Skip to main content
Log in

A high-performance hybrid random number generator based on a nondegenerate coupled chaos and its practical implementation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

High-quality random number generators (RNGs) are essential in many fields. To overcome the drawbacks in instability of the true RNGs and periodicity of the pseudo-RNGs, based on an analog–digital hybrid chaotic entropy source, an aperiodic hybrid RNG is proposed. The hybrid source is a nondegenerate chaotic system that consists of a delay-coupled digital chaotic map and the analog anticontrol. The anticontrol strategy that considers practical implementation is rarely studied. In this paper, the construction strategy and anticontrol mechanism are well designed and can be regarded as a general methodology to realize multi-dimensional chaotic systems without performance degradation. The proposed system presents good chaotic behaviors in the digital world and has great advantages when realized on hardware platforms. The detailed software simulation and hardware implementation are both presented to verify the effectiveness of the scheme. Due to the excellent properties of the chaotic source, without complicated post-processing, the proposed hybrid RNG can generate high-quality true random bits steadily at relatively low precision and shows robustness to the parameter fluctuation, therefore it is suitable for cryptography and other potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Bakiri, M., Guyeux, C., Couchot, J.F., Oudjida, A.K.: Survey on hardware implementation of random number generators on fpga: theory and experimental analyses. Comput. Sci. Rev. 27, 135–153 (2018)

    MathSciNet  MATH  Google Scholar 

  2. Yalcin, M.E., Suykens, J.A.K., Vandewalle, J.: True random bit generation from a double-scroll attractor. IEEE Trans. Circuits Syst. I-Regul. Pap. 51(7), 1395–1404 (2004)

    MathSciNet  MATH  Google Scholar 

  3. Sunar, B., Martin, W.J., Stinson, D.R.: A provably secure true random number generator with built-in tolerance to active attacks. IEEE Trans. Comput. 56(1), 109–119 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Murillo-Escobar, M.A., Cruz-Hernandez, C., Cardoza-Avendano, L., Mendez-Ramirez, R.: A novel pseudorandom number generator based on pseudorandomly enhanced logistic map. Nonlinear Dyn. 87(1), 407–425 (2017)

    MathSciNet  Google Scholar 

  5. Karakaya, B., Gülten, A., Frasca, M.: A true random bit generator based on a memristive chaotic circuit: analysis, design and fpga implementation. Chaos Solitons Fractals 119, 143–149 (2019)

    MATH  Google Scholar 

  6. Jiang, H., Belkin, D., Savel’ev, S.E., Lin, S., Wang, Z., Li, Y., Joshi, S., Midya, R., Li, C., Rao, M., Barnell, M., Wu, Q., Yang, J.J., Xia, Q.: A novel true random number generator based on a stochastic diffusive memristor. Nat. Commun. 8 (2017)

  7. Fukushima, A., Seki, T., Yakushiji, K., Kubota, H., Imamura, H., Yuasa, S., Ando, K.: Spin dice: a scalable truly random number generator based on spintronics. Appl. Phys. Express 7(8), 083001 (2014)

    Google Scholar 

  8. François, M., Grosges, T., Barchiesi, D., Erra, R.: Pseudo-random number generator based on mixing of three chaotic maps. Commun. Nonlinear Sci. Numer. Simul. 19(4), 887–895 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Wang, Y., Liu, Z., Ma, J., He, H.: A pseudorandom number generator based on piecewise logistic map. Nonlinear Dyn. 83(4), 2373–2391 (2016)

    MathSciNet  MATH  Google Scholar 

  10. La Fraga, L.G.D., Torresperez, E., Tlelocuautle, E., Mancillaslopez, C.: Hardware implementation of pseudo-random number generators based on chaotic maps. Nonlinear Dyn. 90(3), 1661–1670 (2017)

    Google Scholar 

  11. İsmail Koyuncu, Turan Özcerit, A.: The design and realization of a new high speed fpga-based chaotic true random number generator. Comput. Electr. Eng. 58, 203–214 (2017)

  12. Nguyen, N.T., Bui, T., Gagnon, G., Giard, P., Kaddoum, G.: Designing a pseudorandom bit generator with a novel five-dimensional-hyperchaotic system. IEEE Trans. Ind. Electron. 69(6), 6101–6110 (2022)

    Google Scholar 

  13. Lv, X., Liao, X., Yang, B.: A novel pseudo-random number generator from coupled map lattice with time-varying delay. Nonlinear Dyn. 94(1), 325–341 (2018)

    Google Scholar 

  14. Sahari, M.L., Boukemara, I.: A pseudo-random numbers generator based on a novel 3d chaotic map with an application to color image encryption. Nonlinear Dyn. 94(1), 723–744 (2018)

    Google Scholar 

  15. Hua, Z., Zhou, Y.: One-dimensional nonlinear model for producing chaos. IEEE Trans. Circuits Syst. I-Regul. Pap. 65(1), 235–246 (2018)

    Google Scholar 

  16. Pareschi, F., Setti, G., Rovatti, R.: Implementation and testing of high-speed cmos true random number generators based on chaotic systems. IEEE Trans. Circuits Syst. I-Regul. Pap. 57(12), 3124–3137 (2010)

    MathSciNet  Google Scholar 

  17. Nguyen, N., Kaddoum, G., Pareschi, F., Rovatti, R., Setti, G.: A fully cmos true random number generator based on hidden attractor hyperchaotic system. Nonlinear Dyn. 102(4), 2887–2904 (2020)

    Google Scholar 

  18. Li, P., Wang, Y.C., Zhang, J.Z.: All-optical fast random number generator. Opt. Express 18(19), 20360–20369 (2010)

    Google Scholar 

  19. Dantas, W., Rodrigues, L.R., Ujevic, S., Gusso, A.: Using nanoresonators with robust chaos as hardware random number generators. Chaos 30(4), 043126 (2020)

    MathSciNet  Google Scholar 

  20. Li, C., Feng, B., Li, S., Kurths, J., Chen, G.: Dynamic analysis of digital chaotic maps via state-mapping networks. IEEE Trans. Circuits Syst. I-Regul. Pap. 66(6), 2322–2335 (2019)

    MathSciNet  MATH  Google Scholar 

  21. Tutueva, A.V., Karimov, T.I., Moysis, L., Nepomuceno, E.G., Volos, C., Butusov, D.N.: Improving chaos-based pseudo-random generators in finite-precision arithmetic. Nonlinear Dyn. 104(1), 727–737 (2021)

    Google Scholar 

  22. Hua, Z., Zhou, Y., Huang, H.: Cosine-transform-based chaotic system for image encryption. Inf. Sci. 480, 403–419 (2019)

    Google Scholar 

  23. Cong, L., Xiaofu, W., Songgeng, S.: A general efficient method for chaotic signal estimation. IEEE Trans. Signal Process. 47(5), 1424–1428 (1999)

    Google Scholar 

  24. Chen, S., Lü, J.: Parameters identification and synchronization of chaotic systems based upon adaptive control. Phys. Lett. A 299(4), 353–358 (2002)

    MathSciNet  MATH  Google Scholar 

  25. Ming, H., Hu, H., Zheng, J.: Analysis of a new coupled hyperchaotic model and its topological types. Nonlinear Dyn. 105(2), 1937–1952 (2021)

    Google Scholar 

  26. Wernecke, H., Sándor, B., Gros, C.: Chaos in time delay systems, an educational review. Phys. Rep.-Rev. Sec. Phys. Lett. 824, 1–40 (2019). Chaos in time delay systems, an educational review

  27. Liu, L., Miao, S.: Delay-introducing method to improve the dynamical degradation of a digital chaotic map. Inf. Sci. 396, 1–13 (2017)

    Google Scholar 

  28. Černák, J.: Digital generators of chaos. Phys. Lett. A 214(3), 151–160 (1996)

    MathSciNet  MATH  Google Scholar 

  29. Li, S., Chen, G., Mou, X.: On the dynamical degradation of digital piecewise linear chaotic maps. Int. J. Bifurc. Chaos 15(10), 3119–3151 (2005)

    MathSciNet  MATH  Google Scholar 

  30. Persohn, K., Povinelli, R.: Analyzing logistic map pseudorandom number generators for periodicity induced by finite precision floating-point representation. Chaos Solitons Fractals 45(3), 238–245 (2012)

    Google Scholar 

  31. Wheeler, D.D., Matthews, R.: Supercomputer investigations of a chaotic encryption algorithm. Cryptologia 15(2), 140–152 (1991)

    Google Scholar 

  32. Heidaribateni, G., Mcgillem, C.D.: A chaotic direct-sequence spread-spectrum communication system. IEEE Trans. Commun. 42(234), 1524–1527 (1994)

    Google Scholar 

  33. Nagaraj, N., Shastry, M.C., Vaidya, P.G.: Increasing average period lengths by switching of robust chaos maps in finite precision. Eur. Phys. J.-Spec. Top. 165(1), 73–83 (2008)

    Google Scholar 

  34. Hu, H., Xu, Y., Zhu, Z.: A method of improving the properties of digital chaotic system. Chaos Solitons Fractals 38(2), 439–446 (2008)

    MATH  Google Scholar 

  35. Li, C., Chen, Y., Chang, T., Deng, L., To, K.: Period extension and randomness enhancement using high-throughput reseeding-mixing prng. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20(2), 385–389 (2012)

    Google Scholar 

  36. Chen, G., Lai, D.: Feedback anticontrol of discrete chaos. Int. J. Bifurc. Chaos 8(07), 1585–1590 (1998)

    MathSciNet  MATH  Google Scholar 

  37. Zheng, J., Hu, H., Xia, X.: Applications of symbolic dynamics in counteracting the dynamical degradation of digital chaos. Nonlinear Dyn. 94(2), 1535–1546 (2018)

    Google Scholar 

  38. Bassham III, L.E., Rukhin, A.L., Soto, J., et al.: A statistical test suite for random and pseudorandom number generators for cryptographic applications. Tech. rep., Nat. Inst. Standards Technol., Special Publication 800-22 Revision 1a (2010)

  39. Barker, E., Kelsey, J., McKay, K.A., Baish, M.L., Boyle, M., et al.: Recommendation for the entropy sources used for random bit generation. NIST Special Publication p. 102 (2018)

  40. L’ecuyer, P., Simard, R.: Testu01: Ac library for empirical testing of random number generators. ACM Trans. Math. Softw. 33(4), 1–40 (2007)

    MATH  Google Scholar 

  41. Collet, P., Eckmann, J.P.: Iterated Maps on the Interval as Dynamical Systems. Springer, Berlin (2009)

    MATH  Google Scholar 

  42. Wolf, A., Swift, J., Swinney, H., Vastano, J.: Determining lyapunov exponents from a time series. Phys. D 16(15), 285–317 (1985)

    MathSciNet  MATH  Google Scholar 

  43. Kapitaniak, T., Leonov, G.: Multistability: uncovering hidden attractors. Eur. Phys. J.-Spec. Top. 224(8), 1405–1408 (2015)

    Google Scholar 

  44. Banerjee, S., Yorke, J.A., Grebogi, C.: Robust chaos. Phys. Rev. Lett. 80, 3049–3052 (1998)

    MATH  Google Scholar 

  45. Salcedo, A., Alvarez, J.: Oscillations in first-order, continuous-time systems via time-delay feedback. Complexity (2018)

  46. Pincus, S.M.: Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. U. S. A. 88(6), 2297–2301 (1991)

  47. Bandt, C., Pompe, B.: Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88(17), 174102 (2002)

    Google Scholar 

  48. Wang, Y., Liu, Z., Zhang, L.Y., Pareschi, F., Setti, G., Chen, G.: From chaos to pseudorandomness: a case study on the 2-d coupled map lattice. IEEE T. Cybern. pp. 1–11 (2021)

  49. Hong, Z., Xieting, L.: Generating chaotic secure sequences with desired statistical properties and high security. Int. J. Bifurc. Chaos 7(01), 205–213 (1997)

    MATH  Google Scholar 

  50. Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Trans. Inform. Theory 22(1), 75–81 (1976)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported by the National Key R &D Program of China [Grant Number 2017YFB0802000]; and the Key R &D Program of Hubei Province [Grant Number 2020BAB104].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanping Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ming, H., Hu, H., Lv, F. et al. A high-performance hybrid random number generator based on a nondegenerate coupled chaos and its practical implementation. Nonlinear Dyn 111, 847–869 (2023). https://doi.org/10.1007/s11071-022-07838-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07838-0

Keywords

Navigation