Skip to main content
Log in

Periodic orbit analysis of three dynamical systems for a nonlinear electrical dissipative transmission network

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A dissipative nonlinear transmission network is studied in the regular regime using both analytical approach and numerical technique that allow us to obtain the stable and unstable periodic orbits of this network in a systematic way. Going from a one-dimensional Ginzburg-Landau equation that governs the dynamics of modulated waves in the network system under consideration and assuming variations in both the amplitude and phase of the network voltage signals, we have proposed an amplitude-phase model consisting of a simple three-dimensional continuous quadratic dynamical system that describes, in the situations of weak dissipation, the dynamics of voltage signals (filters) through the network. We investigate, through the use of dynamic analysis tools such as the perturbation theory, the phase portrait, and Hopf bifurcation theory, the rich dynamics of the proposed, which have some interesting characteristics for different network parameters and initial conditions. Explicit analytical results are obtained for the post-bifurcation periodic orbits and their stability, and the conditions under which the constructed 3D dynamical system undergoes supercritical and/or subcritical Hopf bifurcations are presented. Computer simulations and numerical results are carried out to provide numerical verification of the theoretical studies; our numerical analysis confirms the existence of various type of periodic orbits, stable node-foci, unstable saddle-foci, as well as stable limit cycles. Basins of attraction of equilibrium positions for the derived 3D dynamical system are built by means of the Lyapunov’s direct method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Marquié, P., Bilbault, J.M., Remoissenet, M.: Nonlinear Schr ödinger models and modulational instability in real electrical lattices. Physica D 87, 371 (1995)

    Google Scholar 

  2. Marquié, P., Bilbault, J.M., Remoissenet, M.: Generation of envelope and hole solitons in an experimental transmission line. Phys. Rev. E 49, 828–835 (1994)

    Google Scholar 

  3. Liu, W.M., Kengne, E.: Schrödinger Equations in Nonlinear Systems, 1st edn. Springer, Singapore (2019)

    MATH  Google Scholar 

  4. Kengne, E., Liu, W.M.: Transmission of rogue wave signals through a modified Noguchi electrical transmission network. Phys. Rev. E 99, 062222 (2019)

    Google Scholar 

  5. Deffo, G.R., Yamgoue, S.B., Pelap, F.B.: Modulational instability and peak solitary wave in a discrete nonlinear electrical transmission line described by the modified extended nonlinear Schrö dinger equation. Eur. Phys. J. B 91, 242 (2018)

    Google Scholar 

  6. Nikoo, M.S., Hashemi, M.-A Se., Farzaneh, F.: Microwave imaging using noise signals. IEEE Trans. Micro. Theory Tech. Focus. 66, 91 (2018)

  7. Afshari, E., Hajimiri, A.: Nonlinear transmission lines for pulse shaping in silicon. IEEE J Solid-State Circ 40(3), 744 (2005)

    Google Scholar 

  8. Afshari, E., Bhat, H.S., Hajimiri, A., Marsden, J.E.: Extremely wideband signal shaping using one-and two-dimensional nonuniform nonlinear transmission lines. J. Appl. Phys. 99(5), 054901 (2006)

    Google Scholar 

  9. Kengne, E., Liu, W.M.: Exact solutions of the derivative nonlinear Schrödinger equation for a nonlinear transmission line. Phys. Rev. E 73, 026603 (2006)

    MathSciNet  Google Scholar 

  10. Schürmann, H.W., Serov, V.S.: Traveling wave solutions of a generalized modified Kadomtsev-Petviashvili equation. J. Math. Phys. 45, 2181 (2004)

    MathSciNet  MATH  Google Scholar 

  11. Teschl, G.: Ordin. Diff. Equat. dynam. Syst. American Mathematical Society, Providenc (2012)

    Google Scholar 

  12. Ueta, T., Chen, G.: Bifurcation analysis of Chen’s equation. Int. J. Bifurcation Chaos 10, 1917 (2000)

    MathSciNet  MATH  Google Scholar 

  13. Sprott, J.C., Wang, X., Chen, G.: Coexistence of point, periodic and strange attractors. Int. J. Bifurcation and Chaos 23, 135009 (2013)

    MathSciNet  Google Scholar 

  14. Sprott, J.C.: Automatic generation of strange attractors. Comput. Graph. 17, 325 (1993)

    Google Scholar 

  15. Chen, G., Ueta, T.: Yet another chaotic attrac-tor. Int. J. Bifurcation and Chaos 9, 1465 (1999)

    MATH  Google Scholar 

  16. Belhaq, M., Lakrad, F.: Analytics of homoclinic bifurcations in three-dimensional systems. Int. J. Bifurcation and Chaos 12, 2479 (2002)

    MathSciNet  MATH  Google Scholar 

  17. Wiggins, S.: Global Bifurcations and Chaos. Springer-Verlag, NY (1988)

    MATH  Google Scholar 

  18. Fouodji Tsotsop, M., Kengne, J., Kenne, G., Tabekoueng Njitacke, Z.: Coexistence of multiple points, limit cycles, and strange attractors in a simple autonomous hyperjerk circuit with hyperbolic sine function. Complexity 2020, 6182183 (2020)

    Google Scholar 

  19. Sprott, J.C., Wang, X., Chen, G.: Coexistence of point, periodic and strange attractors. Int. J. Bifurcation and Chaos 23, 1350093 (2013)

    MathSciNet  Google Scholar 

  20. Farless, D.L.: The application of periodic orbits to TOPEX mission design, Astrodynamics 1985, Advances in the Astronautical Sciences, Proceedings of the AAS/AIAA Astrodynamics Conference, Part I, Vail, Colorado, pp. 13-36 (1986)

  21. Min, Long: Shui-Sheng, Qiu: Application of periodic orbit theory in chaos-based security analysis. Chinese Phys. 16, 2254 (2007)

    Google Scholar 

  22. Kenta, Kenta: Capture and escape analyses on planar retrograde periodic orbit around the Earth. Adv. Space Res. 68, 3891–3902 (2021)

    Google Scholar 

  23. Kotoulas, T., Voyatzis, G., Moreira Morais, M.H.: Three-dimensional retrograde periodic orbits of asteroids moving in mean motion resonances with Jupiter. Planet. Space Sci. 210, 105374 (2022)

    Google Scholar 

  24. Guckenheimer, J., Meloon, B.: Computing periodic orbits and their bifurcations with automatic differentiation. SIAM J. Scient. Comput. 22(3), 951 (2000)

    MathSciNet  MATH  Google Scholar 

  25. Didov, A.A., Uleysky, MYu., Budyansky, M.V.: Stable and unstable periodic orbits and their bifurcations in the nonlinear dynamical system with a fixed point vortex in a periodic flow. Commun. Nonlinear. Sci. Numer. Simulat. 91, 105426 (2020)

  26. Egorov, O.V., Mauguiere, F., Tyuterev, V.G.: Periodic Orbits and Bifurcations of the Vibrational Modes of the Ozone Molecule at High Energies. Russ. Phys. J. 62, 1917 (2020)

    Google Scholar 

  27. Soulis, P.S., Papadakis, K.E., Bountis, T.: Periodic orbits and bifurcations in the Sitnikov four-body problem. Celest. Mech. Dyn. Astr. 100, 2516 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Contopoulos, G., Harsoula, M., Lukes-Gerakopoulos, G.: Periodic orbits and escapes in dynamical systems. Celest. Mech. Dyn. Astr. 113, 255 (2012)

    MathSciNet  Google Scholar 

  29. Yuri, A.: Kuznetsov. Elements of Applied Bifurcation Theory, Springer, New York, NY (1998)

    Google Scholar 

  30. Pingel, Detlef: Schmelcher, Peter: Theory and applications of the systematic detection of unstable periodic orbits in dynamical systems. Phys. Rev. E 62, 2119 (2000)

    MathSciNet  Google Scholar 

  31. Alexander, J.C., Yorke, James A.: Global Bifurcations of Periodic Orbits. Am. J. Math. 100, 263 (1978)

  32. Prants, S.V.: Dynamical systems theory methods to study mixing and transport in the ocean. Phys. Scr. 87, 038115 (2013)

    Google Scholar 

  33. Schomerus, H., Sieber, M.: Bifurcations of periodic orbits and uniform approximations. J. Phys. A: Math. Gen. 30, 4537 (1997)

    MathSciNet  MATH  Google Scholar 

  34. Algaba, A., Merino, M., Freire, E., Gamero, E., Rodiguez-Luis, A.J.: On the Hopf-pitchfork bifurcation in the Chua’s equation. Int. J. Bifurcation and Chaos 10, 291–305 (2000)

    MathSciNet  MATH  Google Scholar 

  35. Guo, Shangjiang: Huang, Lihong: Hopf bifurcating periodic orbits in a ring of neurons with delays. Phys. D: Nonl. Pheno. 183, 19–44 (2003)

    Google Scholar 

  36. Dong, Chengwei, Liu, Huihui, Jie, Qi., Li, Hantao: Topological classification of periodic orbits in the generalized Lorenz-type system with diverse symbolic dynamics. Chaos, Solitons and Fractals 154, 111686 (2022)

  37. Iqbal, S.A., Hafez, M.G., Uddin, M.F.: Bifurcation features, chaos, and coherent structures for one-dimensional nonlinear electrical transmission line. Comput. Appl. Math. 41, 50 (2022)

    MathSciNet  MATH  Google Scholar 

  38. Deffo, G.R., Yamgou, S.B., Pelap, F.B.: Wave-shape profiles in a coupled inductor-capacitor network with nonlinear dispersion. Phys. Rev. E 100, 022214 (2019)

    Google Scholar 

  39. Duan, W.S., Hong, X.R., Shi, Y.R., Lu, K.P., Sun, J.A., Duan, W.S., Hong, X.R., Shi, Y.R., Lu, K.P., Sun, J.A.: Chin. Phys. Lett. 19, 1231–1233 (2002)

    Google Scholar 

  40. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, p. 453. Springer Verlag, New York (1983)

    MATH  Google Scholar 

  41. Wiggins, S.: Introd. Appl. Nonl. Dyn. Syst. Chaos, p. 672. Springer-Verlag, New York (1983)

  42. Yemélé, D., Talla, P.K., Kofané, T.C., Yemél é, D., Talla, P.K., Kofané, T.C.: J. Phys. D: Appl. Phys. 36, 1429 (2003)

  43. Kengne, E.: Engineering chirped LambertW-kink signals in a nonlinear electrical transmission network with dissipative elements. Eur. Phys. J. Plus 136, 266 (2021)

    Google Scholar 

  44. Kengne, E., Liu, W.M., English, L.Q., Malomed, B.A.: Ginzburg-Landau models of nonlinear electric transmission networks. Phys. Rep. 982, 1–124 (2022)

    MathSciNet  MATH  Google Scholar 

  45. Koshita, S., Miyoshi, K., Abe, M., Kawamata, M.: A State-Space Approach to High-order Adaptive Band-Pass Filtering. In: 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP), pp. 1-4, (2018)

  46. R. Kumar and R. Pal, Recursive center-frequency adaptive filters for the enhancement of bandpass signals, in IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 34, no. 3, pp. 633-637, June (1986)

  47. Aranovskiy, S., Bobtsov, A.A., Pyrkin, A.A., Gritcenko, P.: Improved frequency identification via an adaptive filters cascade. In: 2014 IEEE Conference on Control Applications (CCA),, pp. 140-145 (2014)

  48. Yu, P.: Analysis on double Hopf bifurcation using computer algebra with the aid of multiple scales. Nonl. Dyn. 27, 19–53 (2002)

    MathSciNet  MATH  Google Scholar 

  49. Yu, P.: Bifurcation, limit cycles and chaos of nonlinear dynamical systems. In: J.Q. Sunand A.C. Luo (eds.) Bifurcation and Chaos in Complex Systems. Edited Series on Advances in Nonlinear Science and Complexity, pp. 1–121. Elsevier Science and Technology 1: Amsterdam (2006)

  50. Nayfeh, A.H., Balachandran, B.: Appl. Nonl. Dyn, Wiley, New York (1995)

    Google Scholar 

  51. Kumar, V.R., Radha, R., Wadati, M.: Phase engineering and solitons of Bose-Einstein condensates with two-and three-body interactions. J. Phys. Soc. Japan 79(7), 074005 (2010)

    Google Scholar 

  52. Kengne, E., Liu, W.M.: Engineering rogue waves with quintic nonlinearity and nonlinear dispersion effects in a modified Nogochi nonlinear electric transmission network. Phys. Rev. E 102, 012203 (2020)

    Google Scholar 

  53. Ziarani, A.K.: Extraction of Nonstationary Sinusoids. Ph.D. Dissertation. University of Toronto, 145 pp. (2002)

  54. Karimi-Ghartemanti, M., Ziarani, A.K.: Periodic orbit analysis of two dynamical systems for electrical engineering applications. J. Eng. Math. 45, 135–154 (2003)

    MathSciNet  MATH  Google Scholar 

  55. Arnold, V.I.: Math. Springer-Verlag, Berlin, Methods Class. Mech (1978)

    Google Scholar 

  56. Lange, C.G., Newell, A.C.: A stability criterion for envelope equations. SIAM J. Appl. Math. 27, 441 (1974)

    MathSciNet  MATH  Google Scholar 

  57. Jones, C.K.R.T., Kapitula, T., Powell, J.: Nearly real fronts in a Ginzburg-Landau equation. Proc. Roy. Soc. Edinburgh A 116, 193 (1990)

  58. Dodd, R.K., Eilbeck, J.C., Gibbon, J.D., Morris, H.C.: Solitons and Nonlinear Wave Equations. Academic, London (1985)

    MATH  Google Scholar 

  59. Ott, Edward: Strange attractors and chaotic motions of dynamical systems. Rev. Mod. Phys. 53, 655 (1981)

    MathSciNet  MATH  Google Scholar 

  60. Plykin, R.V.: On the problem of topological classification of strange attractors of dynamical systems. Russian Math. Surveys 57(6), 1163 (2002)

    MathSciNet  MATH  Google Scholar 

  61. Avila, M., Mellibovsky, F., Roland, N., Hof, B.: Streamwise-Localized Solutions at the Onset of Turbulence in Pipe Flow. Phys. Rev. Lett. 110, 224502 (2013)

  62. Ray, A., Ghosh, D., Chowdhury, A.R.: Topological study of multiple coexisting attractors in a nonlinear system. J. Phys. A-Math. Theor. 42, 385102 (2009)

    MathSciNet  MATH  Google Scholar 

  63. Dong, C.: Dynamics, Periodic Orbit Analysis, and Circuit Implementation Dynamics, Periodic Orbit Analysis, and Circuit Implementation. Fract. Fract. 6, 190–197 (2022)

    Google Scholar 

  64. Sidorov, N., Sidorov, D., Li, Y.: Basins of attraction and stability of nonlinear systems’ equilibrium points. In: Differential Equations and Dynamical Systems, pp. 1–5. Springer, London (2019)

  65. Hammi, M., Hammami, M.A.: Non-linear integral inequalities and applications to asymptotic stability. IMA J. Math. Cont. Inform. 32, 717–735 (2015)

    MathSciNet  MATH  Google Scholar 

  66. Hammami, M.A., Rettab, N.H.: On the region of attraction of dynamical systems: Application to Lorenz equations. Arch. Cont. Sci. 30(LXVI), 389–409 (2020)

Download references

Acknowledgements

This work has been supported by the NSFC under grants No. 11835011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Kengne.

Ethics declarations

Competing interest

The author declares that he has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Emmanuel Kengne: Conceptualization, Methodology, Software, Writing - original draft, Investigation, Visualization, and Writing - review & editing.

Additional information

The author, Emmanuel Kengne dedicates this work to his senior brother and confidante, Mkam Phillippe Wambo, for his constant love and support to their family.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Appendix A: On the coefficients of Eq. ( 2c )

Coefficients P and Q of Eq. (2c) are defined as \(P=P_{r}+iP_{i}\) and \(Q=Q_{r}+iQ_{i},\) where \(P_{r},\) \(P_{i},\) \(Q_{r},\) and \(Q_{i}\) are four real parameters given in terms of the network parameters as follows:

$$\begin{aligned}&P_{r}=\frac{\omega _{cr}^{4}-\omega ^{4}}{8\omega ^{3}},\nonumber \\&P_{i}=\frac{3\sigma _{1}\omega ^{6}-\omega ^{4}\left[ \left( 2\sigma _{1}+\sigma _{2}\right) u_{0}^{2}-3\left( \sigma _{2}u_{0}^{2}-\sigma _{1}\omega _{0}^{2}\right) \right] -3\omega _{0}^{2}\left( 4u_{0}^{2}+\omega _{0}^{2}\right) \left[ \sigma _{2}u_{0}^{2}+\sigma _{1}\left( \omega ^{2}-\omega _{0}^{2}\right) \right] }{8\omega ^{5}}, \nonumber \\&Q_{r}=\frac{3\beta \omega \left( \omega ^{2}-\omega _{+}^{2}\right) \left( \omega ^{2}-\omega _{-}^{2}\right) }{2\alpha \left[ \left( \omega ^{2}-\omega _{0}^{2}\right) ^{2}+3u_{0}^{2}\omega _{0}^{2}\right] }\exp \left[ -2\chi n\right] , \nonumber \\&Q_{i}=Q_{r}\left[ \frac{\sigma _{2}u_{0}^{2}+\sigma _{1}\left( \omega ^{2}-\omega _{0}^{2}\right) }{u_{0}\omega }+\frac{32\alpha ^{2}\omega ^{3}}{ 3\beta u_{0}^{5}}\frac{\left( \sigma _{2}+2\sigma _{1}\right) \left( \omega ^{2}-\omega _{0}^{2}\right) -u_{0}^{2}\sigma _{2}}{\Delta }\right] , \end{aligned}$$
(A1)

with

(A2)

Here, n is the cell number, \(\omega \) is the wavenumber of the carrier, while \(\omega _{cr}^{2}=\omega _{0}\sqrt{\omega _{0}^{2}+4u_{0}^{2}},\) and \( \chi \) is the linear dissipation coefficient [42].

1.2 Appendix B: Coefficients of Eqs. ( 10a ) and ( 13a )

Analytical expressions of coefficients \(\delta _{1},\) \(\delta _{2},\) and \( \delta _{3}\) of Eq. (10a)

$$\begin{aligned} \left. \begin{array}{l} \delta _{1}=\frac{3\left( \gamma _{6}+\gamma _{1}\phi _{0}\right) }{\gamma _{3}+2\phi _{0}}-2\gamma _{1}, \\ \delta _{2}=\frac{\gamma _{1}^{2}\left( \gamma _{3}+2\phi _{0}\right) -2\gamma _{1}\left( \gamma _{6}+\gamma _{1}\phi _{0}\right) }{\gamma _{3}+2\phi _{0}}+4\phi _{0}\gamma _{3}+4\phi _{0}^{2}+\gamma _{3}^{2}, \\ \delta _{3}=\frac{\left( \gamma _{6}+\gamma _{1}\phi _{0}\right) \left[ 4\left( 4\gamma _{4}+\gamma _{1}^{2}-\gamma _{3}^{2}\right) \phi _{0}^{2}+4\gamma _{3}\left( \gamma _{1}^{2}+4\gamma _{4}-\gamma _{3}^{2}\right) \phi _{0}+\gamma _{3}^{2}\left( 4\gamma _{4}-\gamma _{1}^{2}-\gamma _{3}^{2}\right) +8\gamma _{6}\left( \gamma _{1}\gamma _{3}-\gamma _{6}\right) \right] }{\left( \gamma _{3}+2\phi _{0}\right) ^{3}}. \end{array} \right. \end{aligned}$$
(B1)

Analytical expressions of coefficients \(\delta ^{(1)},\) \(\delta ^{(2)},\) and \(\delta ^{(3)}\) of Eq. (13a)

(B2)

1.3 Appendix C: On the stability analysis for non-zero amplitude wave equilibrium positions

$$\begin{aligned}&\frac{\partial \rho _{1}}{\partial \zeta _{0}}=\rho _{0}s_{1},\nonumber \\&\frac{\partial s_{1}}{\partial \zeta _{0}}=2\gamma _{2}\rho _{0}\rho _{1}+\frac{P_{i}}{\left| P\right| ^{2}}\upsilon _{0}s_{1}+\frac{2\left| P\right| ^{2}\phi _{0}-\upsilon _{0}P_{r}}{\left| P\right| ^{2}}\phi _{1}, \nonumber \\&\frac{\partial \phi _{1}}{\partial \zeta _{0}}=2\rho _{0}\gamma _{5}\rho _{1}+\frac{P_{r}\upsilon _{0}-2\left| P\right| ^{2}\phi _{0}}{ \left| P\right| ^{2}}s_{1}+\frac{P_{i}\upsilon _{0}}{\left| P\right| ^{2}}\phi _{1}; \nonumber \\\end{aligned}$$
(C1)
$$\begin{aligned}&-\rho _{0}s_{2}+\frac{\partial \rho _{2}}{\partial \zeta _{0}}=s_{1}\rho _{1}-\frac{\partial \rho _{1}}{\partial \zeta _{1}}, \nonumber \\&-2\gamma _{2}\rho _{0}\rho _{2}-\frac{P_{i}}{\left| P\right| ^{2}} \upsilon _{0}s_{2}\nonumber \\&\quad +\frac{P_{r}\upsilon _{0}-2\left| P\right| ^{2}\phi _{0}}{\left| P\right| ^{2}}\phi _{2}+\frac{\partial s_{2}}{ \partial \zeta _{0}}=\nonumber \\&\quad -\frac{\upsilon _{2}P_{r}}{\left| P\right| ^{2}} \phi _{0}+\gamma _{2}\rho _{1}^{2}-s_{1}^{2}+\phi _{1}^{2}-\frac{\partial s_{1}}{\partial \zeta _{1}}, \nonumber \\&-2\gamma _{5}\rho _{0}\rho _{2}+\frac{2\left| P\right| ^{2}\phi _{0}-P_{r}\upsilon _{0}}{\left| P\right| ^{2}}s_{2}\nonumber \\&-\quad \frac{P_{i}\upsilon _{0}}{\left| P\right| ^{2}}\phi _{2}+\frac{\partial \phi _{2}}{\partial \zeta _{0}}=\frac{\upsilon _{2}P_{i}}{\left| P\right| ^{2}}\phi _{0}\nonumber \\&\quad +\gamma _{5}\rho _{1}^{2}-2s_{1}\phi _{1}-\frac{ \partial \phi _{1}}{\partial \zeta _{1}}; \end{aligned}$$
(C2)
$$\begin{aligned}&\frac{\partial \rho _{3}}{\partial \zeta _{0}}=\rho _{1}s_{2}+s_{1}\rho _{2}+\rho _{0}s_{3}\nonumber \\&\quad -\frac{\partial \rho _{1}}{\partial \zeta _{2}}-\frac{ \partial \rho _{2}}{\partial \zeta _{1}}, \nonumber \\&-2\gamma _{2}\rho _{0}\rho _{3}-\frac{P_{i}\upsilon _{0}}{\left| P\right| ^{2}}s_{3}\nonumber \\&\quad -\frac{2\left| P\right| ^{2}\phi _{0}-\upsilon P_{r0}}{\left| P\right| ^{2}}\phi _{3}+\frac{\partial s_{3}}{\partial \zeta _{0}}\nonumber \\&\quad =\frac{P_{i}\upsilon _{2}}{\left| P\right| ^{2}}s_{1}-\frac{P_{r}\upsilon _{2}}{\left| P\right| ^{2}}\phi _{1}+2\gamma _{2}\rho _{1}\rho _{2}-2s_{1}s_{2}+2\phi _{1}\phi _{2}\nonumber \\&\quad -\frac{\partial s_{1}}{\partial \zeta _{2}}-\frac{\partial s_{2}}{ \partial \zeta _{1}}, \nonumber \\&-2\gamma _{5}\rho _{0}\rho _{3}-\frac{P_{r}\upsilon _{0}-2\left| P\right| ^{2}\phi _{0}}{\left| P\right| ^{2}}s_{3}\nonumber \\&\quad -\frac{ P_{i}\upsilon _{0}}{\left| P\right| ^{2}}\phi _{3}+\frac{\partial \phi _{3}}{\partial \zeta _{0}}\nonumber \\&\quad =\frac{P_{r}\upsilon _{2}}{\left| P\right| ^{2}}s_{1}+\frac{P_{i}\upsilon _{2}}{\left| P\right| ^{2}}\phi _{1}\nonumber \\&\quad +2\gamma _{5}\rho _{1}\rho _{2}-2s_{1}\phi _{2}-2\phi _{1}s_{2}\nonumber \\&\quad -\frac{\partial \phi _{1}}{\partial \zeta _{2}}-\frac{\partial \phi _{2}}{\partial \zeta _{1}}. \end{aligned}$$
(C3)

1.4 Appendix D: Different parameters appearing in Eq. ( 20b )

$$\begin{aligned} \phi _{230}= & {} \frac{2i\left| P\right| ^{2}k_{1}-P_{i}\upsilon _{0}}{ \left| P\right| ^{2}}+\frac{\gamma _{5}\rho _{0}^{2}\left( 2\left| P\right| ^{2}\phi _{0}-\upsilon _{0}P_{r}\right) }{ \left| P\right| ^{2}\left( 2k_{1}^{2}+\gamma _{2}\rho _{0}^{2}\right) +ik_{1}P_{i}\upsilon _{0}}-\frac{k_{1}\left( P_{r}\upsilon _{0}-2\left| P\right| ^{2}\phi _{0}\right) ^{2}}{\left| P\right| ^{2}\left[ k_{1}P_{i}\upsilon _{0}-i\left| P\right| ^{2}\left( 2k_{1}^{2}+\gamma _{2}\rho _{0}^{2}\right) \right] }, \\ \phi _{231}= & {} \frac{1}{\phi _{230}}\left\{ \gamma _{5}-2s_{10}\phi _{10}+ \frac{\gamma _{5}\rho _{0}\left[ P_{i}s_{10}\upsilon _{0}-\left| P\right| ^{2}\gamma _{2}\rho _{0}-2is_{10}\left| P\right| ^{2}k_{1}\right] }{\left| P\right| ^{2}\left( 2k_{1}^{2}+\gamma _{2}\rho _{0}^{2}\right) +ik_{1}P_{i}\upsilon _{0}}\right. \\&\left. +\frac{2\left| P\right| ^{2}\phi _{0}-P_{r}\upsilon _{0}}{ \left| P\right| ^{2}\rho _{0}}\left[ s_{10}+\frac{k_{1}\left[ \left| P\right| ^{2}\gamma _{2}\rho _{0}-s_{10}P_{i}\upsilon _{0}+2is_{10}\left| P\right| ^{2}k_{1}\right] }{\left[ k_{1}P_{i}\upsilon _{0}-i\left| P\right| ^{2}\left( 2k_{1}^{2}+\gamma _{2}\rho _{0}^{2}\right) \right] }\right] \right\} , \\ \rho _{230}= & {} \frac{\rho _{0}\left( \upsilon _{0}P_{r}-2\left| P\right| ^{2}\phi _{0}\right) }{2\left[ \left| P\right| ^{2}\left( 2k_{1}^{2}+\gamma _{2}\rho _{0}^{2}\right) +ik_{1}P_{i}\upsilon _{0}\right] }\phi _{231}+\frac{P_{i}s_{10}\upsilon _{0}-\left| P\right| ^{2}\gamma _{2}\rho _{0}-2is_{10}\left| P\right| ^{2}k_{1}}{2\left[ \left| P\right| ^{2}\left( 2k_{1}^{2}+\gamma _{2}\rho _{0}^{2}\right) +ik_{1}P_{i}\upsilon _{0}\right] }, \\ s_{230}= & {} \frac{k_{1}\left( \upsilon _{0}P_{r}-2\left| P\right| ^{2}\phi _{0}\right) }{k_{1}P_{i}\upsilon _{0}-i\left| P\right| ^{2}\left( 2k_{1}^{2}+\gamma _{2}\rho _{0}^{2}\right) }\phi _{231}-\frac{1}{ \rho _{0}}\left[ s_{10}+\frac{k_{1}\left[ \left| P\right| ^{2}\gamma _{2}\rho _{0}-P_{i}s_{10}\upsilon _{0}+2is_{10}\left| P\right| ^{2}k_{1}\right] }{k_{1}P_{i}\upsilon _{0}-i\left| P\right| ^{2}\left( 2k_{1}^{2}+\gamma _{2}\rho _{0}^{2}\right) }\right] ; \end{aligned}$$

1.5 Appendix E: Initial conditions appearing in the phase portrait analysis

$$\begin{aligned}&I_{1}=\left( -0.0373,0,0.00236\right) ,\nonumber \\&I_{2}=\left( -0.023,0.0,-0.0013\right) ,\nonumber \\&I_{3}=\left( 0.023,0.0,-0.0013\right) , \\&I_{4}=\left( 0.0373,0,0.00236\right) . \end{aligned}$$
(E1)
$$\begin{aligned}&I_{11}=\left( -0.01,0,0.002\right) , I_{41}=\left( 0.01,0,0.002\right) , \nonumber \\&I_{12}=\left( -0.01,0,-0.002\right) ,\nonumber \\&I_{42}=\left( 0.01,0,-0.002\right) . \end{aligned}$$
(E2)
$$\begin{aligned}&\left. \begin{array}{l} I_{13}=\left( -0.0005,0.003,0.002\right) ,\nonumber \\ I_{21}=\left( -0.023,0.001,-0.0013\right) , \nonumber \\ I_{31}=\left( 0.023,0.001,-0.0013\right) ,\nonumber \\ I_{43}=\left( 0.000\,5,0.003,0.002\right) , \nonumber \\ I_{14}=\left( -0.0005,0.003,-0.002\right) ,\nonumber \\ I_{22}=\left( -0.023,0.001,-0.0013\right) ,\nonumber \\ I_{32}=\left( 0.023,0.001,-0.0013\right) ,\nonumber \\ I_{44}=\left( 0.0005,0.003,-0.002\right) . \end{array} \right. \end{aligned}$$
(E3)
$$\begin{aligned}&i_{1}:I_{11}\left( -0.004,0.00002,-0.000169\right) , \nonumber \\&I_{12}\left( -0.00194,0.00005,-0.000169\right) , \nonumber \\&\quad I_{13}\left( 0.00194,0.00005,-0.000169\right) ,\nonumber \\&I_{14}\left( 0.004,0.00002,-0.000169\right) ; \nonumber \\&i_{2}:I_{21}\left( -0.004,0.0000,-0.000169\right) ,\nonumber \\&I_{22}\left( -0.004,0.00002,-0.000065\right) , \nonumber \\&\quad I_{23}\left( 0.004,0.00002,-0.000065\right) ,\nonumber \\&I_{24}\left( 0.004,0.0000,-0.000169\right) . \end{aligned}$$
(E4)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kengne, E. Periodic orbit analysis of three dynamical systems for a nonlinear electrical dissipative transmission network. Nonlinear Dyn 111, 1733–1761 (2023). https://doi.org/10.1007/s11071-022-07879-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07879-5

Keywords

Navigation