We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

Modeling and control for aerial manipulation based on center of inertia on SE(3)

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The multipropeller aerial manipulation robot (MAMR) is composed of a multirotor aircraft and a manipulator. It has strong nonlinear coupling and underactuated characteristics, and its dynamics and control problems pose great challenges for researchers. In this paper, the dynamic model of MAMR based on the center of inertia (COI) is established, and the COI is expressed by exponential coordinates on the special Euclidean group SE(3). This kind of model based on COI considers the rotorcraft and the manipulator as a single system. The model can describe the motion of the MAMR by considering the change in the MAMR’s COI. The multi-rigid body system of a separated rotorcraft and manipulator is regarded as a single rigid system, which solves the strong coupling problem and realizes the pose integrated motion description. Then, based on the COI dynamics, a cascade trajectory linearization controller is designed to stabilize the MAMR. The cascade control architecture is very suitable for real-world experiments because of its convenience of parameter adjustment. The stability of the controller is proved by the Lyapunov method. Furthermore, the stability of the system is verified by simulation. Finally, a prototype is built, and outdoor experiments are carried out to prove the feasibility and effectiveness of our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ruggiero, F., Lippiello, V., Ollero, A.: Aerial manipulation: a literature review. IEEE Robot. Autom. Lett. 3(3), 1957–1964 (2018)

    Article  Google Scholar 

  2. Xilun, D.I.N.G., Pin, G.U.O., Kun, X.U., Yushu, Y.U.: A review of aerial manipulation of small-scale rotorcraft unmanned robotic systems. Chin. J. Aeronaut. 32(1), 200–214 (2019)

    Article  Google Scholar 

  3. Zhao, Z., Wang, X., Yao, P., Bai, Y.: A health performance evaluation method of multirotors under wind turbulence. Nonlinear Dyn. 102(3), 1701–1715 (2020)

    Article  Google Scholar 

  4. Michael, N., Mellinger, D., Lindsey, Q., Kumar, V.: The grasp multiple micro-UAV testbed. IEEE Robot. Autom. Mag. 17(3), 56–65 (2010)

    Article  Google Scholar 

  5. Pounds, P.E.I., R Bersak, D., M Dollar, A.: Stability of small-scale UAV helicopters and quadrotors with added payload mass under PID control. Auton. Robot. 33(1), 129–142 (2012)

    Article  Google Scholar 

  6. Ghadiok, V., Goldin, J., Ren, W.: Autonomous indoor aerial gripping using a quadrotor. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4645–4651. IEEE (2011)

  7. Augugliaro, F., Lupashin, S., Hamer, M., Male, C., Hehn, M., Mueller, M.W., Willmann, J.S., Gramazio, F., Kohler, M., D’Andrea, R.: The flight assembled architecture installation: cooperative construction with flying machines. IEEE Control Syst. Mag. 34(4), 46–64 (2014)

    Article  MathSciNet  Google Scholar 

  8. Ruggiero, F., Trujillo, M.A., Cano, R., Ascorbe, H., Viguria, A., Peréz, C., Lippiello, V., Ollero, A., Siciliano, B.: A multilayer control for multirotor uavs equipped with a servo robot arm. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 4014–4020. IEEE (2015)

  9. Suseong, K., Seo, H., Choi, S., Jin Kim, H.: Vision-guided aerial manipulation using a multirotor with a robotic arm. IEEE/ASME Trans. Mechatron. 21(4), 1912–1923 (2016)

    Article  Google Scholar 

  10. Jimenez-Cano, A.E., Martin, J., Heredia, G., Ollero, A., Cano, R. : Control of an aerial robot with multi-link arm for assembly tasks. In: 2013 IEEE International Conference on Robotics and Automation, pp. 4916–4921. IEEE (2013)

  11. Orsag, M., Michael Korpela, C., Bogdan, S., Yu Oh, P.: Hybrid adaptive control for aerial manipulation. J. Intell. Robot. Syst. 73(1), 693–707 (2014)

    Article  Google Scholar 

  12. Abaunza, H., Castillo, P., Victorino, A., Lozano, R.: Dual quaternion modeling and control of a quad-rotor aerial manipulator. J. Intell. Robot. Syst. 88(2), 267–283 (2017)

    Article  Google Scholar 

  13. Guo, P., Kun, X., Deng, H., Liu, H., Ding, X.: Modeling and control of a hexacopter with a passive manipulator for aerial manipulation. Complex Intell. Syst. 7(6), 3051–3065 (2021)

    Article  Google Scholar 

  14. Alkomy, H., Shan, J.: Vibration reduction of a quadrotor with a cable-suspended payload using polynomial trajectories. Nonlinear Dyn. 104(4), 3713–3735 (2021)

    Article  Google Scholar 

  15. Yushu, Yu., Xilun, D., Jim Zhu, J.: Attitude tracking control of a quadrotor UAV in the exponential coordinates. J. Franklin Inst. 350(8), 2044–2068 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mayhew, C.G., Sanfelice, R.G., Teel, A.R.: On path-lifting mechanisms and unwinding in quaternion-based attitude control. IEEE Trans. Autom. Control 58(5), 1179–1191 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ang, M.H., Tourassis, V.D.: Singularities of Euler and roll-pitch-yaw representations. IEEE Trans. Aerosp. Electron. Syst. 3, 317–324 (1987)

    Article  Google Scholar 

  18. Lee, T., Leok, M., McClamroch, N.H.: Geometric tracking control of a quadrotor UAV on SE (3). In: 49th IEEE Conference on Decision and Control (CDC), pp. 5420–5425. IEEE (2010)

  19. Yang, H., Lee, D.: Dynamics and control of quadrotor with robotic manipulator. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 5544–5549. IEEE (2014)

  20. Garimella, G., Kobilarov, M.: Towards model-predictive control for aerial pick-and-place. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 4692–4697. IEEE (2015)

  21. Gajbhiye, S., Cabecinhas, D., Silvestre, C., Cunha, R.: Geometric finite-time inner-outer loop trajectory tracking control strategy for quadrotor slung-load transportation. Nonlinear Dyn. 107(3), 2291–2308 (2022)

    Article  Google Scholar 

  22. Shi, X.-N., Zhang, Y.-A., Zhou, D.: A geometric approach for quadrotor trajectory tracking control. Int. J. Control 88(11), 2217–2227 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mellinger, D., Kumar, V.: Minimum snap trajectory generation and control for quadrotors. In: 2011 IEEE International Conference on Robotics and Automation, pp. 2520–2525. IEEE (2011)

  24. Ding, X., Chen, H.: Dynamic modeling and locomotion control for quadruped robots based on center of inertia on SE (3). J. Dyn. Syst. Meas. Control 138(1), 011004 (2016)

    Article  Google Scholar 

  25. Yushu, Yu., Ding, X.: Trajectory linearization control on so (3) with application to aerial manipulation. J. Frankl. Inst. 355(15), 7072–7097 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kendoul, F.: Nonlinear hierarchical flight controller for unmanned rotorcraft: design, stability, and experiments. J. Guid. Control. Dyn. 32(6), 1954–1958 (2009)

    Article  Google Scholar 

  27. Park, J., Chung, W.-K.: Geometric integration on Euclidean group with application to articulated multibody systems. IEEE Trans. Rob. 21(5), 850–863 (2005)

    Article  Google Scholar 

  28. Zhu, J.J.: Pd-spectral theory for multivariable linear time-varying systems. In: Proceedings of the 36th IEEE Conference on Decision and Control, Vol. 4, pp. 3908–3913. IEEE (1997)

  29. Yushu, Yu., Ding, X.: A global tracking controller for underactuated aerial vehicles: design, analysis, and experimental tests on quadrotor. IEEE/ASME Trans. Mechatron. 21(5), 2499–2511 (2016)

    Article  Google Scholar 

  30. Khalil, H.K.: Nonlinear Systems, 3rd edn., p. 115. Patience Hall, Hoboken (2002)

    Google Scholar 

  31. Isidori, A.: Nonlinear Control Systems: An Introduction. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  32. Selig, J.M.: Geometrical Methods in Robotics. Springer, Berlin (2013)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank professor Jianying Yang for his valuable discussion on the revised version of this paper. This work was supported by the National Natural Science Foundation of China (NSFC) (Nos. 91748201, T2121003 and 62073002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huichao Deng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study. The experiment data are available from the corresponding author on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (mp4 90403 KB)

Appendix

Appendix

1.1 A. Derivation of the COI expression

The generalized kinetic energy of the system can be expressed as

$$\begin{aligned} E = \frac{1}{2}{\left( {{{\varvec{\zeta }}}_C^B} \right) ^\mathrm{{T}}}{{\varvec{M}}}_C^B{{\varvec{\zeta }}}_C^B, \end{aligned}$$
(A.1)

where \({{\varvec{\zeta }}}_C^B = \mathrm{{A}}{\mathrm{{d}}_{{{{\varvec{g}}}_\mathrm{BC}}}}{{\varvec{\zeta }}}_C^C\) has been defined in Formula (1), and thus, we obtain

$$\begin{aligned}&E = \frac{1}{2}{\left( {\mathrm{{A}}{\mathrm{{d}}_{{{{\varvec{g}}}_\mathrm{BC}}}}{{\varvec{\zeta }}}_C^C} \right) ^\mathrm{{T}}}{{\varvec{M}}}_C^B\mathrm{{A}}{\mathrm{{d}}_{{{{\varvec{g}}}_\mathrm{BC}}}}{{\varvec{\zeta }}}_C^C \nonumber \\&\quad \mathrm{{ = }}\frac{1}{2}{\left( {{{\varvec{\zeta }}}_C^C} \right) ^\mathrm{{T}}}\mathrm{{Ad}}_{{{{\varvec{g}}}_\mathrm{BC}}}^\mathrm{{T}}{{\varvec{M}}}_C^B\mathrm{{A}}{\mathrm{{d}}_{{{{\varvec{g}}}_\mathrm{BC}}}}{{\varvec{\zeta }}}_C^C \nonumber \\&\quad \mathrm{{ = }}\frac{1}{2}{\left( {{{\varvec{\zeta }}}_C^C} \right) ^\mathrm{{T}}}\left( {\mathrm{{Ad}}_{{{{\varvec{g}}}_\mathrm{BC}}}^\mathrm{{T}}{{\varvec{M}}}_C^B\mathrm{{A}}{\mathrm{{d}}_{{{{\varvec{g}}}_\mathrm{BC}}}}} \right) {{\varvec{\zeta }}}_C^C \end{aligned}$$
(A.2)

From the physical meaning of the kinetic energy, we also obtain

$$\begin{aligned} E = \frac{1}{2}{\left( {{{\varvec{\zeta }}}_C^C} \right) ^\mathrm{{T}}}{{\varvec{M}}}_C^C{{\varvec{\zeta }}}_C^C. \end{aligned}$$
(A.3)

Comparing Eqs. (A.2) and (A.3), we obtain Formula (4) as

$$\begin{aligned} {{\varvec{M}}}_C^C = \mathrm{{Ad}}_{{{{\varvec{g}}}_\mathrm{BC}}}^T{{\varvec{M}}}_C^B\mathrm{{A}}{\mathrm{{d}}_{{{{\varvec{g}}}_\mathrm{BC}}}} \end{aligned}$$
(A.4)

1.2 B. Derivation of the generalized velocity error

According to the tracking error defined on SE(3) and its exponential mapping, we further define

$$\begin{aligned}&{{{{\varvec{\hat{\zeta }}}}}_{C,\mathrm{err}}} = {{\varvec{g}}}_{C,\mathrm{err}}^{ - 1}{{{\dot{{\varvec{g}}}}}_{C,\mathrm{err}}}\nonumber \\&\qquad \quad \mathrm{{ = (}}{{\varvec{g}}}_C^{ - 1}{{{\varvec{g}}}_{C,\mathrm{com}}}{\mathrm{{)}}^{ - 1}}({\dot{{\varvec{g}}}}_C^{ - 1}{{{\varvec{g}}}_{C,\mathrm{com}}} + {{\varvec{g}}}_C^{ - 1}{{{\dot{{\varvec{g}}}}}_{C,\mathrm{com}}}) \nonumber \\&\qquad \quad \mathrm{{ = }}{{\varvec{g}}}_{C,\mathrm{com}}^{ - 1}{{{\varvec{g}}}_C}({\dot{{\varvec{g}}}}_C^{ - 1}{{{\varvec{g}}}_{C,\mathrm{com}}} + {{\varvec{g}}}_C^{ - 1}{{{\dot{{\varvec{g}}}}}_{C,\mathrm{com}}}) \nonumber \\&\qquad \quad \mathrm{{ = }}{{\varvec{g}}}_{C,\mathrm{com}}^{ - 1}{{{\varvec{g}}}_C}{\dot{{\varvec{g}}}}_C^{ - 1}{{{\varvec{g}}}_{C,\mathrm{com}}} + {{\varvec{g}}}_{C.\mathrm{com}}^{ - 1}{{{\dot{{\varvec{g}}}}}_{C,\mathrm{com}}} \nonumber \\ \end{aligned}$$
(B.1)

According to the definition, the second term can be written as \({{{\varvec{\hat{\zeta }}}}_{C,\mathrm{com}}}\), and the inverse derivative of the matrix in the first term can be derived as follows:

$$\begin{aligned}&{{{\varvec{g}}}_C}{{\varvec{g}}}_C^{ - 1} = {{\varvec{I}}} \nonumber \\&\frac{\mathrm{d}}{{\mathrm{d}t}}({{{\varvec{g}}}_C}{{\varvec{g}}}_C^{ - 1}) = 0\nonumber \\&{{{\dot{{\varvec{g}}}}}_C}{{\varvec{g}}}_C^{ - 1} + {{{\varvec{g}}}_C}{\dot{{\varvec{g}}}}_C^{ - 1} = 0\nonumber \\&{\dot{{\varvec{g}}}}_C^{ - 1} = - {{\varvec{g}}}_C^{ - 1}{{{\dot{{\varvec{g}}}}}_C}{{\varvec{g}}}_C^{ - 1} \end{aligned}$$
(B.2)

Substituting (B.1) into (B.2), we obtain

$$\begin{aligned}&{{{{\varvec{\hat{\zeta }}}}}_{C,\mathrm{err}}} = {{{{\varvec{\hat{\zeta }}}}}_{C,\mathrm{com}}} - {{\varvec{g}}}_{C.\mathrm{com}}^{ - 1}{{{\varvec{g}}}_C}{{\varvec{g}}}_C^{ - 1}{{{\dot{{\varvec{g}}}}}_C}{{\varvec{g}}}_C^{ - 1}{{{\varvec{g}}}_{C,\mathrm{com}}} \nonumber \\&\qquad \quad \mathrm{{ =\, }}{{{{\varvec{\hat{\zeta }}}}}_{C,\mathrm{com}}} - ({{\varvec{g}}}_{C.\mathrm{com}}^{ - 1}{{{\varvec{g}}}_C})({{\varvec{g}}}_C^{ - 1}{{{\dot{{\varvec{g}}}}}_C})({{\varvec{g}}}_C^{ - 1}{{{\varvec{g}}}_{C,\mathrm{com}}})\nonumber \\&\qquad \quad \mathrm{{ =\, }}{{{{\varvec{\hat{\zeta }}}}}_{C,\mathrm{com}}} - {{\varvec{g}}}_{C.err}^{ - 1}{{{{\varvec{\hat{\zeta }}}}}_C}{{{\varvec{g}}}_{C,\mathrm{err}}} \end{aligned}$$
(B.3)

1.3 C. Control gain derived from the PD spectrum theory

We define a closed-loop matrix \({{{\varvec{C}}}_1} \in {{\mathbb {R}}^{12 \times 12}}\) as

$$\begin{aligned} {{{\varvec{C}}}_1} = \left( {\begin{array}{*{20}{c}} {{{{\varvec{0}}}_{6 \times 6}}}&{}{{{{\varvec{E}}}_6}}\\ {{{{\varvec{C}}}_{11}}}&{}{{{{\varvec{C}}}_{12}}} \end{array}} \right) , \end{aligned}$$
(C.1)

where \({{{\varvec{C}}}_{11}} = diag\big ( - {\lambda _{11}}, - {\lambda _{21}}, - {\lambda _{31}}, - {\lambda _{41}}, - {\lambda _{51}}, - {\lambda _{61}}\big )\), and \({{{\varvec{C}}}_{12}} = diag\big ( - {\lambda _{12}}, - {\lambda _{22}}, - {\lambda _{32}}, - {\lambda _{42}}, - {\lambda _{52}}, - {\lambda _{62}}\big )\). The coefficient \({\lambda _{ij}}\) is a function of the bandwidth frequency, \({\Omega _i}\), and damping ratio, \({\varsigma _i}\). The expression is \({\lambda _{i1}} = \Omega _i^2\), \({\lambda _{i2}} = 2{\varsigma _i}{\Omega _i} - \frac{{{{\dot{\Omega }}_i}}}{{{\Omega _i}}}\), and \(i = 1,2,3\) represents the three axes.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, P., Xu, K., Deng, H. et al. Modeling and control for aerial manipulation based on center of inertia on SE(3). Nonlinear Dyn 111, 369–389 (2023). https://doi.org/10.1007/s11071-022-07858-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07858-w

Keywords

Navigation