Skip to main content
Log in

Coupled thermo-structural analysis of a bimetallic strip using the absolute nodal coordinate formulation

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

A bimetallic strip consists of two different metal pieces that are bonded together. Due to the different coefficients of thermal expansion, exposing the strip to temperature induces thermal stresses that cause the structure to bend. Most often, incremental finite-element methods that introduce element nodal coordinates have been successfully applied to analyze the thermally induced vibrations in such systems. The exposure of these bimetallic strips to high temperatures results in large deflections and deformations, where the effects of the rigid-body motion and large rotations must be taken into account. For classic, non-isoparametric elements such as beams and plates the incremental methods do not result in zero strains under arbitrary, rigid-body motion. Therefore, in this paper a new model of a bimetallic strip is proposed based on a coupled thermo-structural analysis using the absolute nodal coordinate formulation. The applied, non-incremental, absolute nodal coordinate formulation uses a set of global displacements and slopes so that the beam and the plate elements can be treated as isoparametric elements. In order to simulate the bimetallic strip’s dynamic response, the formulation of the shear-deformable beam element had to be extended with thermally induced stresses. This made it possible to model the coupled thermo-structural problem and to represent the connectivity constraints at the interface between the two strips of metal. The proposed formulation was verified by comparing the responses using a general-purpose finite-element software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sedighi, M., Dardashti, B.N.: A review of thermal and mechanical analysis in single and bi-layer plate. Mater. Phys. Mech. 14(1), 37–46 (2012)

    Google Scholar 

  2. Boisseau, S., Despesse, G., Monfray, S., Puscasu, O., Skotnicki, T.: A bimetal and electret-based converter for thermal energy harvesting. ArXiv e-prints, pp. 1–3 (2012)

  3. Muzychka, Y.S., Yovanovich, M.M.: Analytic models to compute transient thermal stresses in bimaterial systems. In: Advanced Technology for Electronic Packaging, Austin, TX (1996)

    Google Scholar 

  4. Chu, W.-H., Mehregany, M., Mullen, R.L.: Analysis of tip deflection and force of a bimetallic cantilever microactuator. J. Micromech. Microeng. 3(1), 4–7 (1993)

    Article  Google Scholar 

  5. Ross, D.S., Cabal, A., Trauernicht, D., Lebens, J.: Temperature-dependent vibrations of bilayer microbeams. Sens. Actuators A, Phys. 119(2), 537–543 (2005)

    Article  Google Scholar 

  6. Suocheng, W., Yongping, H., Shuangjie, L.: The design and analysis of a MEMS electrothermal actuator. J. Semicond. 36(4), 1–5 (2015)

    Google Scholar 

  7. Zou, Q., Sridhar, U., Lin, R.: A study on micromachined bimetallic actuation. Sens. Actuators A, Phys. 78(2), 212–219 (1999)

    Article  Google Scholar 

  8. Timoshenko, S.: Analysis of bimetal thermostats. J. Opt. Soc. Am. 11, 233–255 (1925)

    Article  Google Scholar 

  9. Mirman, B.A.: Interlaminar stresses in layered beams. J. Electron. Packag. 114, 389–396 (1992)

    Article  Google Scholar 

  10. Suhir, E.: Interfacial stresses in bimetal thermostats. J. Appl. Mech. 56, 595–600 (1989)

    Article  MATH  Google Scholar 

  11. Suhir, E.: Thermally induced interfacial stresses in elongated bimaterial plates. Appl. Mech. Rev. 42, 252–262 (1989)

    Article  MATH  Google Scholar 

  12. Hsu, T.-R.: MEMS and Microsystems: Design, Manufacture, and Nanoscale Engineering, 2nd edn. Wiley, New Jersey (2008)

    Google Scholar 

  13. Shabana, A.A.: Dynamics of Multibody Systems, 3rd edn. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  14. Shabana, A.A.: Computer implementation of the absolute nodal coordinate formulation for flexible multibody dynamics. Nonlinear Dyn. 16(3), 293–306 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Escalona, J.L., Hussien, H.A., Shabana, A.A.: Application of the absolute nodal co-ordinate formulation to multibody system dynamics. J. Sound Vib. 214, 833–851 (1998)

    Article  Google Scholar 

  16. Čepon, G., Boltežar, M.: Dynamics of a belt-drive system using a linear complementarity problem for the belt–pulley contact description. J. Sound Vib. 319(3), 1019–1035 (2009)

    Google Scholar 

  17. Mikkola, A.M., Shabana, A.A.: A new plate element based on the absolute nodal coordinate formulation. In: ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Pittsburgh, PA, September, pp. 9–12 (2001)

    Google Scholar 

  18. Dufva, K.E., Sopanen, J.T., Mikkola, A.M.: A two-dimensional shear deformable beam element based on the absolute nodal coordinate formulation. J. Sound Vib. 280, 719–738 (2005)

    Article  Google Scholar 

  19. Omar, M.A., Shabana, A.A.: A two-dimensional shear deformable beam for large rotation and deformation problems. J. Sound Vib. 243(3), 565–576 (2001)

    Article  Google Scholar 

  20. Vallejo, D.G., Mikkola, A.M., Escalona, J.L.: A new locking-free shear deformable finite element based on absolute nodal coordinates. Nonlinear Dyn. 50, 249–264 (2007)

    Article  MATH  Google Scholar 

  21. Gerstmayr, J., Shabana, A.A.: Analysis of thin beams and cables using the absolute nodal co-ordinate formulation. Nonlinear Dyn. 45, 109–130 (2006)

    Article  MATH  Google Scholar 

  22. Sopanen, J.T., Mikkola, A.M.: Description of elastic forces in absolute nodal coordinate formulation. Nonlinear Dyn. 34, 53–74 (2003)

    Article  MATH  Google Scholar 

  23. Matikainen, M.K., Dmitrochenko, O., Mikkola, A.M.: Beam elements with trapezoidal cross section deformation modes based on absolute nodal coordinate formulation. In: Proceedings of the International Conference of Numerical Analysis and Applied Mathematics, Rhodes, Greece (2010)

    Google Scholar 

  24. Gerstmayr, J., Irschik, H.: On the correct representation of bending and axial deformation in the absolute nodal coordinate formulation with an elastic line approach. J. Sound Vib. 318, 461–487 (2008)

    Article  Google Scholar 

  25. Dufva, K.E., Sopanen, J.T., Mikkola, A.M.: A two-dimensional shear deformable beam element based on the absolute nodal coordinate formulation. J. Sound Vib. 280, 719–738 (2005)

    Article  Google Scholar 

  26. Vallejo, D.G., Valverde, J., Dominguez, J.: An internal damping model for the absolute nodal coordinate formulation. Nonlinear Dyn. 42, 347–369 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. Abbas, L.K., Rui, X., Marzocca, P.: Aerothermoelastic analysis of panel flutter based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 33(2), 163–178 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  28. Shen, Z., Tian, Q., Liu, X., Hu, G.: Thermally induced vibrations of flexible beams using absolute nodal coordinate formulation. Aerosp. Sci. Technol. 29(1), 386–393 (2013)

    Article  Google Scholar 

  29. Shabana, A.A., Yakoub, R.Y.: Three dimensional absolute nodal coordinate formulation for beam elements: theory. J. Mech. Des. 123(3), 606–613 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miha Boltežar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Čepon, G., Starc, B., Zupančič, B. et al. Coupled thermo-structural analysis of a bimetallic strip using the absolute nodal coordinate formulation. Multibody Syst Dyn 41, 391–402 (2017). https://doi.org/10.1007/s11044-017-9574-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-017-9574-7

Keywords

Navigation