}$$
(76)

Finally, with the nonlinear oscillator located at node 3 with \(\zeta _1,\zeta _2,\zeta _4\sim \mathcal {O}(1)\), the complex exponential rates in Eq. (6) become

$$\begin{aligned} \begin{aligned} \lambda _{1,2}&=\pm {j}+\frac{1-\zeta _1-\zeta _2-\zeta _4}{8}\epsilon +\mathcal {O}(\epsilon ^2),\\ \lambda _{3,4}&=\pm \sqrt{2}{j}+\frac{4-\zeta _1-\zeta _4}{12}\epsilon +\mathcal {O}(\epsilon ^2),\\ \lambda _{5,6}&=\pm 2{j}-\frac{\zeta _1+\zeta _4}{4}\epsilon +\mathcal {O}(\epsilon ^2),\\ \lambda _{7,8}&=\pm \sqrt{5}{j}+\frac{1-\zeta _1-9\zeta _2-\zeta _4}{24}\epsilon +\mathcal {O}(\epsilon ^2). \end{aligned} \end{aligned}$$
(77)

In this case, with \(\zeta :=\zeta _1+\zeta _4\), \(u=0\) is asymptotically stable for \(\zeta >4\) and unstable for \(\zeta <4\). Substitution of the ansatz

$$\begin{aligned} \begin{aligned}&u_1(t)=\frac{1}{\sqrt{6}}A(\epsilon t)\cos \left( \sqrt{2}t+\phi (\epsilon t )\right) +\epsilon v_1(t),\\&u_2(t)=\epsilon v_2(t),\\&u_3(t)=-\sqrt{\frac{2}{3}}A(\epsilon t)\cos \left( \sqrt{2}t+\phi (\epsilon t )\right) +\epsilon v_3(t),\\&u_4(t)=\frac{1}{\sqrt{6}}A(\epsilon t)\cos \left( \sqrt{2}t+\phi (\epsilon t )\right) +\epsilon v_4(t) \end{aligned} \end{aligned}$$
(78)

into the fully nonlinear governing equations then yields the differential equation

$$\begin{aligned} A'=\frac{1}{12}(4-\zeta )A+\frac{5}{9}A^3-\frac{5}{27}A^5 \end{aligned}$$
(79)

governing the slow dynamics of the amplitude A with nonzero equilibria obtained from

$$\begin{aligned} A^2=\frac{3}{2}\pm \frac{3}{2}\sqrt{\frac{9-\zeta }{5}}, \end{aligned}$$
(80)

i.e., for \(\zeta \in [0,9]\) with two co-existing solutions on the interval \(\zeta \in [4,9)\). We obtain the equivalent to Eq. (10), for example, by letting

$$\begin{aligned} \zeta _{1,4}'=\tau ^{-1}\left( -\zeta _{1,4}+\frac{1}{2}\delta +2+\frac{5}{3}A^2\right) , \end{aligned}$$
(81)

since these imply that

$$\begin{aligned} \zeta '=\tau ^{-1}\left( -\zeta +\delta +4+\frac{10}{3}A^2\right) . \end{aligned}$$
(82)

Appendix D: 4-node network with large linear damping and \(Q=2\), 3, and 4, respectively

When the nonlinear oscillator is located at node 4 with \(\zeta _1,\zeta _2,\zeta _3\sim \mathcal {O}(1/\epsilon ^2)\), the analysis from Sect. 2.2 still applies, albeit with \(\zeta _4\) and \(\tilde{\zeta }_4\) replaced by \(\zeta _1\) and \(\tilde{\zeta }_1\), respectively. If, instead, the nonlinear oscillator is located at node 2 with \(\zeta _1,\zeta _3,\zeta _4\sim \mathcal {O}(1/\epsilon ^2)\), we obtain the complex exponential rates

$$\begin{aligned} \begin{aligned}&\lambda _{1,2,3}\approx -\epsilon \zeta _{1,3,4}+\mathcal {O}(1),\\&\lambda _{4,5,6}\lesssim 0, \\&\lambda _{7,8}=\pm 2{j}+\frac{1}{8}\left( 4-\tilde{\zeta }_1-\tilde{\zeta }_3-\tilde{\zeta }_4\right) \epsilon +\mathcal {O}(\epsilon ^2), \end{aligned} \end{aligned}$$
(83)

where \(\tilde{\zeta }_1:=1/\epsilon ^2\zeta _1\), \(\tilde{\zeta }_3:=1/\epsilon ^2\zeta _3\), and \(\tilde{\zeta }_4:=1/\epsilon ^2\zeta _4\). With \(\tilde{\zeta }:=\tilde{\zeta }_1+\tilde{\zeta }_3+\tilde{\zeta }_4\), it follows that the trivial equilibrium is asymptotically stable for \(\tilde{\zeta }>4\) and unstable for \(\tilde{\zeta }<4\), with \(\tilde{\zeta }=4\) corresponding to a Hopf bifurcation out of which emanates a branch of periodic orbits approximated in the small-amplitude limit by the normal-mode oscillations \(u_2=A\cos (2t+\phi )\), \(u_1(t)=u_3(t)=u_4(t)=0\) for constant amplitude A and phase \(\phi \). A consistent multiple-scale ansatz now yields the amplitude equation

$$\begin{aligned} A'=\frac{1}{8}\left( 4-\tilde{\zeta }\right) A+\frac{5}{4}A^3-\frac{5}{8}A^5 \end{aligned}$$
(84)

with nontrivial equilibria at

$$\begin{aligned} A^2=1\pm \sqrt{\frac{9-\tilde{\zeta }}{5}}, \end{aligned}$$
(85)

i.e., for \(\tilde{\zeta }\in (0,9]\) with two co-existing solutions on the interval \(\tilde{\zeta }\in [4,9)\). We obtain the equivalent of Eq. (10), for example, by letting

$$\begin{aligned} \tilde{\zeta }'_{1,3,4}=\tau ^{-1}\left( -\tilde{\zeta }_{1,3,4}+\frac{1}{3}\delta +\frac{4}{3}+\frac{5}{3}A^2\right) , \end{aligned}$$
(86)

since these imply that

$$\begin{aligned} \tilde{\zeta }'=\tau ^{-1}\left( -\tilde{\zeta } + \delta + 4 + 5 A^2\right) . \end{aligned}$$
(87)

Finally, when the nonlinear oscillator is located at node 3 with \(\zeta _1,\zeta _2,\zeta _4\sim \mathcal {O}(1/\epsilon ^2)\), we obtain the complex exponential rates

$$\begin{aligned} \begin{aligned}&\lambda _{1,2,3}\approx -\epsilon \zeta _{1,2,4}+\mathcal {O}(1),\\&\lambda _{4,5,6}\lesssim 0, \\&\lambda _{7,8}=\pm {j}\sqrt{2}+\frac{1}{4}\left( 2-\tilde{\zeta }_2\right) \epsilon +\mathcal {O}(\epsilon ^2), \end{aligned} \end{aligned}$$
(88)

where \(\tilde{\zeta }_2:=1/\epsilon ^2\zeta _2\). It follows that the trivial equilibrium is asymptotically stable for \(\tilde{\zeta }_2>2\) and unstable for \(\tilde{\zeta }_2<2\), with \(\tilde{\zeta }_2=2\) corresponding to a Hopf bifurcation out of which emanates a branch of periodic orbits approximated in the small-amplitude limit by the normal-mode oscillations \(u_3=A\cos (\sqrt{2}t+\phi )\), \(u_1(t)=u_2(t)=u_4(t)=0\) for constant amplitude A and phase \(\phi \). A consistent multiple-scale ansatz now yields the amplitude equation

$$\begin{aligned} A'=\frac{1}{4}\left( 2-\tilde{\zeta }_2\right) A+\frac{5}{4}A^3-\frac{5}{8}A^5 \end{aligned}$$
(89)

with nontrivial equilibria at

$$\begin{aligned} A^2=1\pm \sqrt{\frac{9-2\tilde{\zeta }_2}{5}}, \end{aligned}$$
(90)

i.e., for \(\tilde{\zeta }_2\in (0,9/2]\) with two co-existing solutions on the interval \(\tilde{\zeta }_2\in [2,9/2)\). We obtain the equivalent of Eq. (10), for example, by letting

$$\begin{aligned} \tilde{\zeta }'_{2}=\tau ^{-1}\left( -\tilde{\zeta }_{2}+\delta +2+\frac{5}{2}A^2\right) . \end{aligned}$$
(91)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, Y., Dankowicz, H. Design of active network filters as hysteretic sensors. Nonlinear Dyn 111, 1763–1789 (2023). https://doi.org/10.1007/s11071-022-07889-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07889-3

Keywords

Navigation