Skip to main content
Log in

Pattern dynamics analysis and parameter identification of time delay-driven rumor propagation model based on complex networks

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Reaction–diffusion model is often used to describe the spatial distribution of network rumors. This paper establishes a reaction–diffusion rumor spreading model with media delay correction mechanism based on continuous space and discrete network space, respectively. By linearization, the condition of Turing instability under the influence of small delay is studied. The simulation results show when diffusion coefficient is extended periodically, the time stability of the pattern is broken, but the pattern type changes slightly. Finally, based on stable patterns, we estimate the unknown parameters of the system with the help of a statistical method, where the unknown parameters were set as infection rate \(\beta \) and cross-diffusion coefficient \(d_{21}\) for the system on the continuous space, as reconnection rate \(\rho \) and cross-diffusion coefficient \(d_{21}\) for the system on WS network. The final estimation error is within the ideal range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available in the section of the numerical simulation.

References

  1. Zhu, L.H., Guan, G., Li, Y.M.: Nonlinear dynamical analysis and control strategies of a network-based SIS epidemic model with time delay. Appl. Math. Model. 70, 512–531 (2019). https://doi.org/10.1016/j.apm.2019.01.037

    Article  MathSciNet  MATH  Google Scholar 

  2. Kawachi, K.: Deterministic models for rumor transmission. Nonlinear Anal. Real World Appl. 9, 1989–2028 (2008). https://doi.org/10.1016/j.nonrwa.2007.06.004

    Article  MathSciNet  MATH  Google Scholar 

  3. Zhu, L.H., Zhao, H.Y., Wang, H.Y.: Partial differential equation modeling of rumor propagation in complex networks with higher order of organization. Chaos 29, 053106 (2019). https://doi.org/10.1063/1.5090268

    Article  MathSciNet  MATH  Google Scholar 

  4. Li, W.Y., Tian, L.X., Gao, X.Y., Pan, B.R.: Impacts of information diffusion on green behavior spreading in multiplex networks. J. Clean. Prod. 222, 488–498 (2019). https://doi.org/10.1016/j.jclepro.2019.03.067

    Article  Google Scholar 

  5. Zhu, L.H., Liu, W.S., Zhang, Z.D.: Delay differential equations modeling of rumor propagation in both homogeneous and heterogeneous networks with a forced silence function. Appl. Math. Comput. 370, 124925 (2020). https://doi.org/10.1016/j.amc.2019.124925

    Article  MathSciNet  MATH  Google Scholar 

  6. Jia, P.Q., Wang, C., Zhang, G.Y., Ma, J.F.: A rumor spreading model based on two propagation channels in social networks. Phys. A 524, 342–353 (2019). https://doi.org/10.1016/j.physa.2019.04.163

    Article  MathSciNet  MATH  Google Scholar 

  7. Xu, H., Li, T., Liu, X.D., Dong, J.: Spreading dynamics of an online social rumor model with psychological factors on scale-free networks. Phys. A 525, 234–246 (2019). https://doi.org/10.1016/j.physa.2019.03.037

    Article  MathSciNet  MATH  Google Scholar 

  8. Wan, C., Li, T., Sun, Z.C.: Global stability of a SEIR rumor spreading model with demographics on scale-free networks. Adv. Differ. Equ. 2017, 253 (2017). https://doi.org/10.1186/s13662-017-1315-y

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhang, Y.H., Zhu, J.J.: Stability analysis of I2S2R rumor spreading model in complex networks. Phys. A 503, 862–881 (2018). https://doi.org/10.1016/j.physa.2018.02.087

    Article  MathSciNet  MATH  Google Scholar 

  10. Xia, C.Y., Wang, L., Sun, S.W., Wang, J.: An SIR model with infection delay and propagation vector in complex networks. Nonlinear Dyn. 69, 927–934 (2012). https://doi.org/10.1007/s11071-011-0313-y

    Article  MathSciNet  Google Scholar 

  11. Tian, Y., Ding, X.J.: Rumor spreading model with considering debunking behavior in emergencies. Appl. Math. Comput. 363, 124599 (2019). https://doi.org/10.1016/j.amc.2019.124599

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, J.R., Jiang, H.J., Yu, Z.Y., Hu, C.: Dynamical analysis of rumor spreading model in homogeneous complex networks. Appl. Math. Comput. 359, 374–385 (2019). https://doi.org/10.1016/j.amc.2019.04.076

    Article  MathSciNet  MATH  Google Scholar 

  13. He, Z.B., Cai, Z.P., Yu, J.G., Wang, X.M., Sun, Y.C., Li, Y.S.: Cost-efficient strategies for restraining rumor spreading in mobile social networks. IEEE Trans. Veh. Technol. 66, 2789–2800 (2017). https://doi.org/10.1109/tvt.2016.2585591

    Article  Google Scholar 

  14. Zhu, L.H., Yang, F., Guan, G., Zhang, Z.D.: Modeling the dynamics of rumor diffusion over complex networks. Inf. Sci. 562, 240–258 (2021). https://doi.org/10.1016/j.ins.2020.12.071

    Article  MathSciNet  Google Scholar 

  15. Zan, Y.L.: DSIR double-rumors spreading model in complex networks. Chaos Solitons & Fractals 110, 191–202 (2018). https://doi.org/10.1016/j.chaos.2018.03.021

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhang, Y.M., Su, Y.Y., Li, W.G., Liu, H.O.: Interacting model of rumor propagation and behavior spreading in multiplex networks. Chaos Solitons & Fractals 121, 168–177 (2019). https://doi.org/10.1016/j.chaos.2019.01.035

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang, J.L., Jiang, H.J., Ma, T.L., Hu, C.: Global dynamics of the multi-lingual SIR rumor spreading model with cross-transmitted mechanism. Chaos Solitons & Fractals 126, 148–157 (2019). https://doi.org/10.1016/j.chaos.2019.05.027

    Article  MathSciNet  MATH  Google Scholar 

  18. Chierichetti, F., Giakkoupis, G., Lattanzi, S., Panconesi, A.: Rumor spreading and conductance. J. ACM 65, 17 (2018). https://doi.org/10.1145/3173043

    Article  MathSciNet  MATH  Google Scholar 

  19. Bodaghi, A., Goliaei, S., Salehi, M.: The number of followings as an influential factor in rumor spreading. Appl. Math. Comput 357, 167–184 (2019). https://doi.org/10.1016/j.amc.2019.04.005

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhu, L., Wang, Y.G.: Rumor spreading model with noise interference in complex social networks. Phys. A 469, 750–760 (2017). https://doi.org/10.1016/j.physa.2016.11.119

    Article  MathSciNet  MATH  Google Scholar 

  21. Yang, L., Li, Z.W., Giua, A.: Containment of rumor spread in complex social networks. Inf. Sci. 506, 113–130 (2020). https://doi.org/10.1016/j.ins.2019.07.055

    Article  MathSciNet  Google Scholar 

  22. Lu, P.: Heterogeneity, judgment, and social trust of agents in rumor spreading. Appl. Math. Comput. 350, 447–461 (2019). https://doi.org/10.1016/j.amc.2018.10.079

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, W.P., Wu, X., Wu, Y., Zhu, X.F., Zhong, S.M.: Modeling cyber rumor spreading over mobile social networks: A compartment approach. Appl. Math. Comput. 343, 214–229 (2019). https://doi.org/10.1016/j.amc.2018.09.048

    Article  MATH  Google Scholar 

  24. Wang, C., Tan, Z.X., Ye, Y., Wang, L., Kang, H.C., Xie, N.G.: A rumor spreading model based on information entropy. Sci. Rep. 7, 9615 (2017). https://doi.org/10.1038/s41598-017-09171-8

    Article  Google Scholar 

  25. Falasco, G., Rao, R., Esposito, M.: Information thermodynamics of Turing patterns. Phys. Rev. Lett. 121, 108301 (2018). https://doi.org/10.1103/PhysRevLett.121.108301

    Article  MathSciNet  Google Scholar 

  26. Yan, X.P., Zhang, C.H.: Turing instability and formation of temporal patterns in a diffusive bimolecular model with saturation law. Nonlinear Anal. Real World Appl. 43, 54–77 (2018). https://doi.org/10.1016/j.nonrwa.2018.02.004

    Article  MathSciNet  MATH  Google Scholar 

  27. Lacitignola, D., Bozzini, B., Frittelli, M., Sgura, I.: Turing pattern formation on the sphere for a morphochemical reaction-diffusion model for electrodeposition. Commun. Nonlinear Sci. Numerical Simul. 48, 484–508 (2017). https://doi.org/10.1016/j.cnsns.2017.01.008

    Article  MathSciNet  MATH  Google Scholar 

  28. Huang, S.W., Yang, J.H., Yang, S.H., Yu, M.B., Kwong, D.L., Zelevinsky, T., Jarrahi, M., Wong, C.W.: Globally stable microresonator Turing pattern formation for coherent high-power THz radiation on-chip. Phys. Rev. X 7, 041002 (2017). https://doi.org/10.1103/PhysRevX.7.041002

    Article  Google Scholar 

  29. Rumbach, P., Lindsay, A.E., Go, D.B.: Turing patterns on a plasma-liquid interface. Plasma Sources Sci. Technol. 28, 105014 (2019). https://doi.org/10.1088/1361-6595/ab45e4

    Article  Google Scholar 

  30. Buscarino, A., Corradino, C., Fortuna, L., Frasca, M.: Turing patterns via pinning control in the simplest memristive cellular nonlinear networks. Chaos 29, 103145 (2019). https://doi.org/10.1063/1.5115131

    Article  MathSciNet  MATH  Google Scholar 

  31. Duan, M.R., Chang, L.L., Jin, Z.: Turing patterns of an SI epidemic model with cross-diffusion on complex networks. Phys. A 533, 122023 (2019). https://doi.org/10.1016/j.physa.2019.122023

    Article  MATH  Google Scholar 

  32. Wang, W.M., Gao, X.Y., Cai, Y.L., Shi, H.B., Fu, S.M.: Turing patterns in a diffusive epidemic model with saturated infection force. J. Frankl. Inst. 355, 7226–7245 (2018). https://doi.org/10.1016/j.jfranklin.2018.07.014

    Article  MathSciNet  MATH  Google Scholar 

  33. Zheng, Q., Shen, J.: Turing instability in a gene network with cross-diffusion. Nonlinear Dyn. 78, 1301–1310 (2014). https://doi.org/10.1007/s11071-014-1516-9

    Article  MathSciNet  MATH  Google Scholar 

  34. Banerjee, M., Ghorai, S., Mukherjee, N.: Study of cross-diffusion induced Turing patterns in a ratio-dependent prey-predator model via amplitude equations. Appl. Math. Model. 55, 383–399 (2018). https://doi.org/10.1016/j.apm.2017.11.005

    Article  MathSciNet  MATH  Google Scholar 

  35. Tian, C., Ling, Z., Lin, Z.: Turing pattern formation in a predator-prey-mutualist system. Nonlinear Anal. Real World Appl. 12, 3224–3237 (2011). https://doi.org/10.1016/j.nonrwa.2011.05.022

    Article  MathSciNet  MATH  Google Scholar 

  36. Chen, M., Wu, R., Chen, L.: Spatiotemporal patterns induced by Turing and Turing-Hopf bifurcations in a predator-prey system. Appl. Math. Comput. 380, 125300 (2020). https://doi.org/10.1016/j.amc.2020.125300

    Article  MathSciNet  MATH  Google Scholar 

  37. Pablo, M., Ramirez, S.A., Elston, T.C.: Particle-based simulations of polarity establishment reveal stochastic promotion of Turing pattern formation. Plos Comput. Biol. 14, e1006016 (2018). https://doi.org/10.1371/journal.pcbi.1006016

    Article  Google Scholar 

  38. Cao, X., Jiang, W.H.: Turing-Hopf bifurcation and spatiotemporal patterns in a diffusive predator-prey system with Crowley-Martin functional response. Nonlinear Anal. Real World Appl. 43, 428–450 (2018). https://doi.org/10.1016/j.nonrwa.2018.03.010

    Article  MathSciNet  MATH  Google Scholar 

  39. Tripathi, J.P., Abbas, S., Sun, G.Q., Jana, D., Wang, C.H.: Interaction between prey and mutually interfering predator in prey reserve habitat: pattern formation and the Turing-Hopf bifurcation. J. Frankl. Inst. 355, 7466–7489 (2018). https://doi.org/10.1016/j.jfranklin.2018.07.029

    Article  MathSciNet  MATH  Google Scholar 

  40. Chang, L.L., Liu, C., Sun, G.Q., Wang, Z., Jin, Z.: Delay-induced patterns in a predator-prey model on complex networks with diffusion. New J. Phys. 21, 073035 (2019). https://doi.org/10.1088/1367-2630/ab3078

    Article  MathSciNet  Google Scholar 

  41. Tian, C.R., Ling, Z., Zhang, L.: Delay-driven spatial patterns in a network-organized semiarid vegetation model. Appl. Math. Comput. 367, 124778 (2018). https://doi.org/10.1016/j.amc.2019.124778

    Article  MathSciNet  MATH  Google Scholar 

  42. Petit, J., Lauwens, B., Fanelli, D., Carletti, T.: Theory of Turing patterns on time varying networks. Phys. Rev. Lett. 119, 148301 (2017). https://doi.org/10.1103/PhysRevLett.119.148301

    Article  Google Scholar 

  43. Karig, D., Martini, K.M., Lu, T., DeLateur, N.A., Goldenfeld, N., Weiss, R.: Stochastic Turing patterns in a synthetic bacterial population. Proc. National Acad. Sci. U. S. A. 115, 6572–6577 (2018). https://doi.org/10.1073/pnas.1720770115

    Article  Google Scholar 

  44. Di Patti, F., Lavacchi, L., Arbel-Goren, R., Schein-Lubomirsky, L., Fanelli, D., Stavans, J.: Robust stochastic Turing patterns in the development of a one-dimensional cyanobacterial organism. Plos Biol. 16, e2004877 (2018). https://doi.org/10.1371/journal.pbio.2004877

    Article  Google Scholar 

  45. Scholes, N.S., Schnoerr, D., Isalan, M., Stumpf, M.: A comprehensive network atlas reveals that Turing patterns are common but not robust. Cell Syst. 9, 243–257 (2019). https://doi.org/10.1016/j.cels.2019.07.007

    Article  Google Scholar 

  46. Kazarnikov, A., Haario, H.: Statistical approach for parameter identification by Turing patterns. J. Theor. Biol. 501, 110319 (2020). https://doi.org/10.1016/j.jtbi.2020.110319

    Article  MathSciNet  MATH  Google Scholar 

  47. Zheng, M.M., Shao, B., Ouyang, Q.: Identifying network topologies that can generate turing pattern. J. Theor. Biol. 408, 88–96 (2016). https://doi.org/10.1016/j.jtbi.2016.08.005

    Article  MATH  Google Scholar 

  48. Li, Y.M., Sun, Y.Y., Hua, J., Li, L.: Indirect adaptive type-2 fuzzy impulsive control of nonlinear systems. IEEE Trans. Fuzzy Syst. 23, 1084–1099 (2015). https://doi.org/10.1109/TFUZZ.2014.2346235

    Article  Google Scholar 

  49. Zhang, F.X., Li, Y.M., Hua, J.: Direct adaptive fuzzy control of SISO nonlinear systems with input-output nonlinear relationship. Int. J. Fuzzy Syst. 20, 1069–1078 (2018). https://doi.org/10.1007/s40815-017-0414-y

    Article  MathSciNet  Google Scholar 

  50. Zhao, H.Y., Zhu, L.H.: Dynamic analysis of a reaction-diffusion rumor propagation model. Int. J. Bifurc. Chaos 6(26), 1650101 (2016). https://doi.org/10.1142/S0218127416501017

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhu, L.H., Zhao, H.Y.: Dynamical behaviors and control measures of rumor spreading model with consideration of network topology. Int. J. Syst. Sci. 48(10), 2064–2078 (2017). https://doi.org/10.1080/00207721.2017.1312628

    Article  MATH  Google Scholar 

  52. Xia, Y.B., Zhang, Z.Z., Bi, Q.S.: Relaxation oscillations and the mechanism in a periodically excited vector field with pitchfork-Hopf bifurcation. Nonlinear Dyn. 101, 37–51 (2020). https://doi.org/10.1007/s11071-020-05795-0

    Article  Google Scholar 

  53. Zhang, R., Wang, Y., Zhang, Z.Z., Bi, Q.S.: Nonlinear behaviors as well as the bifurcation mechanism in switched dynamical systems. Nonlinear Dyn. 79, 465–471 (2015). https://doi.org/10.1007/s11071-014-1679-4

    Article  Google Scholar 

Download references

Acknowledgements

This research is partly supported by National Natural Science Foundation of China (Grant No. 12002135), Natural Science Foundation of Jiangsu Province (Grant No. BK20190836) and Young Science and Technology Talents Lifting Project of Jiangsu Association for Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linhe Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., He, L. Pattern dynamics analysis and parameter identification of time delay-driven rumor propagation model based on complex networks. Nonlinear Dyn 110, 1935–1957 (2022). https://doi.org/10.1007/s11071-022-07717-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07717-8

Keywords

Navigation