Skip to main content
Log in

Nonlinear forced vibration of hybrid fiber/graphene nanoplatelets/polymer composite sandwich cylindrical shells with hexagon honeycomb core

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper aims to investigate the nonlinear forced vibration characteristics of hybrid fiber/graphene nanoplatelets/polymer composite sandwich cylindrical shells with hexagon honeycomb core (HHC) in a hygrothermal environment. Firstly, an analytical model for such shells is proposed, where the equivalent material parameters of skins are determined based on the law of the mixture and homogenization approach, and the improved Gibson's technique is adopted to estimate the equivalent material properties of HHC. Furthermore, the first-order shear deformation theory together with von Kármán geometric nonlinearity terms and Hamilton’s principle is utilized to obtain the nonlinear governing equations that consider the effect of hygrothermal and mechanical loads, which are further discretized into a series of ordinary differential equations via the Galerkin approach. Subsequently, the static condensation technique and the multiple scale method are utilized to solve the nonlinear forced vibration responses, including primary, super- and sub-harmonic resonances. The results obtained by the present model are compared to the ones from the literature to prove the effectiveness of the proposed model. Also, the influences of key parameters on the nonlinear dynamic performance of the structure are evaluated, with some critical conclusions related to reducing the nonlinear resonance amplitude and resonance region of the structure being summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Liu, Y.F., Qin, Z.Y., Chu, F.L.: Nonlinear forced vibrations of FGM sandwich cylindrical shells with porosities on an elastic substrate. Nonlinear Dyn. 104, 1007–1021 (2021)

    Google Scholar 

  2. Ashraff Ali, K.S., Suresh, K.S., Allen, J.J., Ravikumar, M.M., Rajkumar, S.: An insight into stress and strain analysis over on hexagonal aluminium sandwich honeycomb with various thickness glass fiber face sheets. Mater. Today Proc. 47, 493–499 (2021)

    Google Scholar 

  3. Jin, Y., Jia, X.Y., Wu, Q.Q., Yu, G.C., Zhang, X.L., Chen, S., Wu, L.Z.: Design of cylindrical honeycomb sandwich meta-structures for vibration suppression. Mech. Syst. Sig. Process. 163, 108075 (2022)

    Google Scholar 

  4. Li, H., Dong, B.C., Zhao, J., Zou, Z.Y., Zhao, S.Q., Wang, Q.S., Han, Q.K., Wang, X.P.: Nonlinear free vibration of functionally graded fiber-reinforced composite hexagon honeycomb sandwich cylindrical shells. Eng. Struct. 263, 114372 (2022)

    Google Scholar 

  5. He, X.Q., Rafiee, M., Mareishi, S., Liew, K.M.: Large amplitude vibration of fractionally damped viscoelastic CNTs/fiber/polymer multiscale composite beams. Compos. Struct. 131, 1111–1123 (2015)

    Google Scholar 

  6. Mohandes, M., Ghasemi, A.R.: A new approach to reinforce the fiber of nanocomposite reinforced by CNTs to analyze free vibration of hybrid laminated cylindrical shell using beam modal function method. Eur. J. Mech. A. Solids. 73, 224–234 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Li, H., Li, Z.L., Xiao, Z.Y., Xiong, J., Wang, X.P., Han, Q.K., Zhou, J., Guan, Z.W.: Vibro-impact response of FRP sandwich plates with a foam core reinforced by chopped fiber rods. Compos. Pt. B-Eng. 242, 110077 (2022)

    Google Scholar 

  8. Allam, M.N.M., Radwan, A.F., Sobhy, M.: Hygrothermal deformation of spinning FG graphene sandwich cylindrical shells having an auxetic core. Eng. Struct. 251, 113433 (2022)

    Google Scholar 

  9. Li, H., Lv, H.Y., Gu, J.F., Xiong, J., Han, Q.K., Liu, J.G., Qin, Z.Y.: Nonlinear vibration characteristics of fibre reinforced composite cylindrical shells in thermal environment. Mech. Syst. Sig. Process. 156, 66 (2021)

    Google Scholar 

  10. Aris, H., Ahmadi, H.: Nonlinear vibration analysis of FGM truncated conical shells subjected to harmonic excitation in thermal environment. Mech. Res. Commun. 104, 103499 (2020)

    Google Scholar 

  11. Sahmani, S., Fattahi, A.M., Ahmed, N.A.: Surface elastic shell model for nonlinear primary resonant dynamics of FG porous nanoshells incorporating modal interactions. Int. J. Mech. Sci. 165, 105203 (2020)

    Google Scholar 

  12. Li, X.Q., Song, M.T., Yang, J., Kitipornchai, S.: Primary and secondary resonances of functionally graded graphene platelet-reinforced nanocomposite beams. Nonlinear Dyn. 95, 1807–1826 (2018)

    MATH  Google Scholar 

  13. Dong, Y.H., Li, X.Y., Gao, K., Li, Y.H., Yang, J.: Harmonic resonances of graphene-reinforced nonlinear cylindrical shells: effects of spinning motion and thermal environment. Nonlinear Dyn. 99, 981–1000 (2019)

    MATH  Google Scholar 

  14. Teng, M.W., Wang, Y.Q.: Nonlinear forced vibration of simply supported functionally graded porous nanocomposite thin plates reinforced with graphene platelets. Thin-Walled Struct. 164, 107799 (2021)

    Google Scholar 

  15. Yang, S.W., Zhang, W., Mao, J.J.: Nonlinear vibrations of carbon fiber reinforced polymer laminated cylindrical shell under non-normal boundary conditions with 1:2 internal resonance. Eur. J. Mech. A. Solids. 74, 317–336 (2019)

    MathSciNet  MATH  Google Scholar 

  16. Rossikhin, Y.A., Shitikova, M.V.: Nonlinear dynamic response of a fractionally damped cylindrical shell with a three-to-one internal resonance. Appl. Math. Comput. 257, 498–525 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Sun, S.P., Liu, L.: Multiple internal resonances in nonlinear vibrations of rotating thin-walled cylindrical shells. J. Sound Vib. 510, 116313 (2021)

    Google Scholar 

  18. Xu, J., Yuan, X.G., Zhang, H.W., Ma, M.F., Zhao, W.: Internal resonance of hyperelastic thin-walled cylindrical shells under harmonic axial excitation and time-varying temperature field. Thin-Walled Struct. 175, 109256 (2022)

    Google Scholar 

  19. Ye, C., Wang, Y.Q.: Nonlinear forced vibration of functionally graded graphene platelet-reinforced metal foam cylindrical shells: internal resonances. Nonlinear Dyn. 104, 2051–2069 (2021)

    Google Scholar 

  20. Li, X.: Parametric resonances of rotating composite laminated nonlinear cylindrical shells under periodic axial loads and hygrothermal environment. Compos. Struct. 255, 112887 (2021)

    Google Scholar 

  21. Jahangiri, R., Rezaee, M., Manafi, H.: Nonlinear and chaotic vibrations of FG double curved sandwich shallow shells resting on visco-elastic nonlinear Hetenyi foundation under combined resonances. Compos. Struct. 295, 115721 (2022)

    Google Scholar 

  22. Abdollahi, R., Firouz-abadi, R.D., Rahmanian, M.: Nonlinear vibrations and stability of rotating cylindrical shells conveying annular fluid medium. Thin-Walled Struct. 171, 108714 (2022)

    Google Scholar 

  23. Ben-Youssef, Y., Kerboua, Y., Lakis, A.A.: Analysis of nonlinear vibrations of thin cylindrical shells subjected to supersonic flow. Thin-Walled Struct. 173, 108969 (2022)

    Google Scholar 

  24. Alijani, F., Amabili, M., Bakhtiari-Nejad, F.: Thermal effects on nonlinear vibrations of functionally graded doubly curved shells using higher order shear deformation theory. Compos. Struct. 93, 2541–2553 (2011)

    MATH  Google Scholar 

  25. Bich, D.H., Xuan, N.N.: Nonlinear vibration of functionally graded circular cylindrical shells based on improved Donnell equations. J. Sound Vib. 331, 5488–5501 (2012)

    Google Scholar 

  26. Du, C.C., Li, Y.H., Jin, X.S.: Nonlinear forced vibration of functionally graded cylindrical thin shells. Thin-Walled Struct. 78, 26–36 (2014)

    Google Scholar 

  27. Strozzi, M., Pellicano, F.: Nonlinear vibrations of functionally graded cylindrical shells. Thin-Walled Struct. 67, 63–77 (2013)

    Google Scholar 

  28. Sofiyev, A.H.: Nonlinear free vibration of shear deformable orthotropic functionally graded cylindrical shells. Compos. Struct. 142, 35–44 (2016)

    Google Scholar 

  29. Sofiyev, A.H., Hui, D., Haciyev, V.C., Erdem, H., Yuan, G.Q., Schnack, E., Guldal, V.: The nonlinear vibration of orthotropic functionally graded cylindrical shells surrounded by an elastic foundation within first order shear deformation theory. Compos. Pt. B Eng. 116, 170–185 (2017)

    Google Scholar 

  30. Shen, H.S., Xiang, Y., Fan, Y.: Nonlinear vibration of functionally graded graphene-reinforced composite laminated cylindrical shells in thermal environments. Compos. Struct. 182, 447–456 (2017)

    Google Scholar 

  31. Shen, H.S., Xiang, Y., Fan, Y., Hui, D.: Nonlinear vibration of functionally graded graphene-reinforced composite laminated cylindrical panels resting on elastic foundations in thermal environments. Compos. Pt. B Eng. 136, 177–186 (2018)

    Google Scholar 

  32. Dong, Y.H., Zhu, B., Wang, Y., Li, Y.H., Yang, J.: Nonlinear free vibration of graded graphene reinforced cylindrical shells: effects of spinning motion and axial load. J. Sound Vib. 437, 79–96 (2018)

    Google Scholar 

  33. Awrejcewicz, J., Kurpa, L., Shmatko, T.: Linear and nonlinear free vibration analysis of laminated functionally graded shallow shells with complex plan form and different boundary conditions. Int. J. Non Linear Mech. 107, 161–169 (2018)

    Google Scholar 

  34. Ghasemi, A.R., Mohandes, M., Dimitri, R., Tornabene, F.: Agglomeration effects on the vibrations of CNTs/fiber/polymer/metal hybrid laminates cylindrical shell. Compos. Pt. B-Eng. 167, 700–716 (2019)

    Google Scholar 

  35. Trinh, M.C., Nguyen, D.D., Kim, S.E.: Effects of porosity and thermomechanical loading on free vibration and nonlinear dynamic response of functionally graded sandwich shells with double curvature. Aerosp. Sci. Technol. 87, 119–132 (2019)

    Google Scholar 

  36. Yousefi, A.H., Memarzadeh, P., Afshari, H., Hosseini, S.J.: Agglomeration effects on free vibration characteristics of three-phase CNT/polymer/fiber laminated truncated conical shells. Thin-Walled Struct. 157, 107077 (2020)

    Google Scholar 

  37. Sobhani, E., Masoodi, A.R.: Natural frequency responses of hybrid polymer/carbon fiber/FG-GNP nanocomposites paraboloidal and hyperboloidal shells based on multiscale approaches. Aerosp. Sci. Technol. 119, 107111 (2021)

    Google Scholar 

  38. Niu, Y., Yao, M.H.: Linear and nonlinear vibrations of graphene platelet reinforced composite tapered plates and cylindrical panels. Aerosp. Sci. Technol. 115, 106798 (2021)

    Google Scholar 

  39. Niu, Y., Yao, M.H., Wu, Q.L.: Nonlinear vibrations of functionally graded graphene reinforced composite cylindrical panels. Appl. Math. Modell. 101, 1–18 (2022)

    MathSciNet  MATH  Google Scholar 

  40. Mohammadi, F., Sedaghati, R.: Linear and nonlinear vibration analysis of sandwich cylindrical shell with constrained viscoelastic core layer. Int. J. Mech. Sci. 54, 156–171 (2012)

    Google Scholar 

  41. Suresh, K.R., Ray, M.C.: Active control of geometrically nonlinear vibrations of doubly curved smart sandwich shells using 1–3 piezoelectric composites. Compos. Struct. 105, 173–187 (2013)

    Google Scholar 

  42. Hosseini Kordkheili, S.A., Khorasani, R.: On the geometrically nonlinear analysis of sandwich shells with viscoelastic core: a layerwise dynamic finite element formulation. Compos. Struct. 230, 111388 (2019)

    Google Scholar 

  43. Wang, Y.Q., Wan, Y.H., Zu, J.W.: Nonlinear dynamic characteristics of functionally graded sandwich thin nanoshells conveying fluid incorporating surface stress influence. Thin-Walled Struct. 135, 537–547 (2019)

    Google Scholar 

  44. Karimiasl, M., Ebrahimi, F.: Large amplitude vibration of viscoelastically damped multiscale composite doubly curved sandwich shell with flexible core and MR layers. Thin-Walled Struct. 144, 106128 (2019)

    Google Scholar 

  45. Karimiasl, M., Ebrahimi, F., Mahesh, V.: Nonlinear forced vibration of smart multiscale sandwich composite doubly curved porous shell. Thin-Walled Struct. 143, 106152 (2019)

    Google Scholar 

  46. Karimiasl, M., Ebrahimi, F., Mahesh, V.: On nonlinear vibration of sandwiched polymer-CNT/GPL-fiber nanocomposite nanoshells. Thin-Walled Struct. 146, 106–431 (2020)

    Google Scholar 

  47. Liu, B., Guo, M., Liu, C.Y., Xing, Y.F.: Free vibration of functionally graded sandwich shallow shells in thermal environments by a differential quadrature hierarchical finite element method. Compos. Struct. 225, 111173 (2019)

    Google Scholar 

  48. Yadav, A., Amabili, M., Panda, S.K., Dey, T., Kumar, R.: Forced nonlinear vibrations of circular cylindrical sandwich shells with cellular core using higher-order shear and thickness deformation theory. J. Sound Vib. 510, 116283 (2021)

    Google Scholar 

  49. Singha, T.D., Rout, M., Bandyopadhyay, T., Karmakar, A.: Free vibration analysis of rotating pretwisted composite sandwich conical shells with multiple debonding in hygrothermal environment. Eng. Struct. 204, 110058 (2020)

    Google Scholar 

  50. Deb, S.T., Rout, M., Bandyopadhyay, T., Karmakar, A.: Free vibration of rotating pretwisted FG-GRC sandwich conical shells in thermal environment using HSDT. Compos. Struct. 257, 113144 (2021)

    Google Scholar 

  51. Khayat, M., Baghlani, A., Najafgholipour, M.A.: The propagation of uncertainty in the geometrically nonlinear responses of smart sandwich porous cylindrical shells reinforced with graphene platelets. Compos. Struct. 258, 113209 (2021)

    Google Scholar 

  52. Ramezani, M., Rezaiee-Pajand, M., Tornabene, F.: Nonlinear dynamic analysis of FG/SMA/FG sandwich cylindrical shells using HSDT and semi ANS functions. Thin-Walled Struct. 171, 108702 (2022)

    Google Scholar 

  53. Karimiasl, M., Alibeigloo, A.: Nonlinear free and forced vibration analysis of sandwich cylindrical panel with auxetic core and GPLRC facing sheets in hygrothermal environment. Thin-Walled Struct. 175, 109164 (2022)

    Google Scholar 

  54. Gao, K., Gao, W., Wu, B.H., Wu, D., Song, C.M.: Nonlinear primary resonance of functionally graded porous cylindrical shells using the method of multiple scales. Thin-Walled Struct. 125, 281–293 (2018)

    Google Scholar 

  55. Yang, J., Chen, D., Kitipornchai, S.: Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev–Ritz method. Compos. Struct. 193, 281–294 (2018)

    Google Scholar 

  56. Shen, H.S.: Postbuckling of functionally graded fiber reinforced composite laminated cylindrical shells, part I: theory and solutions. Compos. Struct. 94, 1305–1321 (2012)

    Google Scholar 

  57. Shen, H.S., Yang, D.Q.: Nonlinear vibration of functionally graded fiber-reinforced composite laminated cylindrical shells in hygrothermal environments. Appl. Math. Model. 39, 1480–1499 (2015)

    MathSciNet  MATH  Google Scholar 

  58. Saha, G.C., Kalamkarov, A.L., Georgiades, A.V.: Effective elastic characteristics of honeycomb sandwich composite shells made of generally orthotropic materials. Compos. Pt. A Appl. Sci. Manuf. 38, 1533–1546 (2007)

    Google Scholar 

  59. Penado, F.E.: Effective elastic properties of honeycomb core with fiber-reinforced composite cells. J. Compos. Mater. 03, 89–96 (2013)

    Google Scholar 

  60. Lan, L.H., Sun, J., Hong, F.L., Wang, D.Y., Zhang, Y.S., Fu, M.H.: Nonlinear constitutive relations of thin-walled honeycomb structure. Mech. Mater. 149, 103556 (2020)

    Google Scholar 

  61. Zhang, Y.J., Li, Y.Q.: Nonlinear dynamic analysis of a double curvature honeycomb sandwich shell with simply supported boundaries by the homotopy analysis method. Compos. Struct. 221, 110884 (2019)

    Google Scholar 

  62. Cong, P.H., Duc, N.D.: Nonlinear dynamic analysis of porous eccentrically stiffened double curved shallow auxetic shells in thermal environments. Thin-Walled Struct. 163, 107748 (2021)

    Google Scholar 

  63. Sheng, G.G., Wang, X., Fu, G., Hu, H.: The nonlinear vibrations of functionally graded cylindrical shells surrounded by an elastic foundation. Nonlinear Dyn. 78, 1421–1434 (2014)

    MathSciNet  Google Scholar 

  64. Li, C.F., Li, P.Y., Miao, X.Y.: Research on nonlinear vibration control of laminated cylindrical shells with discontinuous piezoelectric layer. Nonlinear Dyn. 104, 3247–3267 (2021)

    Google Scholar 

  65. Li, H., Zhao, S.Q., Shi, X.J., Wu, H.H., Qin, Z.Y., Lu, P.X., Wang, X.P., Guan, Z.W.: Thermal-vibration aging of fiber-reinforced polymer cylindrical shells with polyurea coating: theoretical and experimental studies. Mech. Adv. Mater. Struct. 66, 1–16 (2022)

    Google Scholar 

  66. Liu, Y.Q., Chu, F.L.: Nonlinear vibrations of rotating thin circular cylindrical shell. Nonlinear Dyn. 67, 1467–1479 (2011)

    MathSciNet  MATH  Google Scholar 

  67. Ahmadi, H., Foroutan, K.: Nonlinear primary resonance of spiral stiffened functionally graded cylindrical shells with damping force using the method of multiple scales. Thin-Walled Struct. 135, 33–44 (2019)

    Google Scholar 

  68. Mirfatah, S.M., Tayebikhorami, S., Shahmohammadi, M.A., Salehipour, H., Civalek, Ö.: Thermo-elastic damped nonlinear dynamic response of the initially stressed hybrid GPL/CNT/fiber/polymer composite toroidal shells surrounded by elastic foundation. Compos. Struct. 283, 115047 (2022)

    Google Scholar 

  69. Sheng, G.G., Wang, X.: The non-linear vibrations of rotating functionally graded cylindrical shells. Nonlinear Dyn. 87, 1095–1109 (2016)

    Google Scholar 

  70. Shen, Y.C., Béreux, N., Frangi, A., Touzé, C.: Reduced order models for geometrically nonlinear structures: assessment of implicit condensation in comparison with invariant manifold approach. Eur. J. Mech. A. Solids. 86, 104165 (2021)

    MathSciNet  MATH  Google Scholar 

  71. Li, Y.Q., Yao, W.K., Wang, T.: Free flexural vibration of thin-walled honeycomb sandwich cylindrical shells. Thin-Walled Struct. 157, 107032 (2020)

    Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant Nos. 52175079 and 12072091); the Science Foundation of the National Key Laboratory of Science and Technology on Advanced Composites in Special Environments (Grant No. 6142905192512); the Fundamental Research Funds for the Central Universities of China (Grant No. N2103026); the Major Projects of Aero-Engines and Gas Turbines (J2019-I-0008-0008); the China Postdoctoral Science Foundation (2020M680990).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Li.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The parameter values of \(H_{ij} \left( {i = 1, \, 2, \ldots ,5; \, j = 1, \, 2, \ldots 11} \right),S_{xy} \left( {x = u, \, v, \, w, \, \varphi , \, \theta ; \, y = u, \, v, \, \varphi , \, \theta } \right)\), Hnon2 and Hnon3 in Eqs. (26), (27), (28), (29) and (30) are stated as:

$$ H_{11} = \int_{0}^{2\pi } {\int_{0}^{L} {\left\{ {A_{11} \frac{{\partial q_{u} }}{\partial \varphi }\frac{{\partial q_{u} }}{\partial \varphi } + A_{66} \frac{1}{{R^{2} }}\frac{{\partial q_{u} }}{\partial \theta }\frac{{\partial q_{u} }}{\partial \theta } + A_{16} \frac{1}{R}\left( {\frac{{\partial q_{u} }}{\partial \varphi }\frac{{\partial q_{u} }}{\partial \theta } + \frac{{\partial q_{u} }}{\partial \theta }\frac{{\partial q_{u} }}{\partial \varphi }} \right)} \right\}} } Rd\varphi {\text{d}}\theta $$
(A1)
$$ H_{12} = \int_{0}^{2\pi } {\int_{0}^{L} {\left\{ {A_{12} \frac{1}{R}\frac{{\partial q_{u} }}{\partial \varphi }\frac{{\partial q_{v} }}{\partial \theta } + A_{16} \frac{{\partial q_{u} }}{\partial \varphi }\frac{{\partial q_{v} }}{\partial \varphi } + A_{26} \frac{1}{{R^{2} }}\frac{{\partial q_{u} }}{\partial \theta }\frac{{\partial q_{v} }}{\partial \theta } + A_{66} \frac{1}{R}\frac{{\partial q_{u} }}{\partial \theta }\frac{{\partial q_{v} }}{\partial \varphi }} \right\}} } Rd\varphi {\text{d}}\theta $$
(A2)
$$ H_{13} = \int_{0}^{{2{\uppi }}} {\int_{0}^{L} {\left\{ {A_{12} \frac{1}{R}\frac{{\partial q_{u} }}{\partial \varphi }q_{w} + A_{26} \frac{1}{{R^{2} }}\frac{{\partial q_{u} }}{\partial \theta }q_{w} } \right\}} } R{\text{d}}\varphi {\text{d}}\theta $$
(A3)
$$ H_{14} = \int_{0}^{{2{\uppi }}} {\int_{0}^{L} {\left\{ {B_{11} \frac{{\partial q_{u} }}{\partial \theta }\frac{{\partial q_{\varphi } }}{\partial \varphi } + B_{16} \frac{1}{R}\frac{{\partial q_{u} }}{\partial \varphi }\frac{{\partial q_{\varphi } }}{\partial \theta } + B_{16} \frac{1}{R}\frac{{\partial q_{u} }}{\partial \theta }\frac{{\partial q_{\varphi } }}{\partial \varphi } + B_{66} \frac{1}{{R^{2} }}\frac{{\partial q_{u} }}{\partial \theta }\frac{{\partial q_{\varphi } }}{\partial \theta }} \right\}} } R{\text{d}}\varphi {\text{d}}\theta $$
(A4)
$$ H_{15} = \int_{0}^{{2{\uppi }}} {\int_{0}^{L} {\left\{ {B_{12} \frac{1}{R}\frac{{\partial q_{u} }}{\partial \varphi }\frac{{\partial q_{\theta } }}{\partial \theta } + B_{16} \frac{{\partial q_{u} }}{\partial \varphi }\frac{{\partial q_{\theta } }}{\partial \varphi } + B_{26} \frac{1}{{R^{2} }}\frac{{\partial q_{u} }}{\partial \theta }\frac{{\partial q_{\theta } }}{\partial \theta } + B_{66} \frac{1}{R}\frac{{\partial q_{u} }}{\partial \theta }\frac{{\partial q_{\theta } }}{\partial \varphi }} \right\}} } R{\text{d}}\varphi {\text{d}}\theta $$
(A5)
$$ H_{16} = \int_{0}^{{2{\uppi }}} {\int_{0}^{L} {\left\{ \begin{gathered} A_{11} \frac{{\partial q_{u} }}{\partial \varphi }\left( {\frac{{\partial q_{w} }}{\partial \varphi }} \right)^{2} + 2A_{66} \frac{1}{{R^{2} }}\frac{{\partial q_{u} }}{\partial \varphi }\frac{{\partial q_{w} }}{\partial \varphi }\frac{{\partial q_{w} }}{\partial \theta } + A_{16} \frac{1}{{R^{2} }}\frac{{\partial q_{u} }}{\partial \theta }\left( {\frac{{\partial q_{w} }}{\partial \theta }} \right)^{2} \hfill \\ + 2A_{16} \frac{1}{R}\frac{{\partial q_{u} }}{\partial \varphi }\frac{{\partial q_{w} }}{\partial \varphi }\frac{{\partial q_{w} }}{\partial \theta } + A_{12} \frac{1}{{R^{2} }}\frac{{\partial q_{u} }}{\partial \varphi }\left( {\frac{{\partial q_{w} }}{\partial \theta }} \right)^{2} + A_{26} \frac{1}{{R^{3} }}\frac{{\partial q_{u} }}{\partial \theta }\left( {\frac{{\partial q_{w} }}{\partial \theta }} \right)^{2} \hfill \\ \end{gathered} \right\}} } R{\text{d}}\varphi {\text{d}}\theta $$
(A6)
$$ H_{21} = \int_{0}^{{2{\uppi }}} {\int_{0}^{L} {\left\{ {A_{12} \frac{1}{R}\frac{{\partial q_{v} }}{\partial \theta }\frac{{\partial q_{u} }}{\partial \varphi } + A_{16} \frac{{\partial q_{v} }}{\partial \varphi }\frac{{\partial q_{u} }}{\partial \varphi } + A_{26} \frac{1}{{R^{2} }}\frac{{\partial q_{v} }}{\partial \theta }\frac{{\partial q_{u} }}{\partial \theta } + A_{66} \frac{1}{R}\frac{{\partial q_{v} }}{\partial \varphi }\frac{{\partial q_{u} }}{\partial \theta }} \right\}} } R{\text{d}}\varphi {\text{d}}\theta $$
(A7)
$$ H_{22} = \int_{0}^{{2{\uppi }}} {\int_{0}^{L} {\left\{ {A_{22} \frac{1}{{R^{2} }}\frac{{\partial q_{v} }}{\partial \theta }\frac{{\partial q_{v} }}{\partial \theta } + A_{26} \frac{1}{R}\left( {\frac{{\partial q_{v} }}{\partial \varphi }\frac{{\partial q_{v} }}{\partial \theta } + \frac{{\partial q_{v} }}{\partial \theta }\frac{{\partial q_{v} }}{\partial \varphi }} \right) + A_{66} \frac{{\partial q_{v} }}{\partial \varphi }\frac{{\partial q_{v} }}{\partial \varphi } + s_{{\text{r}}} A_{44} \frac{1}{{R^{2} }}q_{v} q_{v} } \right\}} } R{\text{d}}\varphi {\text{d}}\theta $$
(A8)
$$ H_{23} = \int_{0}^{{2{\uppi }}} {\int_{0}^{L} {\left\{ {A_{22} \frac{1}{{R^{2} }}\frac{{\partial q_{v} }}{\partial \theta }q_{w} + A_{26} \frac{1}{R}\frac{{\partial q_{v} }}{\partial \varphi }Q_{w} - s_{{\text{r}}} A_{44} \frac{1}{{R^{2} }}q_{v} \frac{{\partial q_{w} }}{\partial \theta } - s_{{\text{r}}} A_{45} \frac{1}{R}q_{v} \frac{{\partial q_{w} }}{\partial \varphi }} \right\}} } R{\text{d}}\varphi {\text{d}}\theta $$
(A9)
$$ H_{24} = \int_{0}^{{2{\uppi }}} {\int_{0}^{L} {\left\{ \begin{gathered} B_{12} \frac{1}{R}\frac{{\partial q_{v} }}{\partial \theta }\frac{{\partial q_{\varphi } }}{\partial \varphi } + B_{16} \frac{{\partial q_{v} }}{\partial \varphi }\frac{{\partial q_{\varphi } }}{\partial \varphi } + B_{26} \frac{1}{{R^{2} }}\frac{{\partial q_{v} }}{\partial \theta }\frac{{\partial q_{\varphi } }}{\partial \theta } \hfill \\ + B_{66} \frac{1}{R}\frac{{\partial q_{v} }}{\partial \varphi }\frac{{\partial q_{\varphi } }}{\partial \theta } - s_{{\text{r}}} A_{45} \frac{1}{R}Q_{v} Q_{\varphi } \hfill \\ \end{gathered} \right\}} } R{\text{d}}\varphi {\text{d}}\theta $$
(A10)
$$ H_{25} = \int_{0}^{{2{\uppi }}} {\int_{0}^{L} {\left\{ {B_{22} \frac{1}{{R^{2} }}\frac{{\partial q_{v} }}{\partial \theta }\frac{{\partial q_{\theta } }}{\partial \theta } + B_{26} \frac{1}{R}\left( {\frac{{\partial q_{v} }}{\partial \theta }\frac{{\partial q_{\theta } }}{\partial \varphi } + \frac{{\partial q_{v} }}{\partial \varphi }\frac{{\partial q_{\theta } }}{\partial \theta }} \right) + B_{66} \frac{{\partial q_{v} }}{\partial \varphi }\frac{{\partial q_{\theta } }}{\partial \varphi } - s_{{\text{r}}} A_{44} \frac{1}{R}q_{v} q_{\theta } } \right\}} } R{\text{d}}\varphi {\text{d}}\theta $$
(A11)
$$ H_{26} = \int_{0}^{{2{\uppi }}} {\int_{0}^{L} {\left\{ \begin{gathered} A_{12} \frac{1}{R}\frac{{\partial q_{v} }}{\partial \theta }\left( {\frac{{\partial q_{w} }}{\partial \varphi }} \right)^{2} + 2A_{66} \frac{1}{R}\frac{{\partial q_{v} }}{\partial \varphi }\frac{{\partial q_{w} }}{\partial \varphi }\frac{{\partial q_{w} }}{\partial \theta } + A_{22} \frac{1}{{R^{3} }}\frac{{\partial q_{v} }}{\partial \theta }\left( {\frac{{\partial q_{w} }}{\partial \theta }} \right)^{2} \hfill \\ + A_{16} \frac{{\partial q_{v} }}{\partial \varphi }\left( {\frac{{\partial q_{w} }}{\partial \varphi }} \right)^{2} + 2A_{26} \frac{1}{{R^{2} }}\frac{{\partial q_{v} }}{\partial \theta }\frac{{\partial q_{w} }}{\partial \varphi }\frac{{\partial q_{w} }}{\partial \theta } + A_{26} \frac{1}{{R^{2} }}\frac{{\partial q_{v} }}{\partial \theta }\left( {\frac{{\partial q_{w} }}{\partial \theta }} \right)^{2} \hfill \\ \end{gathered} \right\}} } R{\text{d}}\varphi {\text{d}}\theta $$
(A12)
$$ H_{31} = \int_{0}^{{2{\uppi }}} {\int_{0}^{L} {\left\{ {A_{12} \frac{1}{R}q_{w} \frac{{\partial q_{u} }}{\partial \varphi } + A_{26} \frac{1}{{R^{2} }}q_{w} \frac{{\partial q_{u} }}{\partial \theta }} \right\}} } R{\text{d}}\varphi {\text{d}}\theta $$
(A13)
$$ H_{32} = \int_{0}^{{2{\uppi }}} {\int_{0}^{L} {\left\{ {A_{22} \frac{1}{{R^{2} }}q_{w} \frac{{\partial q_{v} }}{\partial \theta } + A_{26} \frac{1}{R}q_{w} \frac{{\partial q_{v} }}{\partial \varphi } - \kappa_{{\text{s}}} A_{44} \frac{1}{{R^{2} }}\frac{{\partial q_{w} }}{\partial \theta }q_{v} - s_{{\text{r}}} A_{45} \frac{1}{R}\frac{{\partial q_{w} }}{\partial \varphi }q_{v} } \right\}} } R{\text{d}}\varphi {\text{d}}\theta $$
(A14)
$$ H_{33} = \int_{0}^{{2{\uppi }}} {\int_{0}^{L} {\left\{ \begin{array}{l} A_{22} \frac{1}{{R^{2} }}q_{w} q_{w} + s_{{\text{r}}} A_{44} \frac{1}{{R^{2} }}\frac{{\partial q_{w} }}{\partial \theta }\frac{{\partial q_{w} }}{\partial \theta } + s_{{\text{r}}} A_{45} \frac{1}{R}\left( {\frac{{\partial q_{w} }}{\partial \varphi }\frac{{\partial q_{w} }}{\partial \theta } + \frac{{\partial q_{w} }}{\partial \theta }\frac{{\partial q_{w} }}{\partial \varphi }} \right) \hfill \\ \quad + s_{{\text{r}}} A_{55} \frac{{\partial q_{w} }}{\partial \varphi }\frac{{\partial q_{w} }}{\partial \varphi } - \left[ {\left( {a_{1} + a^{\prime}_{1} } \right)\vartriangle T + \left( {b_{1} + b^{\prime}_{1} } \right)\vartriangle C} \right]\frac{{\partial q_{w} }}{\partial \varphi }\frac{{\partial q_{w} }}{\partial \varphi } \hfill \\ \quad - \left[ {\left( {a_{2} + a^{\prime}_{2} } \right)\vartriangle T + \left( {b_{2} + b^{\prime}_{2} } \right)\vartriangle C} \right]\frac{{\partial q_{w} }}{R\partial \theta }\frac{{\partial q_{w} }}{R\partial \theta } \hfill \\ \quad - \left[ {\left( {a_{12} + a^{\prime}_{12} } \right)\vartriangle T + \left( {b_{12} + b^{\prime}_{12} } \right)\vartriangle C} \right]\frac{{\partial q_{w} }}{\partial \varphi }\frac{{\partial q_{w} }}{R\partial \theta } \hfill \\ \end{array} \right\}} } R{\text{d}}\varphi {\text{d}}\theta $$
(A16)
$$ H_{34} = \int_{0}^{{2{\uppi }}} {\int_{0}^{L} {\left\{ {B_{12} \frac{1}{R}q_{w} q_{\varphi } + B_{26} \frac{1}{{R^{2} }}q_{w} \frac{{\partial q_{\varphi } }}{\partial \theta } + \kappa_{{\text{s}}} A_{45} \frac{1}{R}\frac{{\partial q_{w} }}{\partial \theta }q_{\varphi } + s_{{\text{r}}} A_{55} \frac{{\partial q_{w} }}{\partial \varphi }q_{\varphi } } \right\}} } R{\text{d}}\varphi {\text{d}}\theta $$
(A17)
$$ H_{35} = \int_{0}^{{2{\uppi }}} {\int_{0}^{L} {\left\{ {B_{22} \frac{1}{{R^{2} }}Q_{w} \frac{{\partial Q_{\theta } }}{\partial \theta } + B_{26} \frac{1}{R}Q_{w} \frac{{\partial Q_{\theta } }}{\partial \varphi } + s_{{\text{r}}} A_{44} \frac{1}{R}\frac{{\partial Q_{w} }}{\partial \theta }Q_{\theta } + s_{{\text{r}}} A_{45} \frac{1}{R}\frac{{\partial Q_{w} }}{\partial \varphi }Q_{\theta } } \right\}} } R{\text{d}}\varphi {\text{d}}\theta $$
(A18)
$$ H_{36} = \int_{0}^{{2{\uppi }}} {\int_{0}^{L} {\left\{ \begin{array}{l} 2A_{11} \left( {\frac{{\partial q_{w} }}{\partial \varphi }} \right)^{2} \frac{{\partial q_{u} }}{\partial \varphi } + 4A_{66} \frac{1}{{R^{2} }}\frac{{\partial q_{w} }}{\partial \varphi }\frac{{\partial q_{w} }}{\partial \theta }\frac{{\partial q_{u} }}{\partial \varphi } + 2A_{16} \frac{1}{{R^{2} }}\left( {\frac{{\partial q_{w} }}{\partial \theta }} \right)^{2} \frac{{\partial q_{u} }}{\partial \theta } \hfill \\ \quad + 4A_{16} \frac{1}{R}\frac{{\partial q_{w} }}{\partial \varphi }\frac{{\partial q_{w} }}{\partial \theta }\frac{{\partial q_{u} }}{\partial \varphi } + 2A_{12} \frac{1}{{R^{2} }}\left( {\frac{{\partial q_{w} }}{\partial \theta }} \right)^{2} \frac{{\partial q_{u} }}{\partial \varphi } + 2A_{26} \frac{1}{{R^{3} }}\left( {\frac{{\partial q_{w} }}{\partial \theta }} \right)^{2} \frac{{\partial q_{u} }}{\partial \theta } \hfill \\ \end{array} \right\}} } R{\text{d}}\varphi {\text{d}}\theta $$
(A19)
$$ H_{37} = \int_{0}^{{2{\uppi }}} {\int_{0}^{L} {\left\{ \begin{array}{l} 2A_{12} \frac{1}{R}\left( {\frac{{\partial q_{w} }}{\partial \varphi }} \right)^{2} \frac{{\partial q_{v} }}{\partial \theta } + 4A_{66} \frac{1}{R}\frac{{\partial q_{w} }}{\partial \varphi }\frac{{\partial q_{w} }}{\partial \theta }\frac{{\partial q_{v} }}{\partial \varphi } + 2A_{22} \left( {\frac{{\partial q_{w} }}{\partial \theta }} \right)^{2} \frac{1}{{R^{3} }}\frac{{\partial q_{v} }}{\partial \theta } \hfill \\ \quad + 2A_{16} \left( {\frac{{\partial q_{w} }}{\partial \varphi }} \right)^{2} \frac{{\partial q_{v} }}{\partial \varphi } + 4A_{26} \frac{1}{{R^{2} }}\frac{{\partial q_{w} }}{\partial \varphi }\frac{{\partial q_{w} }}{\partial \theta }\frac{{\partial q_{v} }}{\partial \theta } + 2A_{26} \frac{1}{{R^{2} }}\left( {\frac{{\partial q_{w} }}{\partial \theta }} \right)^{2} \frac{{\partial q_{v} }}{\partial \theta } \hfill \\ \end{array} \right\}} } R{\text{d}}\varphi {\text{d}}\theta $$
(A20)
$$ H_{non2} = \int_{0}^{{2{\uppi }}} {\int_{0}^{L} {\left\{ {A_{12} \frac{1}{R}q_{w} \left( {\frac{{\partial q_{w} }}{\partial \varphi }} \right)^{2} + 2A_{26} \frac{1}{{R^{2} }}q_{w} \frac{{\partial q_{w} }}{\partial \varphi }\frac{{\partial q_{w} }}{\partial \theta } + A_{22} \frac{1}{{R^{3} }}q_{w} \left( {\frac{{\partial q_{w} }}{\partial \theta }} \right)^{2} } \right\}} } R{\text{d}}\varphi {\text{d}}\theta $$
(A21)
$$ H_{38} = \int_{0}^{{2{\uppi }}} {\int_{0}^{L} {\left\{ \begin{gathered} 2B_{11} \left( {\frac{{\partial q_{w} }}{\partial \varphi }} \right)^{2} \frac{{\partial q_{\varphi } }}{\partial \varphi } + 4B_{66} \frac{1}{{R^{2} }}\frac{{\partial q_{w} }}{\partial \varphi }\frac{{\partial q_{w} }}{\partial \theta }\frac{{\partial q_{\varphi } }}{\partial \theta } + 4B_{16} \frac{1}{R}\frac{{\partial q_{w} }}{\partial \varphi }\frac{{\partial q_{w} }}{\partial \theta }\frac{{\partial q_{\varphi } }}{\partial \varphi } \hfill \\ \quad + 2B_{16} \frac{1}{R}\left( {\frac{{\partial q_{w} }}{\partial \varphi }} \right)^{2} \frac{{\partial q_{\varphi } }}{\partial \theta } + 2B_{11} \frac{1}{{R^{2} }}\left( {\frac{{\partial q_{w} }}{\partial \theta }} \right)^{2} \frac{{\partial q_{\varphi } }}{\partial \varphi } + 4B_{26} \frac{1}{{R^{2} }}\frac{{\partial q_{w} }}{\partial \varphi }\frac{{\partial q_{w} }}{\partial \theta }\frac{{\partial q_{\varphi } }}{\partial \theta } \hfill \\ \quad + B_{26} \frac{1}{{R^{3} }}\left( {\frac{{\partial q_{w} }}{\partial \theta }} \right)^{2} \frac{{\partial q_{\varphi } }}{\partial \theta } \hfill \\ \end{gathered} \right\}} } R{\text{d}}\varphi {\text{d}}\theta $$
(A22)
$$ H_{39} = \int_{0}^{{2{\uppi }}} {\int_{0}^{L} {\left\{ \begin{array}{l} 2B_{12} \frac{1}{R}\left( {\frac{{\partial q_{w} }}{\partial \varphi }} \right)^{2} \frac{{\partial q_{\theta } }}{\partial \theta } + 4B_{66} \frac{1}{{R^{2} }}\frac{{\partial q_{w} }}{\partial \varphi }\frac{{\partial q_{w} }}{\partial \theta }\frac{{\partial q_{\theta } }}{\partial \theta } + B_{16} \left( {\frac{{\partial q_{w} }}{\partial \varphi }} \right)^{2} \frac{{\partial q_{\theta } }}{\partial \varphi } \hfill \\ \quad + 4B_{26} \frac{1}{{R^{2} }}\frac{{\partial q_{w} }}{\partial \varphi }\frac{{\partial q_{w} }}{\partial \theta }\frac{{\partial q_{\theta } }}{\partial \theta } + 2B_{22} \frac{1}{{R^{3} }}\left( {\frac{{\partial q_{w} }}{\partial \theta }} \right)^{2} \frac{{\partial q_{\theta } }}{\partial \theta } + B_{26} \frac{1}{{R^{2} }}\left( {\frac{{\partial q_{w} }}{\partial \varphi }} \right)^{2} \frac{{\partial q_{\theta } }}{\partial \varphi } \hfill \\ \end{array} \right\}} } R{\text{d}}\varphi {\text{d}}\theta $$
(A23)
$$ H_{{{\text{non3}}}} = \int_{0}^{{2{\uppi }}} {\int_{0}^{L} {\left\{ \begin{array}{l} A_{11} \left( {\frac{{\partial q_{w} }}{\partial \varphi }} \right)^{4} + 2A_{12} \frac{1}{{R^{2} }}\left( {\frac{{\partial q_{w} }}{\partial \varphi }} \right)^{2} \left( {\frac{{\partial q_{w} }}{\partial \theta }} \right)^{2} + 2A_{16} \frac{1}{R}\left( {\frac{{\partial q_{w} }}{\partial \varphi }} \right)^{3} \frac{{\partial q_{w} }}{\partial \theta } \hfill \\ \quad + A_{22} \frac{1}{{R^{4} }}\left( {\frac{{\partial q_{w} }}{\partial \varphi }} \right)^{4} + 2A_{26} \frac{1}{{R^{3} }}\frac{{\partial q_{w} }}{\partial \varphi }\left( {\frac{{\partial q_{w} }}{\partial \theta }} \right)^{3} + 4A_{66} \frac{1}{{R^{2} }}\left( {\frac{{\partial q_{w} }}{\partial \varphi }} \right)^{2} \left( {\frac{{\partial q_{w} }}{\partial \theta }} \right)^{2} \hfill \\ \end{array} \right\}} } R{\text{d}}\varphi {\text{d}}\theta $$
(A24)
$$ H_{41} = \int_{0}^{{2{\uppi }}} {\int_{0}^{L} {\left\{ {B_{11} \frac{{\partial q_{\varphi } }}{\partial \varphi }\frac{{\partial q_{u} }}{\partial \theta } + B_{16} \frac{1}{R}\frac{{\partial q_{\varphi } }}{\partial \theta }\frac{{\partial q_{u} }}{\partial \varphi } + B_{16} \frac{1}{R}\frac{{\partial q_{\varphi } }}{\partial \varphi }\frac{{\partial q_{u} }}{\partial \theta } + B_{66} \frac{1}{{R^{2} }}\frac{{\partial q_{\varphi } }}{\partial \theta }\frac{{\partial q_{u} }}{\partial \theta }} \right\}} } R{\text{d}}\varphi {\text{d}}\theta $$
(A25)
$$ H_{42} = \int_{0}^{{2{\uppi }}} {\int_{0}^{L} {\left\{ \begin{array}{l} B_{12} \frac{1}{R}\frac{{\partial q_{\varphi } }}{\partial \varphi }\frac{{\partial q_{v} }}{\partial \theta } + B_{16} \frac{{\partial q_{\varphi } }}{\partial \varphi }\frac{{\partial q_{v} }}{\partial \varphi } + B_{26} \frac{1}{{R^{2} }}\frac{{\partial q_{\varphi } }}{\partial \theta }\frac{{\partial q_{v} }}{\partial \theta } \hfill \\ \quad + B_{66} \frac{1}{R}\frac{{\partial q_{\varphi } }}{\partial \theta }\frac{{\partial q_{v} }}{\partial \varphi } - s_{{\text{r}}} A_{45} \frac{1}{R}q_{\varphi } q_{v} \hfill \\ \end{array} \right\}} } R{\text{d}}\varphi {\text{d}}\theta $$
(A26)
$$ H_{43} = \int_{0}^{{2{\uppi }}} {\int_{0}^{L} {\left\{ {B_{12} \frac{1}{R}q_{\varphi } q_{w} + B_{26} \frac{1}{{R^{2} }}\frac{{\partial q_{\varphi } }}{\partial \theta }q_{w} + s_{{\text{r}}} A_{45} \frac{1}{R}q_{\varphi } \frac{{\partial q_{w} }}{\partial \theta } + s_{{\text{r}}} A_{55} q_{\varphi } \frac{{\partial q_{w} }}{\partial \varphi }} \right\}} } R{\text{d}}\varphi {\text{d}}\theta $$
(A27)
$$ H_{44} = \int_{0}^{{2{\uppi }}} {\int_{0}^{L} {\left\{ {D_{11} \frac{{\partial q_{\varphi } }}{\partial \varphi }\frac{{\partial q_{\varphi } }}{\partial \varphi } + D_{16} \frac{1}{R}\left( {\frac{{\partial q_{\varphi } }}{\partial \varphi }\frac{{\partial q_{\varphi } }}{\partial \theta } + \frac{{\partial q_{\varphi } }}{\partial \theta }\frac{{\partial q_{\varphi } }}{\partial \varphi }} \right) + D_{66} \frac{1}{{R^{2} }}\frac{{\partial q_{\varphi } }}{\partial \theta }\frac{{\partial q_{\varphi } }}{\partial \theta } + s_{{\text{r}}} A_{55} q_{\varphi } q_{\varphi } } \right\}} } R{\text{d}}\varphi {\text{d}}\theta $$
(A28)
$$ H_{45} = \int_{0}^{{2{\uppi }}} {\int_{0}^{L} {\left\{ \begin{gathered} D_{12} \frac{1}{R}\frac{{\partial q_{\varphi } }}{\partial \varphi }\frac{{\partial q_{\theta } }}{\partial \theta } + D_{16} \frac{1}{R}\frac{{\partial q_{\varphi } }}{\partial \varphi }\frac{{\partial q_{\theta } }}{\partial \varphi } + D_{26} \frac{1}{{R^{2} }}\frac{{\partial q_{\varphi } }}{\partial \theta }\frac{{\partial q_{\theta } }}{\partial \theta } + D_{66} \frac{1}{R}\frac{{\partial q_{\varphi } }}{\partial \theta }\frac{{\partial q_{\theta } }}{\partial \varphi } \hfill \\ \quad + s_{{\text{r}}} A_{45} Q_{\varphi } Q_{\theta } \hfill \\ \end{gathered} \right\}} } R{\text{d}}\varphi {\text{d}}\theta $$
(A29)
$$ H_{46} = \int_{0}^{{2{\uppi }}} {\int_{0}^{L} {\left\{ \begin{gathered} B_{11} \frac{{\partial q_{\varphi } }}{\partial \varphi }\left( {\frac{{\partial q_{w} }}{\partial \varphi }} \right)^{2} + 2B_{66} \frac{1}{{R^{2} }}\frac{{\partial q_{\varphi } }}{\partial \theta }\frac{{\partial q_{w} }}{\partial \varphi }\frac{{\partial q_{w} }}{\partial \theta } + 2B_{16} \frac{1}{R}\frac{{\partial q_{\varphi } }}{\partial \varphi }\frac{{\partial q_{w} }}{\partial \varphi }\frac{{\partial q_{w} }}{\partial \theta } \hfill \\ \quad + B_{16} \frac{1}{R}\frac{{\partial q_{\varphi } }}{\partial \theta }\left( {\frac{{\partial q_{w} }}{\partial \varphi }} \right)^{2} + B_{11} \frac{1}{{R^{2} }}\frac{{\partial q_{\varphi } }}{\partial \varphi }\left( {\frac{{\partial q_{w} }}{\partial \theta }} \right)^{2} + 2B_{26} \frac{1}{{R^{2} }}\frac{{\partial q_{\varphi } }}{\partial \theta }\frac{{\partial q_{w} }}{\partial \varphi }\frac{{\partial q_{w} }}{\partial \theta } \hfill \\ \quad + B_{26} \frac{1}{{R^{3} }}\frac{{\partial q_{\varphi } }}{\partial \theta }\left( {\frac{{\partial q_{w} }}{\partial \theta }} \right)^{2} \hfill \\ \end{gathered} \right\}} } R{\text{d}}\varphi {\text{d}}\theta $$
(A30)
$$ H_{51} = \int_{0}^{{2{\uppi }}} {\int_{0}^{L} {\left\{ {B_{12} \frac{1}{R}\frac{{\partial q_{\theta } }}{\partial \theta }\frac{{\partial q_{u} }}{\partial \varphi } + B_{16} \frac{{\partial q_{\theta } }}{\partial \varphi }\frac{{\partial q_{u} }}{\partial \varphi } + B_{26} \frac{1}{{R^{2} }}\frac{{\partial q_{\theta } }}{\partial \theta }\frac{{\partial q_{u} }}{\partial \theta } + B_{66} \frac{1}{R}\frac{{\partial q_{\theta } }}{\partial \varphi }\frac{{\partial q_{u} }}{\partial \theta }} \right\}} } R{\text{d}}\varphi {\text{d}}\theta $$
(A31)
$$ H_{52} = \int_{0}^{{2{\uppi }}} {\int_{0}^{L} {\left\{ {B_{22} \frac{1}{{R^{2} }}\frac{{\partial q_{\theta } }}{\partial \theta }\frac{{\partial q_{v} }}{\partial \theta } + B_{26} \frac{1}{R}\left( {\frac{{\partial q_{\theta } }}{\partial \varphi }\frac{{\partial q_{v} }}{\partial \theta } + \frac{{\partial q_{\theta } }}{\partial \theta }\frac{{\partial q_{v} }}{\partial \varphi }} \right) + B_{66} \frac{{\partial q_{\theta } }}{\partial \varphi }\frac{{\partial q_{v} }}{\partial \varphi } - s_{{\text{r}}} A_{44} \frac{1}{R}q_{\theta } q_{v} } \right\}} } R{\text{d}}\varphi {\text{d}}\theta $$
(A32)
$$ H_{53} = \int_{0}^{{2{\uppi }}} {\int_{0}^{L} {\left\{ {B_{22} \frac{1}{{R^{2} }}\frac{{\partial q_{\theta } }}{\partial \theta }q_{w} + B_{26} \frac{1}{R}\frac{{\partial q_{\theta } }}{\partial \varphi }q_{w} + s_{{\text{r}}} A_{44} \frac{1}{R}q_{\theta } \frac{{\partial q_{w} }}{\partial \theta } + s_{{\text{r}}} A_{45} \frac{1}{R}q_{\theta } \frac{{\partial q_{w} }}{\partial \varphi }} \right\}} } R{\text{d}}\varphi {\text{d}}\theta $$
(A33)
$$ H_{54} = \int_{0}^{{2{\uppi }}} {\int_{0}^{L} {\left\{ \begin{gathered} D_{12} \frac{1}{R}\frac{{\partial q_{\theta } }}{\partial \theta }\frac{{\partial q_{\varphi } }}{\partial \varphi } + D_{16} \frac{1}{R}\frac{{\partial q_{\theta } }}{\partial \varphi }\frac{{\partial q_{\varphi } }}{\partial \varphi } + D_{26} \frac{1}{{R^{2} }}\frac{{\partial q_{\theta } }}{\partial \theta }\frac{{\partial q_{\varphi } }}{\partial \theta } + D_{66} \frac{1}{R}\frac{{\partial q_{\theta } }}{\partial \varphi }\frac{{\partial q_{\varphi } }}{\partial \theta } \hfill \\ \quad + s_{{\text{r}}} A_{45} Q_{\theta } Q_{\varphi } \hfill \\ \end{gathered} \right\}} } R{\text{d}}\varphi {\text{d}}\theta $$
(A34)
$$ H_{55} = \int_{0}^{{2{\uppi }}} {\int_{0}^{L} {\left\{ \begin{gathered} D_{22} \frac{1}{{R^{2} }}\frac{{\partial q_{\theta } }}{\partial \theta }\frac{{\partial q_{\theta } }}{\partial \theta } + D_{26} \frac{1}{R}\left( {\frac{{\partial q_{\theta } }}{\partial \varphi }\frac{{\partial q_{\theta } }}{\partial \theta } + \frac{{\partial q_{\theta } }}{\partial \theta }\frac{{\partial q_{\theta } }}{\partial \varphi }} \right) + D_{66} \frac{{\partial q_{\theta } }}{\partial \varphi }\frac{{\partial q_{\theta } }}{\partial \varphi } \hfill \\ \quad + s_{{\text{r}}} A_{44} Q_{\theta } Q_{\theta } \hfill \\ \end{gathered} \right\}} } R{\text{d}}\varphi {\text{d}}\theta $$
(A35)
$$ H_{56} = \int_{0}^{{2{\uppi }}} {\int_{0}^{L} {\left\{ \begin{gathered} B_{12} \frac{1}{R}\frac{{\partial q_{\theta } }}{\partial \theta }\left( {\frac{{\partial q_{w} }}{\partial \varphi }} \right)^{2} + 2B_{66} \frac{1}{{R^{2} }}\frac{{\partial q_{\theta } }}{\partial \theta }\frac{{\partial q_{w} }}{\partial \varphi }\frac{{\partial q_{w} }}{\partial \theta } + B_{16} \frac{1}{2}\frac{{\partial q_{\theta } }}{\partial \varphi }\left( {\frac{{\partial q_{w} }}{\partial \varphi }} \right)^{2} \hfill \\ \quad + 2B_{26} \frac{1}{{R^{2} }}\frac{{\partial q_{\theta } }}{\partial \theta }\frac{{\partial q_{w} }}{\partial \varphi }\frac{{\partial q_{w} }}{\partial \theta } + B_{22} \frac{1}{{R^{3} }}\frac{{\partial q_{\theta } }}{\partial \theta }\left( {\frac{{\partial q_{w} }}{\partial \theta }} \right)^{2} + B_{26} \frac{1}{{2R^{2} }}\frac{{\partial q_{\theta } }}{\partial \varphi }\left( {\frac{{\partial q_{w} }}{\partial \varphi }} \right)^{2} \hfill \\ \end{gathered} \right\}} } R{\text{d}}\varphi {\text{d}}\theta $$
(A36)
$$ S_{u} = \int_{0}^{{2{\uppi }}} {\int_{0}^{L} {I_{0} q_{u} } } q_{u} R{\text{d}}\varphi {\text{d}}\theta ,\quad S_{v} = \int_{0}^{{2{\uppi }}} {\int_{0}^{L} {I_{0} q_{v} } } q_{v} R{\text{d}}\varphi {\text{d}}\theta ,\quad S_{w} = \int_{0}^{{2{\uppi }}} {\int_{0}^{L} {I_{0} q_{w} } } q_{w} R{\text{d}}\varphi {\text{d}}\theta $$
(A37)
$$ S_{\varphi } = \int_{0}^{{2{\uppi }}} {\int_{0}^{L} {I_{2} q_{\varphi } } } q_{\varphi } R{\text{d}}\varphi {\text{d}}\theta ,\quad S_{\theta } = \int_{0}^{{2{\uppi }}} {\int_{0}^{L} {I_{2} q_{\theta } } } q_{\theta } R{\text{d}}\varphi {\text{d}}\theta $$
(A38)
$$ S_{u\varphi } = \int_{0}^{{2{\uppi }}} {\int_{0}^{L} {2I_{1} q_{u} } } q_{\varphi } R{\text{d}}\varphi {\text{d}}\theta ,\quad S_{u\theta } = \int_{0}^{{2{\uppi }}} {\int_{0}^{L} {2I_{1} q_{u} } } q_{\theta } R{\text{d}}\varphi {\text{d}}\theta $$
(A39)
$$ S_{\varphi u} = \int_{0}^{{2{\uppi }}} {\int_{0}^{L} {2I_{1} q_{\varphi } q_{u} } } R{\text{d}}\varphi {\text{d}}\theta ,\quad S_{\theta u} = \int_{0}^{{2{\uppi }}} {\int_{0}^{L} {2I_{1} q_{\theta } q_{u} } } R{\text{d}}\varphi {\text{d}}\theta $$
(A40)
$$ S_{c} = \int_{0}^{{2{\uppi }}} {\int_{0}^{L} {I_{0} cq_{w} } } q_{w} R{\text{d}}\varphi {\text{d}}\theta $$
(A41)

Appendix B

The coefficient expressions \(d_{i} \left( {i = 0, \, 1, \ldots ,4} \right)\) in Eq. (34) are formulated as:

$$ d_{0} = 2\xi \omega_{mn} $$
(B1)
$$ d_{1} = \frac{{\left( {H_{31} L_{1} + H_{32} L_{2} + H_{33} + H_{34} L_{3} + H_{35} L_{4} } \right)}}{{S_{w} }} $$
(B2)
$$ d_{2} = \frac{{\left( {H_{36} L_{1} + H_{37} L_{2} + H_{{{\text{non2}}}} + H_{38} L_{3} + H_{39} L_{4} } \right)}}{{S_{w} }} = 0 $$
(B3)
$$ d_{3} = \frac{{H_{{{\text{non3}}}} }}{{S_{w} }} $$
(B4)
$$ d_{4} = \frac{{4F_{{0}} \left[ {\left( { - 1} \right)^{m} - 1} \right]\left[ {\left( { - 1} \right)^{n} - 1} \right]}}{{mn{\uppi }^{2} I_{0} }} $$
(B5)

Appendix C

Based on super-harmonic resonance, Eq. (36) can be re-written as:

$$ \ddot{W}_{mn} \left( \tau \right) + \varepsilon d_{0} \dot{W}_{mn} \left( \tau \right) + d_{1} W_{mn} \left( \tau \right) + \varepsilon d_{3} W_{mn}^{3} \left( \tau \right) = d_{4} \cos \left( {\omega_{ * } \tau } \right) $$
(C1)

By substituting Eqs. (54), (38), (39), (40) and (41) into Eq. (C1) and setting the coefficient of each order perturbation parameter to be zero.

$$ \varepsilon^{0} {:}\,D_{0} W_{0} + \omega_{mn}^{2} W_{0} = d_{4} \cos \left( {\frac{1}{3}\omega_{mn} T_{0} + \frac{1}{3}\sigma T_{1} } \right) $$
(C2)
$$ \varepsilon^{1} {:}\,D_{0}^{2} W_{1} + \omega_{mn}^{2} W_{1} = - 2D_{0} D_{1} W_{0} - d_{0} W_{0} - d_{3} W_{0}^{3} $$
(C3)

In the first step, the general solution of Eq. (C2) can be obtained in the form of:

$$ W_{0} = A\left( {T_{1} , \, T_{2} } \right)\exp \left( {i\omega_{mn} T_{0} } \right) + \Lambda \exp \left[ { - i\left( {\omega_{mn} T_{0} + \sigma T_{1} } \right)} \right] + C_{{\text{J}}} $$
(C4)

where

$$ \Lambda = \frac{{d_{4} }}{{2\left( {\omega_{mn}^{2} - \omega_{ * }^{2} } \right)}},\quad \omega_{ * } = \frac{1}{3}\left( {\omega_{mn} + \varepsilon \sigma } \right) $$
(C5)

Then, by taking Eq. (C4) into Eq. (C3), one can obtain:

$$ \begin{aligned} D_{0}^{2} W_{1} + \omega_{mn}^{2} W_{1} & = \left[ { - i2\omega_{mn} \left( {D_{1} A} \right) - i\omega_{mn} d_{0} A - 6d_{3} A^{2} \Lambda - 3d_{3} A^{2} \overline{A} - d_{3} \Lambda^{3} \exp \left( {i\sigma T_{1} } \right)} \right]\exp \left( {i\omega_{mn} T_{0} } \right) \\ & \quad - \Lambda \left[ {id_{0} (\omega_{mn} T_{0} + \sigma T_{1} ) + 3d_{3} A\overline{A}} \right]\exp \left[ {i\frac{1}{3}(\omega_{mn} T_{0} + \sigma T_{1} )} \right] + \cdots + C_{J} \\ \end{aligned} $$
(C6)

Finally, to eliminate secular terms in Eq. (C6), Eq. (55) can be obtained.

Appendix D

Based on sub-harmonic resonance, Eq. (36) can be also re-written as:

$$ \ddot{W}_{mn} \left( \tau \right) + \varepsilon a_{0} \dot{W}_{mn} \left( \tau \right) + a_{1} W_{mn} \left( \tau \right) + \varepsilon a_{3} W_{mn}^{3} \left( \tau \right) = a_{4} \cos \left( {\omega_{ * } \tau } \right) $$
(D1)

By substituting Eqs. (57), (38), (39), (40) and (40) into Eq. (D1) and setting the coefficient of each order perturbation parameter to be zero.

$$ \varepsilon^{0} : \, D_{0} W_{0} + \omega_{0}^{2} W_{0} = d_{4} \cos \left( {3\omega_{mn} T_{0} + \sigma T_{1} } \right) $$
(D2)
$$ \varepsilon^{1} : \, D_{0}^{2} W_{1} + \omega_{mn}^{2} W_{1} = - 2D_{0} D_{1} W_{0} - d_{0} W_{0} - d_{3} W_{0}^{3} $$
(D3)

In the first step, the general solution of Eq. (D2) can be obtained in the form of:

$$ W_{0} = A\left( {T_{1} , \, T_{2} } \right)\exp \left( {{\text{i}}\omega_{mn} T_{0} } \right) + \Lambda \exp \left[ {{\text{ - i}}\left( {\omega_{mn} T_{0} + \sigma T_{1} } \right)} \right] + {\text{C}}_{{\text{J}}} $$
(D4)

where

$$ \Lambda = \frac{{d_{4} }}{{2\left( {\omega_{mn}^{2} - \omega_{ * }^{2} } \right)}},\quad \omega_{ * } = 3\omega_{mn} + \varepsilon \sigma $$
(D5)

Then, by taking Eq. (D4) into Eq. (D3), one can obtain:

$$ \begin{aligned} D_{0}^{2} W_{1} + \omega_{mn}^{2} W_{1} & = \left[ { - i2\omega_{mn} \left( {D_{1} A} \right) - i\omega_{mn} d_{0} A - 6d_{3} \Lambda^{2} A - 3d_{3} A^{2} \overline{A} - 3d_{3} \Lambda \overline{A}^{2} \exp \left( {i\sigma T_{1} } \right)} \right]\exp \left( {i\omega_{mn} T_{0} } \right) \\ & \quad + \cdots + C_{J} \\ \end{aligned} $$
(D6)

Finally, to eliminate secular terms in Eq. (D6), Eq. (58) can be obtained.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, B., Li, H., Wang, X. et al. Nonlinear forced vibration of hybrid fiber/graphene nanoplatelets/polymer composite sandwich cylindrical shells with hexagon honeycomb core. Nonlinear Dyn 110, 3303–3331 (2022). https://doi.org/10.1007/s11071-022-07811-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07811-x

Keywords

Navigation