Skip to main content
Log in

Efficient dynamics modeling and analysis for probabilistic uncertain beam systems with geometric nonlinearity and thermal coupling effect

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

An adaptive sparse polynomial chaos (PC) transfer matrix method (TMM) is proposed to study the dynamics modeling and analysis of probabilistic uncertain beam systems with geometric nonlinearity and thermal coupling effect. Based on the floating reference frame and the nonlinear elasticity theory, the dynamics equations of flexible beam with geometric nonlinearity and thermal coupling effect are deduced firstly, and then, its transfer equations and transfer matrices and that of the involved hinge elements are established, which can be used to assemble the overall transfer equation of beam system easily according to the system’s topological structure. For a deterministic system, the dynamics of system can be obtained by solving the coupled transfer equation and transient heat conduction equation easily. The proposed TMM doesn’t need the global differential–algebraic equation of system and greatly reduces the involved matrix order and calculation cost, so it is very useful for improving the valuation efficiency of the design of experiment in the subsequent uncertain analysis. When considering the stochastic parameters, above equations are all uncertain equations. Based on the hyperbolic basis truncation scheme, the least angle regression algorithm, and the posteriori cross-validation error estimation method, a nonintrusive adaptive sparse PC expansion method is adopted for uncertain analysis, which only needs a small number of model evaluations and could further reduce the calculation cost of uncertain analysis. The numerical simulation is presented to validate the correctness, feasibility, and computational efficiency of this method. By deducing new transfer equations of related body/hinge, this research can be extended to the dynamics modeling and analysis for general rigid–flexible–thermal coupling multibody systems with probabilistic uncertainties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Data sharing not applicable, as this article describes a method of dynamics modeling and analysis, and the data supporting this study have been available within the article.

References

  1. Schiehlen, W.: Research trends in multibody system dynamics. Multibody Syst. Dyn. 18(1), 3–13 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Rong, B., Rui, X.T., Tao, L., et al.: Theoretical modeling and numerical solution methods for flexible multibody system dynamics. Nonlinear Dyn. 98(2), 1519–1553 (2019)

    Article  Google Scholar 

  3. Liu, J.Y., Lu, H.: Thermal effect on the deformation of a flexible beam with large kinematical driven overall motions. Eur. J. Mech. A Solids 26(1), 137–151 (2007)

    Article  MATH  Google Scholar 

  4. Li, T.J., Wang, Y.: Deployment dynamic analysis of deployable antennas considering thermal effect. Aerosp. Sci. Technol. 13(4–5), 210–215 (2009)

    Article  Google Scholar 

  5. Čepon, G., Starc, B., Zupančič, B., et al.: Coupled thermo-structural analysis of a bimetallic strip using the absolute nodal coordinate formulation. Multibody Syst.Dyn. 41, 391–402 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cui, Y.Q., Yu, Z.Q., Lan, P.: A novel method of thermo-mechanical coupled analysis based on the unified description. Mech. Mach. Theory 134, 376–392 (2019)

    Article  Google Scholar 

  7. Wei, L.H., Huang, A.Y., Deng, C.Z.: Dynamics and thermal impact response analysis of the hub and beam coupled system with tip mass. Mech. Sci. Technol. Aerosp. Eng. 27(10), 1236–1241 (2008)

    Google Scholar 

  8. Liu, J.Y., Pan, K.Q.: Dynamics investigation of composite flexible multi-body system considering terminal effect. J. Dyn. Control 7(1), 9–13 (2009)

    Google Scholar 

  9. Shen, Z.X.: Thermally Induced Vibrations of Large-Scale Space Multi-body Structures Based on the Absolute Coordinate, Beijing Institute of Technology, Doctoral Dissertation (2014)

  10. Zhang, B., Li, Y.M., Lu, WZh.: Dynamic characteristics of rotating pretwisted clamped-clamped beam under thermal stress. J. Mech. Sci. Technol. 30, 4031–4042 (2016)

    Article  Google Scholar 

  11. Shen, Zh.X., Li, H.J., Liu, X.N., et al.: Thermal shock induced dynamics of a spacecraft with a flexible deploying boom. Acta Astronaut. 141, 123–131 (2017)

    Article  Google Scholar 

  12. Petzke, F., Mesbah, A., Streif, S.: PoCET: a polynomial chaos Expansion toolbox for Matlab. In: Proceedings of 21st IFAC World Congress (2020)

  13. Shen, W.: Exploration and Generalization of Several Stepwise Variable Selection Algorithms. Shandong University (2016)

    Google Scholar 

  14. Yu, L.H., Zhao, J.X.: Design of sparse MIMO equalizers using least angle regression. J. Xidian Univ. 46(1), 73–78 (2019)

    Google Scholar 

  15. Blatman, G.: Adaptive Sparse Polynomial Chaos Expansion for Uncertainty Propagation and Sensitivity Analysis. Ph.D. Thesis, Blaise Pascal University - Clermont II (2009)

  16. Gupta, V., Mittal, M.: QRS complex detection using STFT, chaos analysis, and PCA in standard and real-time ECG databases. J. Inst. Eng. 100, 489–497 (2019)

    Google Scholar 

  17. Gupta, V., Mittal, M., Mittal, V.: Chaos theory and ARTFA: emerging tools for interpreting ECG signals to diagnose cardiac arrhythmias. Wirel. Pers. Commun. 118(2), 3615–3646 (2021)

    Article  Google Scholar 

  18. Gupta, V., Mittal, M., Mittal, V.: R-peak detection based chaos analysis of ECG signal. Analog Integr. Circ. Sig. Process 102(3), 479–490 (2020)

    Article  Google Scholar 

  19. Müller, A.: Screw and Lie group theory in multibody dynamics recursive algorithms and equations of motion of tree-topology systems. Multibody Syst. Dyn. 42, 219–248 (2018)

    Article  MathSciNet  Google Scholar 

  20. Sun, H.L.: Research on Recursive Dynamics of Rigid-Flexible-Liquid Coupling Mechanical Multibody Systems, Ph.D. Dissertation, Nanjing University of Aeronautics and Astronautics (2011)

  21. Kingsley, C., Poursina, M.: Extension of the divide-and-conquer algorithm for the efficient inverse dynamics analysis of multibody systems. Multibody Syst.Dyn. 42(2), 145–167 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rui, X.T., He, B., Lu, Y.Q., et al.: Discrete time transfer matrix method for multibody system dynamics. Multibody Syst. Dyn. 14(3–4), 317–344 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rong, B., Rui, X.T., Tao, L., et al.: Dynamics analysis and fuzzy anti-swing control design of overhead crane system based on Riccati discrete time transfer matrix method. Multibody Syst.Dyn. 43(3), 279–295 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rui, X.T., Rong, B., Wang, G.P., et al.: Discrete time transfer matrix method for dynamics analysis of complex weapon systems. Sci. China Technol. Sci. 54(5), 1061–1071 (2011)

    Article  MATH  Google Scholar 

  25. Zhang, J.S., Rui, X.T., Liu, F.F., et al.: Substructuring technique for dynamics analysis of flexible beams with large deformation. J. Shanghai Jiao Tong Univ. (Sci.) 22(5), 562–569 (2017)

    Article  Google Scholar 

  26. Rui, X., Bestle, D.: Reduced multibody system transfer matrix method using decoupled hinge equations. Int. J. Mech. Syst. Dyn. 1(2), 182–193 (2021)

    Article  Google Scholar 

  27. Rui, X.T., Zhang, J.S., Wang, X., et al.: Multibody system transfer matrix method: the past, the present, and the future. Int. J. Mech. Syst. Dyn. 2(1), 3–26 (2022)

    Article  Google Scholar 

  28. Rui, X.T., Bestle, D., Zhang, J.S., et al.: A new version of transfer matrix method for multibody systems. Multibody Syst.Dyn. 38, 137–156 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Guo, Y.M., Tao, W.M., Zhuang, Zh.: Linear and nonlinear finite elements and their applications. China Machine Press, Beijing (2004)

    Google Scholar 

  30. Liu, J.Y., Hong, J.Z.: Dynamic modeling theory and finite element method for a rectangular plate undergoing large overall motion. J. Vib. Eng. 16(2), 175–179 (2003)

    Google Scholar 

  31. Shabana, A.A.: Dynamics of Multibody Systems, 3rd edn. Cambridge University Press, New York (2008)

    MATH  Google Scholar 

  32. Bauchau, O.A.: Flexible Multibody Dynamics. Springer, New York (2011)

    Book  MATH  Google Scholar 

  33. Zhang, J.S., Rui, X.T., Gu, J.J.: Eigenvalue analysis of the stress stiffening effect for a curved beam with large rigid motion. J. Vib. Eng. 29(5), 779–786 (2016)

    Google Scholar 

  34. Nickell, R.E.: Nonlinear dynamics by mode superposition. Comput. Methods Appl. Mech. Eng. 7(1), 107–129 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  35. Herkt, S.: Model Reduction of Nonlinear Problems in Structural Mechanics: Towards a Finite Element Type Model for Multibody Simulation. PhD Thesis, TU Kaiserslautern, FB Mathematik (2008)

  36. Blatman, G., Sudret, B.: Adaptive sparse polynomial chaos expansion based on least angle regression. J. Comput. Phys. 230(6), 2345–2367 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. UQLab, The Framework for Uncertainty Quantification. https://www.uqlab.com

  38. Zhang, J.S.: Study on Some Issues of the New Version of Transfer Matrix Method for Multibody Systems. PhD Thesis, Nanjing University of Science and Technology (2017)

Download references

Acknowledgements

The research was supported by the National Natural Science Foundation of China (Grant No: 11702292).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Tao.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work. We do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted. The work described has not been submitted elsewhere for publication, in whole or in part, and all the authors listed have approved the manuscript that is enclosed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$ \begin{aligned} & {\mathbf{M}}_{{e_{k} }} = \left[ {\begin{array}{*{20}c} {{\mathbf{M}}_{{e_{k} ,11}} } & {{\mathbf{M}}_{{e_{k} ,12}} } & {{\mathbf{M}}_{{e_{k} ,13}} } \\ {{\mathbf{M}}_{{e_{k} ,12}}^{{\text{T}}} } & {{\mathbf{M}}_{{e_{k} ,22}} } & {{\mathbf{M}}_{{e_{k} ,23}} } \\ {{\mathbf{M}}_{{e_{k} ,13}}^{{\text{T}}} } & {{\mathbf{M}}_{{e_{k} ,23}}^{{\text{T}}} } & {{\mathbf{M}}_{{e_{k} ,33}} } \\ \end{array} } \right],\quad {\mathbf{Q}}_{{in,e_{k} }} { = }\left[ {\begin{array}{*{20}c} {{\mathbf{Q}}_{{in,e_{k} 1}} } \\ {{\mathbf{Q}}_{{in,e_{k} 2}} } \\ {{\mathbf{Q}}_{{in,e_{k} 3}} } \\ \end{array} } \right],\quad {\mathbf{M}}_{{e_{k} ,11}} = \int_{{V_{{e_{k} }} }} {\rho {\mathbf{I}}{\text{d}}V} = {\mathbf{D}}_{1} \\ & {\mathbf{M}}_{{e_{k} ,12}} = - {\mathbf{A}}_{If} ({\tilde{\mathbf{D}}}_{2} + \sum\limits_{j = 1}^{M} {{\tilde{\mathbf{D}}}_{3,j} \eta_{j} } + \underline{{{\tilde{\mathbf{h}}}_{{1}} {{\varvec{\upeta}}}^{{\text{T}}} {\mathbf{D}}_{10}^{{}} {{\varvec{\upeta}}}}} ){\mathbf{A}}_{If}^{{\text{T}}} ,\quad {\mathbf{M}}_{{e_{k} ,13}} = {\mathbf{A}}_{If} ({\mathbf{D}}_{3} + \underline{{2{\mathbf{h}}_{{1}} {{\varvec{\upeta}}}^{{\text{T}}} {\mathbf{D}}_{10} }} ) \\ & {\mathbf{M}}_{{e_{k} ,22}} = {\mathbf{A}}_{If} \left( {{\mathbf{D}}_{7} + \sum\limits_{j = 1}^{M} {\left( {{\mathbf{D}}_{8,j} + {\mathbf{D}}_{8,j}^{{\text{T}}} } \right)\eta_{j} } + \sum\limits_{i = 1}^{M} {\sum\limits_{j = 1}^{M} {{\mathbf{D}}_{9,ij} \eta_{i} \eta_{j} } { + }\underline{{\sum\limits_{i = 1}^{M} {\sum\limits_{j = 1}^{M} {\left( {{\mathbf{D}}_{11,ij} \eta_{i} \eta_{j} } \right){\tilde{\mathbf{h}}}_{{1}}^{{\text{T}}} + } } \left[ {\sum\limits_{i = 1}^{M} {\sum\limits_{j = 1}^{M} {\left( {{\mathbf{D}}_{11,ij} \eta_{i} \eta_{j} } \right){\tilde{\mathbf{h}}}_{{1}}^{{\text{T}}} } } } \right]^{{\text{T}}} }} } } \right){\mathbf{A}}_{If}^{{\text{T}}} \\ & {\mathbf{M}}_{{e_{k} ,23}} = {\mathbf{A}}_{If} \left( {{\mathbf{D}}_{4} + \sum\limits_{j = 1}^{M} {{\mathbf{D}}_{5,j} \eta_{j} } + \underline{{2\sum\limits_{j = 1}^{M} {{\mathbf{D}}_{12,j} \eta_{j} } { + }\sum\limits_{i = 1}^{M} {\sum\limits_{j = 1}^{M} {\left( {{\tilde{\mathbf{h}}}_{{1}} {\mathbf{D}}_{{{20,}ij}}^{{\text{T}}} + 2{\mathbf{D}}_{{{23,}ij}}^{{\text{T}}} } \right)\eta_{i} \eta_{j} } } }} } \right) \\ & {\mathbf{M}}_{{e_{k} ,33}} = {\mathbf{D}}_{6} { + }\underline{{{2}\sum\limits_{j = 1}^{M} {\left( {{\mathbf{D}}_{{5{0},j}} + {\mathbf{D}}_{{5{0},j}}^{{\text{T}}} } \right)\eta_{j} } { + }4\sum\limits_{i = 1}^{M} {\sum\limits_{j = 1}^{M} {{\mathbf{D}}_{{5{2},ij}} \eta_{i} \eta_{j} } } }} \\ \end{aligned} $$
$$ {\mathbf{Q}}_{{in,e_{k} 1}} = - {\mathbf{A}}_{If} {\tilde{\boldsymbol{\omega }}}_{If} \left( {{\tilde{\mathbf{D}}}_{2}^{{\text{T}}} + \sum\limits_{j = 1}^{M} {{\tilde{\mathbf{D}}}_{3,j}^{{\text{T}}} \eta_{j} } + \underline{{{\tilde{\mathbf{h}}}_{{1}}^{{\text{T}}} {{\varvec{\upeta}}}^{{\text{T}}} {\mathbf{D}}_{10} {{\varvec{\upeta}}}}} } \right){{\varvec{\upomega}}}_{If} - 2{\mathbf{A}}_{If} \left( {\left( {\sum\limits_{j = 1}^{M} {{\tilde{\mathbf{D}}}_{3,j}^{{\text{T}}} \dot{\eta }_{j} + } \underline{{2{\tilde{\mathbf{h}}}_{{1}}^{{\text{T}}} {{\varvec{\upeta}}}^{{\text{T}}} {\mathbf{D}}_{10} {\dot{\boldsymbol{\eta }}}}} } \right){{\varvec{\upomega}}}_{If} + \underline{{{\mathbf{h}}_{{1}} {\dot{\boldsymbol{\eta }}}^{{\text{T}}} {\mathbf{D}}_{10} {\dot{\boldsymbol{\eta }}}}} } \right) $$
$$ \begin{aligned} {\mathbf{Q}}_{{in,e_{k} {2}}} & = - 2{\mathbf{A}}_{If} \left( {\sum\limits_{j = 1}^{M} {\left( {{\mathbf{D}}_{8,j} + \frac{1}{2}{\mathbf{D}}_{13,j} } \right)\dot{\eta }_{j} + \sum\limits_{i = 1}^{M} {\sum\limits_{j = 1}^{M} {{\mathbf{D}}_{9,ij} \eta_{i} } \dot{\eta }_{j} + \underline{{2\sum\limits_{i = 1}^{M} {\sum\limits_{j = 1}^{M} {\left( {{\mathbf{D}}_{11,ij}^{{}} \eta_{i} \dot{\eta }_{j} } \right){\tilde{\mathbf{h}}}_{{1}}^{{\text{T}}} } } }} } } } \right){{\varvec{\upomega}}}_{If} \\ & \quad - {\mathbf{A}}_{If} \sum\limits_{i = 1}^{3} {\omega_{If,i} \left( {{\mathbf{D}}_{14,i} + \sum\limits_{j = 1}^{M} {\left( {{\mathbf{D}}_{15,ij} - {\mathbf{D}}_{15,ij}^{{\text{T}}} } \right)\eta_{j} } + \sum\limits_{j = 1}^{M} {\sum\limits_{k = 1}^{M} {{\mathbf{D}}_{16,ijk} \eta_{j} \eta_{k} } } } \right)} {{\varvec{\upomega}}}_{If} - \underline{{2{\mathbf{A}}_{If} \sum\limits_{i = 1}^{M} {\sum\limits_{j = 1}^{M} {\left( {{\mathbf{D}}_{11,ij}^{{}} \dot{\eta }_{i} \dot{\eta }_{j} } \right){\mathbf{h}}_{{1}} } } }} \\ & \quad - \underline{{{\mathbf{A}}_{If} \sum\limits_{i = 1}^{3} {\omega_{If,i} \left( {\sum\limits_{j = 1}^{M} {\sum\limits_{k = 1}^{M} {\left( {{\mathbf{D}}_{11,jk}^{{}} \eta_{j} \eta_{k} } \right){\tilde{\mathbf{h}}}_{i} {\tilde{\mathbf{h}}}_{{1}}^{{\text{T}}} } + {\tilde{\mathbf{h}}}_{{1}} {\tilde{\mathbf{h}}}_{i} \sum\limits_{j = 1}^{M} {\sum\limits_{k = 1}^{M} {\left( {{\mathbf{D}}_{11,jk}^{{\text{T}}} \eta_{j} \eta_{k} } \right)} } } } \right)} {{\varvec{\upomega}}}_{If} }} \\ \end{aligned} $$
$$ \begin{aligned} {\mathbf{Q}}_{{in,e_{k} {3}}} & = - \left( {\sum\limits_{j = 1}^{M} {{\mathbf{D}}_{17,j} \dot{\eta }_{j} } + \sum\limits_{i = 1}^{3} {\omega_{If,i} } \left( {{\mathbf{D}}_{18,i} + \sum\limits_{j = 1}^{M} {{\mathbf{D}}_{19,ij} \eta_{j} } + \underline{{\sum\limits_{k = 1}^{M} {\sum\limits_{j = 1}^{M} {\left( {{\mathbf{D}}_{20,jk}^{{}} \eta_{j} \eta_{k} } \right){\tilde{\mathbf{h}}}_{i} {\tilde{\mathbf{h}}}_{{1}}^{{\text{T}}} } } }} } \right)} \right){{\varvec{\upomega}}}_{If} \\ & \quad - \underline{{\left( {2\sum\limits_{i = 1}^{3} {\omega_{If,i} } \left( {\sum\limits_{j = 1}^{M} {{\mathbf{D}}_{21,ij} \eta_{j} } { + }\sum\limits_{j = 1}^{M} {\sum\limits_{k = 1}^{M} {{\mathbf{D}}_{22,ijk} \eta_{j} } \eta_{k} } } \right)} \right){{\varvec{\upomega}}}_{If} - 2\sum\limits_{k = 1}^{M} {\sum\limits_{j = 1}^{M} {\left( {{\mathbf{D}}_{20,jk}^{{}} \dot{\eta }_{j} \dot{\eta }_{k} } \right){\mathbf{h}}_{{1}} } } }} \\ & \quad - \left( {2\sum\limits_{j = 1}^{M} {{\mathbf{D}}_{5,j}^{{\text{T}}} \dot{\eta }_{j} } + \underline{{4\left( {\sum\limits_{k = 1}^{M} {\sum\limits_{j = 1}^{M} {\left( {{\mathbf{D}}_{20,jk}^{{}} \dot{\eta }_{j} \eta_{k} } \right){\tilde{\mathbf{h}}}_{{1}}^{{\text{T}}} } } + \sum\limits_{k = 1}^{M} {\sum\limits_{j = 1}^{M} {\left( {{\mathbf{D}}_{23,jk} \eta_{j} \dot{\eta }_{k} } \right)} } } \right)}} } \right){{\varvec{\upomega}}}_{If} - \underline{{4\sum\limits_{l = 1}^{M} {\sum\limits_{i = 1}^{M} {\sum\limits_{j = 1}^{M} {\left( {{\mathbf{D}}_{51,lij} \eta_{l} \dot{\eta }_{i} \dot{\eta }_{j} } \right)} } } }} \\ \end{aligned} $$
$$ \begin{aligned} & {\mathbf{D}}_{2} = \int_{{V_{{e_{k} }} }} {\rho {\mathbf{l}}_{{O_{2} p}} {\text{d}}V} ,\,\,\,{\mathbf{D}}_{3,j} = \int_{{V_{{e_{k} }} }} {\rho {\mathbf{N}}_{{pu,{\text{col}}_{j} }} {\text{d}}V} ,\,\,\,{\mathbf{D}}_{3} = \left[ {\begin{array}{*{20}c} {{\mathbf{D}}_{3,1} } & {{\mathbf{D}}_{3,2} } & \cdots & {{\mathbf{D}}_{3,M} } \\ \end{array} } \right] \\ & {\mathbf{D}}_{4} = \int_{{V_{{e_{k} }} }} {\left( {\rho {\tilde{\mathbf{l}}}_{{O_{2} ,p}} {\mathbf{N}}_{pu} + {\mathbf{J}}_{p} {\mathbf{N}}_{p\theta } } \right)} {\text{d}}V,\,\,\,{\mathbf{D}}_{5,j} = \int_{{V_{{e_{k} }} }} \rho {\tilde{\mathbf{N}}}_{{pu,{\text{col}}_{j} }} {\mathbf{N}}_{pu} {\text{d}}V,\,\,\,{\mathbf{D}}_{6} = \int_{{V_{{e_{k} }} }} {\left( {\rho {\mathbf{N}}_{pu}^{{\text{T}}} {\mathbf{N}}_{pu} + {\mathbf{N}}_{p\theta }^{{\text{T}}} {\mathbf{J}}_{p} {\mathbf{N}}_{p\theta } } \right)} {\text{d}}V \\ & {\mathbf{D}}_{7} = \int_{{V_{{e_{k} }} }} {\left( {\rho {\tilde{\mathbf{l}}}_{{O_{2} ,p}} {\tilde{\mathbf{l}}}_{{O_{2} P}}^{{\text{T}}} + {\mathbf{J}}_{p} } \right)} {\text{d}}V,\,\,\,{\mathbf{D}}_{8,j} = \int_{{V_{{e_{k} }} }} {\rho {\tilde{\mathbf{l}}}_{{O_{2} ,p}} } {\tilde{\mathbf{N}}}_{{pu,{\text{col}}_{j} }}^{{\text{T}}} {\text{d}}V,\,\,\,{\mathbf{D}}_{9,ij} = \int_{{V_{{e_{k} }} }} {\rho {\tilde{\mathbf{N}}}_{{pu,{\text{col}}_{i} }} } {\tilde{\mathbf{N}}}_{{pu,{\text{col}}_{j} }}^{{\text{T}}} {\text{d}}V \\ & {\mathbf{D}}_{10} = \int_{{V_{{e_{k} }} }} {\rho {{\varvec{\Gamma}}}{\text{d}}V,\begin{array}{*{20}c} {} \\ \end{array} } {\mathbf{D}}_{11,ij} = \int_{{V_{{e_{k} }} }} {\rho {{\varvec{\Gamma}}}_{ij} } {\tilde{\mathbf{l}}}_{{O_{2} ,p}} {\text{d}}V,\,\,\,{\mathbf{D}}_{12,j} = \int_{{V_{{e_{k} }} }} {\rho {\tilde{\mathbf{l}}}_{{O_{2} p}} {\mathbf{h}}_{1} {{\varvec{\Gamma}}}_{j}^{{\text{T}}} } {\text{d}}V,\,\,\,{\mathbf{D}}_{13,j} = \int_{{V_{{e_{k} }} }} {{\mathbf{J}}_{p} {\tilde{\mathbf{N}}}_{{p\theta ,{\text{col}}_{j} }}^{{\text{T}}} } {\text{d}}V \\ & {\mathbf{D}}_{14,j} = \int_{{V_{{e_{k} }} }} {\rho {\tilde{\mathbf{l}}}_{{O_{2} p}} {\tilde{\mathbf{h}}}_{j} {\tilde{\mathbf{l}}}_{{O_{2} P}}^{{\text{T}}} } {\text{d}}V,\,\,\,{\mathbf{D}}_{15,ij} = \int_{{V_{{e_{k} }} }} {\rho {\tilde{\mathbf{l}}}_{{O_{2} p}} {\tilde{\mathbf{h}}}_{i} {\tilde{\mathbf{N}}}_{{pu,{\text{col}}_{j} }}^{{\text{T}}} } {\text{d}}V,\,\,\,{\mathbf{D}}_{16,ijk} = \int_{{V_{{e_{k} }} }} {\rho {\tilde{\mathbf{N}}}_{{pu,{\text{col}}_{j} }} {\tilde{\mathbf{h}}}_{i} {\tilde{\mathbf{N}}}_{{pu,{\text{col}}_{k} }}^{{\text{T}}} } {\text{d}}V \\ & {\mathbf{D}}_{17,j} = \int_{{V_{{e_{k} }} }} {{\mathbf{N}}_{p\theta }^{{\text{T}}} {\mathbf{J}}_{p} {\tilde{\mathbf{N}}}_{{p\theta ,{\text{col}}_{j} }}^{{\text{T}}} } {\text{d}}V,\,\,\,{\mathbf{D}}_{18,j} = \int_{{V_{{e_{k} }} }} {\rho {\mathbf{N}}_{pu}^{{\text{T}}} {\tilde{\mathbf{h}}}_{j} {\tilde{\mathbf{l}}}_{{O_{2} p}}^{{\text{T}}} } {\text{d}}V,\,\,\,{\mathbf{D}}_{19,ij} = \int_{{V_{{e_{k} }} }} {\rho {\mathbf{N}}_{pu}^{{\text{T}}} {\tilde{\mathbf{h}}}_{i} {\tilde{\mathbf{N}}}_{{pu,{\text{col}}_{j} }}^{{\text{T}}} } {\text{d}}V \\ & {\mathbf{D}}_{20,ij} = \int_{{V_{{e_{k} }} }} \rho {{\varvec{\Gamma}}}_{ij} {\mathbf{N}}_{pu}^{{\text{T}}} {\text{d}}V,\,\,\,{\mathbf{D}}_{21,ij} = \int_{{V_{{e_{k} }} }} \rho {{\varvec{\Gamma}}}_{j}^{{}} {\mathbf{h}}_{1}^{{\text{T}}} {\tilde{\mathbf{h}}}_{i} {\tilde{\mathbf{l}}}_{{O_{2} p}}^{{\text{T}}} {\text{d}}V,\,\,\,{\mathbf{D}}_{22,ijk} = \int_{{V_{{e_{k} }} }} \rho {{\varvec{\Gamma}}}_{j}^{{}} {\mathbf{h}}_{1}^{{\text{T}}} {\tilde{\mathbf{h}}}_{i} {\tilde{\mathbf{N}}}_{{pu,{\text{col}}_{k} }}^{{\text{T}}} {\text{d}}V \\ & {\mathbf{D}}_{23,jk} = \int_{{V_{{e_{k} }} }} \rho {{\varvec{\Gamma}}}_{j}^{{}} {\mathbf{h}}_{1}^{{\text{T}}} {\tilde{\mathbf{N}}}_{{pu,{\text{col}}_{k} }}^{{\text{T}}} {\text{d}}V,\,\,\,{\mathbf{D}}_{50,j} = \int_{{V_{{e_{k} }} }} {\rho {{\varvec{\Gamma}}}_{j} {\mathbf{h}}_{1}^{{\text{T}}} {\mathbf{N}}_{pu} } {\text{d}}V,\,\,\,{\mathbf{D}}_{51,li} = \left[ {\begin{array}{*{20}c} {{\mathbf{D}}_{51,li1} } & {{\mathbf{D}}_{51,li2} } & \cdots & {{\mathbf{D}}_{51,liM} } \\ \end{array} } \right] \\ & {\mathbf{D}}_{51,lij} = \int_{{V_{{e_{k} }} }} {\rho {{\varvec{\Gamma}}}_{l} {{\varvec{\Gamma}}}_{ij} } {\text{d}}V,\,\,\,{\mathbf{D}}_{{5{2},ij}} = \int_{{V_{{e_{k} }} }} {\rho {{\varvec{\Gamma}}}_{j} {{\varvec{\Gamma}}}_{i}^{{\text{T}}} } {\text{d}}V,\,\,\,{\mathbf{h}}_{2} = \left[ {0,1,0} \right]^{{\text{T}}} ,\,\,\,{\mathbf{h}}_{3} { = }\left[ {0,0,1} \right]^{{\text{T}}} \\ \end{aligned} $$
(A.1)

It must be pointed out that, in this study, the product quantities higher than second-order related to the deformed generalized coordinates are ignored, which have little effect on the calculation accuracy in most cases.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rong, B., Rui, X., Tao, L. et al. Efficient dynamics modeling and analysis for probabilistic uncertain beam systems with geometric nonlinearity and thermal coupling effect. Nonlinear Dyn 111, 39–66 (2023). https://doi.org/10.1007/s11071-022-07836-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07836-2

Keywords

Navigation