Skip to main content
Log in

Robotic controller design for sporadic events using large deviations theory

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A robot is a coupled nonlinear system, which heavily depends on the trajectory tracking to perform the desired task. Therefore, to make the robot follow the desired trajectory with the use of controllers has become an onerous task. In this paper, a novel application of large deviation theory to control a nonlinear dynamical robotic system is presented. The torque input is considered to be corrupted with Poisson and Gaussian noise. The large deviation principle is applied to find the approximate small-amplitude exit probability of the noisy trajectory from the desired defined boundaries. Afterward, the exit probability is used to discover the optimal controller coefficients acceptable for specified boundaries. The designed controller limits the exit of the trajectory under the desired range. Evaluation of proposed approach is presented through the stability and performance analysis. Finally, the presented research is experimentally validated using MATLAB simulations with different trajectories and implemented on commercially available Omni bundle robot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data Availability Statement

All related data are available in the manuscript.

References

  1. Boomeri, V., Tourajizadeh, H.: Design, modeling, and control of a new manipulating climbing robot through infrastructures using adaptive force control method. Robotica (2020). https://doi.org/10.1017/S0263574719001814

    Article  Google Scholar 

  2. Corke, P.: Robotics, Vision & Control, vol. 118. Springer International Publishing, Berlin (2017). https://doi.org/10.1007/978-3-319-54413-7

    Book  MATH  Google Scholar 

  3. Mosavi, A., Qasem, S.N., Shokri, M., Band, S.S., Mohammadzadeh, A.: Fractional-order fuzzy control approach for photovoltaic/battery systems under unknown dynamics. Var. Irradiat. Temp. Electron. 9, 1455 (2020). https://doi.org/10.3390/electronics9091455

    Article  Google Scholar 

  4. Mohammadzadeh, A., Rathinasamy, S.: Energy management in photovoltaic battery hybrid systems: a novel type-2 fuzzy control. Int. J. Hydrogen Energy 45(41), 20970–20982 (2020). https://doi.org/10.1016/j.ijhydene.2020.05.187. (ISSN 0360-3199. 10.1016)

    Article  Google Scholar 

  5. Hao, Y., Duan, Z., Wen, G.: Controllability and observability of an n-link robot with multiple active links. Int. J. Robust. Nonlinear Control 27, 4633–4647 (2017). https://doi.org/10.1002/rnc.3822

    Article  MathSciNet  MATH  Google Scholar 

  6. Herzallah, R.: Probabilistic control for uncertain systems. ASME. J. Dyn. Syst. Meas. Control 134(2), 021018 (2012). https://doi.org/10.1115/1.4005370

    Article  Google Scholar 

  7. Todorov, E., Li, Weiwei.: A generalized iterative LQG method for locally-optimal feedback control of constrained nonlinear stochastic systems. In: Proceedings of the 2005, American Control Conference, 2005., Portland, OR, USA, 2005, pp. 300–306 vol. 1

  8. Herzallah, R.: Generalised probabilistic control design for uncertain stochastic control systems. Asian J. Control 20, 2065–2074 (2012). https://doi.org/10.1002/asjc.1717

    Article  MathSciNet  MATH  Google Scholar 

  9. Asselborn, Leonhard, Stursberg, Olaf: Probabilistic control of uncertain linear systems using stochastic reachability. IFAC-PapersOnLine 48(14), 167–173 (2015). https://doi.org/10.1016/j.ifacol.2015.09.452

    Article  Google Scholar 

  10. Bandyopadhyay, S., Chung, S., Hadaegh, F.Y.: Probabilistic and distributed control of a large-scale swarm of autonomous agents. IEEE Trans. Rob. 33(5), 1103–1123 (2017)

    Article  Google Scholar 

  11. Tang, Z.Q., Heung, H.L., Tong, K.Y., Li, Z.: A probabilistic model-based online learning optimal control algorithm for soft pneumatic actuators. IEEE Robot. Autom. Lett. 5(2), 1437–1444 (2020)

    Article  Google Scholar 

  12. Chung, Y.M., Rivera-Letelier, J., Takahasi, H.: Large deviation principle in one-dimensional dynamics. Invent. Math. 218, 853–888 (2019). https://doi.org/10.1007/s00222-019-00899-w

    Article  MathSciNet  MATH  Google Scholar 

  13. Bouchet, F., Laurie, J., Zaboronski, O.: Langevin dynamics, large deviations and instantons for the quasi-geostrophic model and two-dimensional Euler equations. J. Stat. Phys. 156, 1066–1092 (2014). https://doi.org/10.1007/s10955-014-1052-5

    Article  MathSciNet  MATH  Google Scholar 

  14. Kraaij, R.: Large deviations for finite state Markov jump processes with mean-field interaction via the comparison principle for an associated Hamilton-Jacobi equation. J. Stat. Phys. 164, 321–345 (2016). https://doi.org/10.1007/s10955-016-1542-8

    Article  MathSciNet  MATH  Google Scholar 

  15. Agraz, P.T.: Borel measurability and large deviations for fuzzy random variables. Fuzzy Sets Syst. 157(19), 2558–2568 (2006). https://doi.org/10.1016/j.fss.2005.03.014

    Article  MathSciNet  MATH  Google Scholar 

  16. Bercu, B., Richou, A.: Large deviations for the Ornstein–Uhlenbeck process with shift. Adv. Appl. Probab. 47(3), 880–901 (2015). https://doi.org/10.1239/aap/1444308886

    Article  MathSciNet  MATH  Google Scholar 

  17. Chiarini, A., Fischer, M.: On large deviations for small noise Itô processes. Adv. Appl. Probab. 46(4), 1126–1147 (2014). https://doi.org/10.1239/aap/1418396246

    Article  MathSciNet  MATH  Google Scholar 

  18. Pfister, C.E., Sullivan, W.G.: Large deviations estimates for dynamical systems without the specification property. Appl. \(\beta \)-shifts Nonlinearity 18, 237–261 (2004). https://doi.org/10.1088/0951-7715/18/1/013

  19. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, 2nd edn. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-03311-7

    Book  MATH  Google Scholar 

  20. Chen, W.-H., Ballance, D.J., Gawthrop, P.J., O’Reilly, J.: A nonlinear disturbance observer for robotic manipulators. IEEE Trans. Ind. Electron. 47(4), 932–938 (2000). https://doi.org/10.1109/41.857974

    Article  Google Scholar 

  21. Rana, R., Gaur, P., Agarwal, V., Parthasarathy, H.: Tremor estimation and removal in robot-assisted surgery using lie groups and EKF. Robotica (2019). https://doi.org/10.1017/S0263574719000341

    Article  Google Scholar 

  22. Dupuis, P., Ellis, R.S.: A Weak Convergence Approach to the Theory of Large Deviations, p. xviii+479. A Wiley-Interscience Publication, New York (1997). https://doi.org/10.1002/9781118165904

    Book  MATH  Google Scholar 

  23. Li, N., Lei, Y., Guo, L., Yan, T., Lin, J.: Remaining useful life prediction based on a general expression of stochastic process models. IEEE Trans. Industr. Electron. 64(7), 5709–5718 (2017)

    Article  Google Scholar 

  24. Shynk, John J.: Chapter 7, Probability, Random Variables, and Random Processes: Theory and Signal Processing Applications. Wiley, Hoboken (2012).. (ISBN: 978-1-11-39395-68)

  25. Spong, Mark W.: S Hutchinson and M. Robot Modeling and Control. Wiley, Hoboken, Vidyasagar (2005).. (ISBN: 978-0-471-64990-8)

    Google Scholar 

  26. Ziegler, J.G., Nichols, N.B.: Optimum settings for automatic controllers. J. Dyn. Syst., Meas. Control 115(2), 220–222 (1993). https://doi.org/10.1115/1.2899060

    Article  Google Scholar 

  27. Rana, R., Agarwal, V., Gaur, P., Parthasarathy, H.: Design of optimal UKF state observer-controller for stochastic dynamical systems. IEEE Trans. Ind. Appl. 57(2), 1840–1859 (2021). https://doi.org/10.1109/TIA.2020.3048647

    Article  Google Scholar 

  28. Varadhan, S. R. S.: Large deviations. Courant Lect. Notes 27, 104, 2016. https://bookstore.ams.org/cln-27

  29. Singla, R., Parthasarathy, H., Agarwal, V., Rana, R.: Feedback optimization problem for master-slave teleoperation tracking in the presence of random noise in dynamics and feedback. Nonlinear Dyn. 86, 559–586 (2016). https://doi.org/10.1007/s11071-016-2908-9

    Article  MATH  Google Scholar 

  30. Chen, L., Wang, Q.: Prescribed performance-barrier Lyapunov function for the adaptive control of unknown pure-feedback systems with full-state constraints. Nonlinear Dyn. 95, 2443–2459 (2019). https://doi.org/10.1007/s11071-018-4704-1

    Article  MATH  Google Scholar 

Download references

Funding

This research received no grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit Singla.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, R., Singla, R. & Parthasarathy, H. Robotic controller design for sporadic events using large deviations theory. Nonlinear Dyn 110, 2481–2499 (2022). https://doi.org/10.1007/s11071-022-07758-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07758-z

Keywords

Navigation