Skip to main content
Log in

Anti-swing sliding mode control of three-dimensional double pendulum overhead cranes based on extended state observer

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

When the double pendulum crane works in three-dimensional motion mode, it can significantly improve transportation efficiency. However, controlling the two-stage swing angles in the three-dimensional motion mode is complex and challenging. This paper presents a coordinated control method for the track and trolley of the double pendulum crane to improve the working efficiency of the crane, which realizes the anti-swing control of the double pendulum crane in three-dimensional movement mode. A three-dimensional double pendulum crane model is established, and the model is simplified by the differential flatness theory. A sliding mode control (SMC) method with an extended state observer (ESO) is designed to position and two-stage swing suppression of the three-dimensional double pendulum crane. For the actuator deadband, a transition process is introduced. The stability of the system is analyzed by the Lyapunov method. The proposed method has strong robustness and anti-interference ability. Theoretical and experimental results show that the proposed method can achieve fast and accurate positioning and effectively suppress the two-stage swing. This method is introduced into a nonlinear experimental platform. Compared with other technologies in the literature, the proposed method shortens the transit time, improves work efficiency, and reduces the safety risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the article.

References

  1. Singhose, W., Kim, D., Kenison, M.: Input shaping control of double-pendulum bridge crane oscillations. J. Dyn. Syst. Meas. Control. Trans. ASME. (2008). https://doi.org/10.1115/1.2907363

    Article  Google Scholar 

  2. Ouyang, H.M., Wang, J., Zhang, G.M., Mei, L., Deng, X.: Tracking and anti-sway control for double-pendulum rotary cranes using novel sliding mode algorithm. Zidonghua Xuebao/Acta Autom. Sin. 45, 1344–1353 (2019). https://doi.org/10.16383/j.aas.c180452

    Article  Google Scholar 

  3. Chen, H., Fang, Y., Sun, N.: A swing constrained time-optimal trajectory planning strategy for double pendulum crane systems. Nonlinear Dyn. 89, 1513–1524 (2017). https://doi.org/10.1007/s11071-017-3531-0

    Article  MathSciNet  Google Scholar 

  4. Zhang, M., Ma, X., Chai, H., Rong, X., Tian, X., Li, Y.: A novel online motion planning method for double-pendulum overhead cranes. Nonlinear Dyn. 85, 1079–1090 (2016). https://doi.org/10.1007/s11071-016-2745-x

    Article  MATH  Google Scholar 

  5. Wu, Z., Xia, X., Zhu, B.: Model predictive control for improving operational efficiency of overhead cranes. Nonlinear Dyn. 79, 2639–2657 (2015). https://doi.org/10.1007/s11071-014-1837-8

    Article  Google Scholar 

  6. Chen, H., Fang, Y., Sun, N.: A swing constraint guaranteed MPC algorithm for underactuated overhead cranes. IEEE/ASME Trans. Mechatronics. 21, 2543–2555 (2016). https://doi.org/10.1109/TMECH.2016.2558202

    Article  Google Scholar 

  7. Ouyang, H.M., Wang, J., Zhang, G.M., Mei, L., Deng, X.: Trajectory generation for double-pendulum rotary crane. Kongzhi Lilun Yu Yingyong/Control Theory Appl. 36, 1265–1274 (2019). https://doi.org/10.7641/CTA.2018.80454

    Article  Google Scholar 

  8. Qian, D., Tong, S., Lee, S.G.: Fuzzy-Logic-based control of payloads subjected to double-pendulum motion in overhead cranes. Autom. Constr. 65, 133–143 (2016). https://doi.org/10.1016/j.autcon.2015.12.014

    Article  Google Scholar 

  9. Ouyang, H., Deng, X., Xi, H., Hu, J., Zhang, G., Mei, L.: Novel robust controller design for load sway reduction in double-pendulum overhead cranes. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 233, 4359–4371 (2019). https://doi.org/10.1177/0954406218813383

    Article  Google Scholar 

  10. Sun, N., Yang, T., Fang, Y., Wu, Y., Chen, H.: Transportation control of double-pendulum cranes with a nonlinear quasi-pid scheme: Design and experiments. IEEE Trans. Syst. Man Cybern. Syst. 49, 1408–1418 (2019). https://doi.org/10.1109/TSMC.2018.2871627

    Article  Google Scholar 

  11. Urbaś, A., Kłosiński, J., Augustynek, K.: The influence of the PID controller settings on the motion of a truck-mounted crane with a flexible boom and friction in joints. Control Eng. Pract. (2020). https://doi.org/10.1016/j.conengprac.2020.104610

    Article  Google Scholar 

  12. Sun, Z., Ling, Y., Tan, X., Zhou, Y., Sun, Z.: Designing and application of type-2 fuzzy PID control for overhead crane systems. Int. J. Intell. Robot. Appl. 5, 10–22 (2021). https://doi.org/10.1007/s41315-020-00157-w

    Article  Google Scholar 

  13. Milovanović, M.B., Antić, D.S., Milojković, M.T., Nikolić, S.S., Perić, S.L., Spasić, M.D.: Adaptive PID control based on orthogonal endocrine neural networks. Neural Netwk. 84, 80–90 (2016)

    Article  MATH  Google Scholar 

  14. Li, H., Zhou, C., Lee, B.K., Lee, L.H., Chew, E.P., Goh, R.S.M.: Capacity planning for mega container terminals with multi-objective and multi-fidelity simulation optimization. IISE Trans. 49, 849–862 (2017). https://doi.org/10.1080/24725854.2017.1318229

    Article  Google Scholar 

  15. Khatir, S., Dekemele, K., Loccufier, M., Khatir, T., Abdel Wahab, M.: Crack identification method in beam-like structures using changes in experimentally measured frequencies and Particle Swarm Optimization. Comptes Rendus - Mec. 346, 110–120 (2018). https://doi.org/10.1016/j.crme.2017.11.008

    Article  Google Scholar 

  16. Cuong-Le, T., Minh, H.. Le., Khatir, S., Wahab, M.A., Tran, M.T., Mirjalili, S.: A novel version of Cuckoo search algorithm for solving optimization problems. Expert Syst. Appl. (2021). https://doi.org/10.1016/j.eswa.2021.115669

    Article  Google Scholar 

  17. Tiachacht, S., Bouazzouni, A., Khatir, S., Abdel Wahab, M., Behtani, A., Capozucca, R.: Damage assessment in structures using combination of a modified Cornwell indicator and genetic algorithm. Eng. Struct. 177, 421–430 (2018). https://doi.org/10.1016/j.engstruct.2018.09.070

    Article  Google Scholar 

  18. Abdel-razak, M.H., Ata, A.A., Mohamed, K.T., Haraz, E.H.: Proportional-integral-derivative controller with inlet derivative filter fine-tuning of a double-pendulum gantry crane system by a multi-objective genetic algorithm. Eng. Optim. 52, 527–548 (2020). https://doi.org/10.1080/0305215X.2019.1603300

    Article  MATH  Google Scholar 

  19. Saeidi, H., Naraghi, M., Raie, A.A.: A neural network self tuner based on input shapers behavior for anti sway system of gantry cranes. JVC/Journal Vib. Control. 19, 1936–1949 (2013). https://doi.org/10.1177/1077546312453065

    Article  Google Scholar 

  20. Ouyang, H., Zhang, G., Mei, L., Deng, X., Wang, D.: Load vibration reduction in rotary cranes using robust two-degree-of-freedom control approach. Adv. Mech. Eng. 8, 1–11 (2016). https://doi.org/10.1177/1687814016641819

    Article  Google Scholar 

  21. Shao, X., Zhang, J., Zhang, X.: Takagi-sugeno fuzzy modeling and PSO-Based Robust LQR anti-swing control for overhead crane. Math. Probl. Eng. (2019). https://doi.org/10.1155/2019/4596782

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, Z., Ma, X., Li, Y.: Anti-swing control for a double-pendulum offshore boom crane with ship roll and heave movements. In: IEEE International Conference on Control and Automation, ICCA. pp. 165–170 (2020).https://doi.org/10.1109/ICCA51439.2020.9264524

  23. Wu, X., He, X.: Partial feedback linearization control for 3-D underactuated overhead crane systems. ISA Trans. 65, 361–370 (2016). https://doi.org/10.1016/j.isatra.2016.06.015

    Article  Google Scholar 

  24. Huang, J., Zhu, K.: Dynamics and control of three-dimensional dual cranes transporting a bulky payload. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 235, 1956–1965 (2021). https://doi.org/10.1177/0954406220949579

    Article  Google Scholar 

  25. Lu, B., Fang, Y., Sun, N.: Enhanced-coupling adaptive control for double-pendulum overhead cranes with payload hoisting and lowering. Automatica. 101, 241–251 (2019). https://doi.org/10.1016/j.automatica.2018.12.009

    Article  MathSciNet  MATH  Google Scholar 

  26. Shehu, M.A., Li, A.J., Tian, H.: Modified Higher-Order Sliding Mode Observer-Based Super-Twisting Controller for Perturbed Overhead Cranes. In: Proceedings - 2019 Chinese Automation Congress, CAC 2019. pp. 255–260. IEEE (2019).https://doi.org/10.1109/CAC48633.2019.8997439

  27. Lu, B., Fang, Y., Sun, N.: Sliding mode control for underactuated overhead cranes suffering from both matched and unmatched disturbances. Mechatronics. 47, 116–125 (2017). https://doi.org/10.1016/j.mechatronics.2017.09.006

    Article  Google Scholar 

  28. Zhang, M., Zhang, Y., Ouyang, H., Ma, C., Cheng, X.: Adaptive integral sliding mode control with payload sway reduction for 4-DOF tower crane systems. Nonlinear Dyn. 99, 2727–2741 (2020). https://doi.org/10.1007/s11071-020-05471-3

    Article  MATH  Google Scholar 

  29. Le, H.X., Nguyen, T. Van., Le, A.V., Phan, T.A., Nguyen, N.H., Phan, M.X.: Adaptive hierarchical sliding mode control using neural network for uncertain 2D overhead crane. Int. J. Dyn. Control. 7, 996–1004 (2019). https://doi.org/10.1007/s40435-019-00524-x

    Article  MathSciNet  Google Scholar 

  30. Liang, X., Fang, Y., Sun, N., Lin, H., Zhao, X.: Adaptive nonlinear hierarchical control for a rotorcraft transporting a cable-suspended payload. IEEE Trans. Syst. Man, Cybern. Syst. 51, 4171–4182 (2021). https://doi.org/10.1109/TSMC.2019.2931812

    Article  Google Scholar 

  31. Zhang, M., Zhang, Y., Chen, H., Cheng, X.: Model-independent PD-SMC method with payload swing suppression for 3D overhead crane systems. Mech. Syst. Signal Process. (2019). https://doi.org/10.1016/j.ymssp.2019.04.046

    Article  Google Scholar 

  32. Gu, X., Xu, W., Zhang, M., Zhang, W., Wang, Y., Chen, T.: Adaptive controller design for overhead cranes with moving sliding surface. In: Chinese Control Conference, CCC. pp. 2412–2417 (2019).https://doi.org/10.23919/ChiCC.2019.8865222

  33. Nguyen, V.T., Yang, C., Du, C., Liao, L.: Design and implementation of finite time sliding mode controller for fuzzy overhead crane system. ISA Trans. 124, 374–385 (2022). https://doi.org/10.1016/j.isatra.2019.11.037

    Article  Google Scholar 

  34. Wang, T., Tan, N., Qiu, J., Yu, Y., Zhang, X., Zhai, Y., Labati, R.D., Piuri, V., Scotti, F.: Global-Equivalent Sliding Mode Control Method for Bridge Crane. IEEE Access. 9, 160372–160382 (2021). https://doi.org/10.1109/ACCESS.2021.3115164

    Article  Google Scholar 

  35. Zhang, M., Zhang, Y., Cheng, X.: An Enhanced Coupling PD with Sliding Mode Control Method for Underactuated Double-pendulum Overhead Crane Systems. Int. J. Control. Autom. Syst. 17, 1579–1588 (2019). https://doi.org/10.1007/s12555-018-0646-0

    Article  Google Scholar 

  36. Kim, G.H., Hong, K.S.: Adaptive Sliding-Mode Control of an Offshore Container Crane with Unknown Disturbances. IEEE/ASME Trans. Mechatronics. 24, 2850–2861 (2019). https://doi.org/10.1109/TMECH.2019.2946083

    Article  Google Scholar 

  37. Zhang, M., Zhang, Y., Cheng, X.: Model-free adaptive integral sliding mode control for 4-DOF tower crane systems. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM. pp. 708–713 (2019). https://doi.org/10.1109/AIM.2019.8868534

  38. Ouyang, H., Wang, J., Zhang, G., Mei, L., Deng, X.: Novel adaptive hierarchical sliding mode control for trajectory tracking and load sway rejection in double-pendulum overhead cranes. IEEE Access. 7, 10353–10361 (2019). https://doi.org/10.1109/ACCESS.2019.2891793

    Article  Google Scholar 

  39. Ershkov, S.V.: Revolving scheme for solving a cascade of Abel equations in dynamics of planar satellite rotation. Theor. Appl. Mech. Lett. 7, 175–178 (2017). https://doi.org/10.1016/j.taml.2017.05.005

    Article  Google Scholar 

  40. Wu, Q., Wang, X., Hua, L., Xia, M.: Modeling and nonlinear sliding mode controls of double pendulum cranes considering distributed mass beams, varying roped length and external disturbances. Mech. Syst. Signal Process. (2021). https://doi.org/10.1016/j.ymssp.2021.107756

    Article  Google Scholar 

  41. Sun, N., Yang, T., Chen, H., Fang, Y.: Dynamic feedback antiswing control of shipboard cranes without velocity measurement: Theory and hardware experiments. IEEE Trans. Ind. Informatics. 15, 2879–2891 (2019). https://doi.org/10.1109/TII.2018.2878935

    Article  Google Scholar 

  42. Chai, L., Guo, Q., Liu, H., Ding, M.: Linear Active Disturbance Rejection Control for Double-Pendulum Overhead Cranes. IEEE Access. 9, 52225–52237 (2021). https://doi.org/10.1109/ACCESS.2021.3070048

    Article  Google Scholar 

  43. Miranda-Colorado, R.: Robust observer-based anti-swing control of 2D-crane systems with load hoisting-lowering. Nonlinear Dyn. 104, 3581–3596 (2021). https://doi.org/10.1007/s11071-021-06443-x

    Article  Google Scholar 

  44. Yang, T., Sun, N., Chen, H., Fang, Y.: Motion Trajectory-Based Transportation Control for 3-D Boom Cranes: Analysis, Design, and Experiments. IEEE Trans. Ind. Electron. 66, 3636–3646 (2019). https://doi.org/10.1109/TIE.2018.2853604

    Article  Google Scholar 

  45. Shen, P.Y., Schatz, J., Caverly, R.J.: Passivity-based adaptive trajectory control of an underactuated 3-DOF overhead crane. Control Eng. Pract. (2021). https://doi.org/10.1016/j.conengprac.2021.104834

    Article  Google Scholar 

  46. Chwa, D.: Sliding-Mode-Control-Based Robust Finite-Time Antisway Tracking Control of 3-D Overhead Cranes. IEEE Trans. Ind. Electron. 64, 6775–6784 (2017). https://doi.org/10.1109/TIE.2017.2701760

    Article  Google Scholar 

  47. Zhang, M., Ma, X., Rong, X., Tian, X., Li, Y.: Nonlinear coupling control method for underactuated three-dimensional overhead crane systems under initial input constraints. Trans. Inst. Meas. Control. 40, 413–424 (2018). https://doi.org/10.1177/0142331216658949

    Article  Google Scholar 

  48. Sun, N., Yang, T., Fang, Y., Lu, B., Qian, Y.: Nonlinear Motion Control of Underactuated Three-Dimensional Boom Cranes with Hardware Experiments. IEEE Trans. Ind. Informatics. 14, 887–897 (2018). https://doi.org/10.1109/TII.2017.2754540

    Article  Google Scholar 

  49. Xing, X., Liu, J.: Vibration and position control of overhead crane with three-dimensional variable length cable subject to input amplitude and rate constraints. IEEE Trans. Syst. Man, Cybern. Syst. 51, 4127–4138 (2021). https://doi.org/10.1109/TSMC.2019.2930815

    Article  Google Scholar 

  50. Li, X., Geng, Z.: A novel trajectory planning-based adaptive control method for 3-D overhead cranes. Int. J. Syst. Sci. 49, 3332–3345 (2018). https://doi.org/10.1080/00207721.2018.1537412

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhang, S., He, X., Chen, Q.: Energy coupled-dissipation control for 3-dimensional overhead cranes. Nonlinear Dyn. 99, 2097–2107 (2020). https://doi.org/10.1007/s11071-019-05451-2

    Article  Google Scholar 

  52. Wu, X., He, X.: Nonlinear Energy-Based Regulation Control of Three-Dimensional Overhead Cranes. IEEE Trans. Autom. Sci. Eng. 14, 1297–1308 (2017). https://doi.org/10.1109/TASE.2016.2542105

    Article  Google Scholar 

  53. Manivannan, R., Samidurai, R., Cao, J., Perc, M.: Design of Resilient Reliable Dissipativity Control for Systems with Actuator Faults and Probabilistic Time-Delay Signals via Sampled-Data Approach. IEEE Trans. Syst. Man, Cybern. Syst. 50, 4243–4255 (2020). https://doi.org/10.1109/TSMC.2018.2846645

    Article  Google Scholar 

  54. Leshchenko, D., Ershkov, S., Kozachenko, T.: Evolution of a heavy rigid body rotation under the action of unsteady restoring and perturbation torques. Nonlinear Dyn. 103, 1517–1528 (2021). https://doi.org/10.1007/s11071-020-06195-0

    Article  Google Scholar 

  55. Ji, N., Liu, J., Yang, H.: Sliding mode control based on RBF neural network for a class of underactuated systems with unknown sensor and actuator faults. Int. J. Syst. Sci. 51, 3539–3549 (2020). https://doi.org/10.1080/00207721.2020.1817615

    Article  MathSciNet  MATH  Google Scholar 

  56. Narendra, K.S., Balakrishnan, J.: A Common Lyapunov Function For Stable Lti Systems With Commuting A-Matrices. IEEE Trans. Automat. Contr. 39, 2469–2471 (1994). https://doi.org/10.1109/9.362846

    Article  MathSciNet  MATH  Google Scholar 

  57. Kalman, R.E., Bertram, J.E.: Control system analysis and design via the “second method” of lyapunov: I continuous-time systems. J. Fluids Eng. Trans. ASME. 82, 371–393 (1960). https://doi.org/10.1115/1.3662604

  58. Ouyang, H., Zhao, B., Zhang, G.: Swing reduction for double-pendulum three-dimensional overhead cranes using energy-analysis-based control method. Int. J. Robust Nonlinear Control. 31, 4184–4202 (2021). https://doi.org/10.1002/rnc.5466

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Key R & D Program of China (Grant No. 2017YFC0805100).

Funding

This work is supported by National Key R &D Program of China (2017YFC0805100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Chai.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A : Observation effect of state observer

The overhead crane is a powerful engineering machine, and its working environment has unknown external interference and noise interference, which will affect the operating performance of the crane. In section III, an extended state observer is designed to observe these disturbances. The observations of these disturbances are introduced into the controller to enhance the anti-interference ability and robustness of the crane control system. The accuracy of the observed results directly affects the control effect of the controller. An experiment is performed on the ESO designed to detect the observer’s observation effect in this section. The crane works in a noisy environment and, at the 5th second, suffers an external impact of 20N duration of 0.1s. Fig. 16 shows the observer’s observations of a crane subjected to external disturbances of a size of 20N and duration of 0.1s. Fig. 17 shows the observer’s ambient noise results. The ESO designed in this paper can effectively observe external disturbance and environmental noise from the observer’s calculation speed and estimation accuracy. The introduction of the ESO enhances the stability and robustness of the system.

Fig. 16
figure 16

Observation of external disturbance

Fig. 17
figure 17

Observation of ambient noise

Appendix B : Crane System Modeling

A three-dimensional double pendulum crane model is shown in Fig. 1. In the XYZ coordinate system, the trolley is located on the plane of XOY, trolley’s coordinate is \(({x_M},{y_M},{z_M})\), hook’s coordinate is \(({x_{{m_1}}},{y_{{m_1}}},{z_{{m_1}}})\), and load’s coordinate is \(({x_{{m_2}}},{y_{{m_2}}},{z_{{m_2}}})\), where

$$\begin{aligned} \left\{ \begin{array}{l} {x_M} = x\\ {y_M} = y\\ {z_M} = 0\\ {x_{{m_1}}} = x + {l_1}\sin {\theta _1}\cos {\theta _2}\\ {y_{{m_1}}} = y + {l_1}\sin {\theta _2}\\ {z_{{m_1}}} = - {l_1}\cos {\theta _1}\cos {\theta _2}\\ {x_{{m_2}}} = x + {l_1}\sin {\theta _1}\cos {\theta _2} + {l_2}\sin {\theta _3}\cos {\theta _4}\\ {y_{{m_2}}} = y + {l_1}\sin {\theta _2} + {l_2}\sin {\theta _4}\\ {z_{{m_2}}} = - {l_1}\cos {\theta _1}\cos {\theta _2} - {l_2}\cos {\theta _3}\cos {\theta _4}. \end{array} \right. \end{aligned}$$
(55)

From the Eq. (55), the speed of the trolley is \(V_M\), the speed of the hook is \({V_{{m_1}}}\), and the speed of the load is \({V_{{m_2}}}\), where

$$\begin{aligned}&V_M = \left[ \begin{array}{l} \frac{\partial }{{\partial t}}\mathrm{{\;}}x\left( t \right) \\ \frac{\partial }{{\partial t}}\mathrm{{\;}}y\left( t \right) \\ 0 \end{array} \right] = \left[ \begin{array}{l} {\dot{x}}\\ {\dot{y}}\\ 0 \end{array} \right] , \end{aligned}$$
(56)
$$\begin{aligned}&\begin{array}{l} {V_{{m_1}}} = \left[ \begin{array}{l} \frac{\partial }{{\partial t}}\mathrm{{\;}}x\left( t \right) {+} {l_1}\,{c_2}\left( t \right) \,\frac{\partial }{{\partial t}}\mathrm{{\;}}{s_1}\left( t \right) {+} {l_1}\,{s_1}\left( t \right) \,\frac{\partial }{{\partial t}}\mathrm{{\;}}{c_2}\left( t \right) \\ {l_1}\,\frac{\partial }{{\partial t}}\mathrm{{\;}}{s_2}\left( t \right) + \frac{\partial }{{\partial t}}\mathrm{{\;}}y\left( t \right) \\ - {l_1}\,{c_1}\left( t \right) \,\frac{\partial }{{\partial t}}\mathrm{{\;}}{c_2}\left( t \right) - {l_1}\,{c_2}\left( t \right) \,\frac{\partial }{{\partial t}}\mathrm{{\;}}{c_1}\left( t \right) \end{array} \right] \\ \begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {}&{}{\begin{array}{*{20}{c}} {}&{}{} \end{array}} \end{array}}&{} = \end{array}\left[ \begin{array}{l} \dot{x} + {l_1}\,{c_2}\,{c_1}\, - {l_1}\,{s_1}\,{s_2}\\ {l_1}\,{c_2} + \mathrm{{\;}}\dot{y}\\ {l_1}\,{c_1}{s_2} + {l_1}\,{c_2}\,{s_1} \end{array} \right] , \end{array} \end{aligned}$$
(57)
$$\begin{aligned}&\begin{array}{l} {V_{{m_2}}} = \left[ \begin{array}{l} \frac{\partial }{{\partial t}}x\left( t \right) + {l_1}{c_2}\left( t \right) \frac{\partial }{{\partial t}}{s_1}\left( t \right) + {l_1}{s_1}\left( t \right) \frac{\partial }{{\partial t}}{c_2}\left( t \right) \\ \quad +{l_2}{c_4}\left( t \right) \frac{\partial }{{\partial t}}{s_3}\left( t \right) + {l_2}{s_3}\left( t \right) \frac{\partial }{{\partial t}}{c_4}\left( t \right) \\ {l_1}\frac{\partial }{{\partial t}}{s_2}\left( t \right) + {l_2}\frac{\partial }{{\partial t}}{s_4}\left( t \right) + \frac{\partial }{{\partial t}}y\left( t \right) \\ - {l_1}{c_1}\left( t \right) \frac{\partial }{{\partial t}}{c_2}\left( t \right) - {l_1}{c_2}\left( t \right) \frac{\partial }{{\partial t}}{c_1}\left( t \right) \\ - {l_2}{c_3}\left( t \right) \frac{\partial }{{\partial t}}{c_4}\left( t \right) - {l_2}{c_4}\left( t \right) \frac{\partial }{{\partial t}}{c_3}\left( t \right) \end{array} \right] \\ \begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {}&{}{}&{}{} \end{array}}&{} = \end{array}\left[ \begin{array}{l} \dot{x} + {l_1}{c_2}{c_1} - {l_1}{s_1}{s_2} + {l_2}{c_4}{c_3} - {l_2}{s_3}{s_4}\\ {l_1}{c_2} + {l_2}{c_4} + \dot{y}\\ {l_1}{c_1}{s_2} + {l_1}{c_2}{s_1} + {l_2}{c_3}{s_4} + {l_2}{c_4}{s_3} \end{array} \right] . \end{array} \end{aligned}$$
(58)

From Eq.(56), Eq.(57), and Eq.(58), the system kinetic energy, T, is obtained as follows:

$$\begin{aligned} T= & {} \frac{M}{2}V_M^2 + \frac{{{m_1}}}{2}V_{{m_1}}^2 + \frac{{{m_2}}}{2}V_{{m_2}}^2\nonumber \\= & {} \frac{{{M_x} + {m_1} + {m_2}}}{2}{{\dot{x}}^2} + \frac{{{M_y} + {m_1} + {m_2}}}{2}{{\dot{y}}^2} \nonumber \\&+\frac{{{m_1}}}{2}(l_1^2{{{\dot{\theta }} }_2}^2 + l_1^2c_2^2{\dot{\theta }} _1^2 \nonumber \\&+ 2{c_1}{c_2}{l_1}\dot{x}{{{\dot{\theta }} }_1} - 2{s_1}{s_2}{l_1}\dot{x}{{{\dot{\theta }} }_2} \nonumber \\&+2{c_2}{l_1}\dot{y}{{{\dot{\theta }} }_2}) + \frac{{{m_2}}}{2}(l_1^2{{{\dot{\theta }} }_2}^2 \nonumber \\&+ 2{c_{1 - 3}}{l_1}{l_2}{s_2}{s_4}{{{\dot{\theta }} }_2}{{{\dot{\theta }} }_4} \nonumber \\&+2{s_{3 - 1}}{l_1}{l_2}{s_2}{s_4}{{{\dot{\theta }} }_2}{{{\dot{\theta }} }_3} + l_1^2c_2^2{\dot{\theta }} _1^2 \nonumber \\&+ 2{s_{1 - 3}}{l_1}{l_2}{c_2}{s_4}{{{\dot{\theta }} }_1}{{{\dot{\theta }} }_4} \nonumber \\&+2{c_{1 - 3}}{l_1}{l_2}{c_2}{c_4}{{{\dot{\theta }} }_1}{{{\dot{\theta }} }_3} + 2{c_1}{c_2}{l_1}\dot{x}{{{\dot{\theta }} }_1} \nonumber \\&+ l_2^2{{{\dot{\theta }} }_4}^2 + c_4^2l_2^2{{{\dot{\theta }} }_3}^2 \nonumber \\&+2{c_3}{c_4}{l_2}\dot{x}{{{\dot{\theta }} }_3} - 2{s_1}{s_2}{l_1}\dot{x}{{{\dot{\theta }} }_2} - 2{s_3}{s_4}{l_2}\dot{x}{{{\dot{\theta }} }_4} \nonumber \\&+2{l_1}{l_2}{c_2}{c_4}{{{\dot{\theta }} }_2}{{{\dot{\theta }} }_4} + 2{c_2}{l_1}\dot{y}{{{\dot{\theta }} }_2}\nonumber \\&+ 2{c_4}{l_2}\dot{y}{{{\dot{\theta }} }_4}). \end{aligned}$$
(59)

Taking trolley’s plane as the zero potential energy plane, V which refers to the system’s potential energy is obtained as follows:

$$\begin{aligned} V = - ({m_1} + {m_2})g{l_1}{c_1}{c_2} - {m_2}g{l_2}{c_3}{c_4}. \end{aligned}$$
(60)

 The Lagrange equation is a system of second-order differential equations,

$$\begin{aligned} \left\{ \begin{array}{l} L(q,\dot{q}) = T(q,\dot{q}) - V(q,\dot{q})\\ \frac{d}{{dt}}(\frac{{\partial L}}{{\partial {{\dot{q}}_k}}}) - \frac{{\partial L}}{{\partial {q_k}}} - {Q_k} = 0\text {,} \end{array} \right. \end{aligned}$$
(61)

where L refers to Lagrange function; T represents system kinetic energy; V is system potential energy; q stands for Lagrange variable; \(Q_k\) refers to external forces.

Substituting Eq.(59) and Eq.(60) into Eq.(61), the three-dimensional double pendulum crane model (Eq.(1) - Eq.(6) ) can be obtained.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Q., Chai, L. & Liu, H. Anti-swing sliding mode control of three-dimensional double pendulum overhead cranes based on extended state observer. Nonlinear Dyn 111, 391–410 (2023). https://doi.org/10.1007/s11071-022-07859-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07859-9

Keywords

Navigation