Skip to main content

Advertisement

Log in

Wave propagation in fractionally damped nonlinear phononic crystals

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Studying wave propagation in phononic crystals (PCs) in the presence of energy dissipation is a crucial step toward the precise dynamic modeling of periodic structures. Fractional calculus is an appropriate tool to reach a more perceptive idea of energy dissipation compared to other damping models. Therefore, in this work, we aim to provide a semi-analytical model for wave propagation in fractionally damped nonlinear PCs. For this purpose, the method of multiple scales is used to solve the governing equations of PCs, and the nonlinear dispersion relations of fractionally damped monoatomic chains and lattices are obtained. The Caputo definition of fractional derivatives is used to model damping. Besides providing new insight into the energy dissipation in PCs, the results of this research emphasize the importance of considering nonlinearities in modeling periodic materials, especially because the propagation frequency in nonlinear crystals is amplitude-dependent. The obtained results are validated with numerical modeling of fractionally damped PCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Wang, Z., Liu, Z., Lee, J.: Tuning the working frequency of elastic metamaterials by heat. Acta Mech. 231, 1477–1484 (2020). https://doi.org/10.1007/s00707-019-02599-1

    Article  Google Scholar 

  2. Wei, Y.-L.L., Yang, Q.-S.S., Tao, R.: SMP-based chiral auxetic mechanical metamaterial with tunable bandgap function. Int. J. Mech. Sci. 195, 106267 (2021). https://doi.org/10.1016/j.ijmecsci.2021.106267

    Article  Google Scholar 

  3. Li, Y., Dong, X., Li, H., Yao, S.: Hybrid multi-resonators elastic metamaterials for broad low-frequency bandgaps. Int. J. Mech. Sci. 202–203, 106501 (2021). https://doi.org/10.1016/j.ijmecsci.2021.106501

    Article  Google Scholar 

  4. Hedayatrasa, S., Kersemans, M., Abhary, K., Uddin, M., Guest, J.K., Van Paepegem, W.: Maximizing bandgap width and in-plane stiffness of porous phononic plates for tailoring flexural guided waves: Topology optimization and experimental validation. Mech. Mater. 105, 188–203 (2017). https://doi.org/10.1016/j.mechmat.2016.12.003

    Article  Google Scholar 

  5. Jensen, J.S.: Phononic band gaps and vibrations in one- and two-dimensional mass-spring structures. J. Sound Vib. 266, 1053–1078 (2003). https://doi.org/10.1016/S0022-460X(02)01629-2

    Article  Google Scholar 

  6. Jiang, W., Yin, M., Liao, Q., Xie, L., Yin, G.: Three-dimensional single-phase elastic metamaterial for low-frequency and broadband vibration mitigation. Int. J. Mech. Sci. 190, 106023 (2021). https://doi.org/10.1016/j.ijmecsci.2020.106023

    Article  Google Scholar 

  7. Hatanaka, D., Mahboob, I., Onomitsu, K., Yamaguchi, H.: Phonon waveguides for electromechanical circuits. Nat. Nanotechnol. 9, 520–524 (2014). https://doi.org/10.1038/nnano.2014.107

    Article  Google Scholar 

  8. Andreassen, E., Manktelow, K., Ruzzene, M.: Directional bending wave propagation in periodically perforated plates. J. Sound Vib. 335, 187–203 (2015). https://doi.org/10.1016/j.jsv.2014.09.035

    Article  Google Scholar 

  9. Li, F., Anzel, P., Yang, J., Kevrekidis, P.G., Daraio, C.: Granular acoustic switches and logic elements. Nat. Commun. 5, 1–6 (2014). https://doi.org/10.1038/ncomms6311

    Article  Google Scholar 

  10. Alinejad-Naini, M., Bahrami, A.: Thermal switching of ultrasonic waves in two-dimensional solid/fluid phononic crystals. Phys. Scr. 94, 125705 (2019). https://doi.org/10.1088/1402-4896/ab3833

    Article  Google Scholar 

  11. Khateib, F., Mehaney, A., Amin, R.M., Aly, A.H.: Ultra-sensitive acoustic biosensor based on a 1D phononic crystal. Phys. Scr. 95, 75704 (2020). https://doi.org/10.1088/1402-4896/ab8e00

    Article  Google Scholar 

  12. Ning, L., Wang, Y.Z., Wang, Y.S.: Active control cloak of the elastic wave metamaterial. Int. J. Solids Struct. 202, 126–135 (2020). https://doi.org/10.1016/j.ijsolstr.2020.06.009

    Article  Google Scholar 

  13. Ning, L., Wang, Y.-Z., Wang, Y.-S.: Active control of a black hole or concentrator for flexural waves in an elastic metamaterial plate. Mech. Mater. 142, 103300 (2020). https://doi.org/10.1016/j.mechmat.2019.103300

    Article  Google Scholar 

  14. Sun, H.X., Zhang, S.Y., Shui, X.J.: A tunable acoustic diode made by a metal plate with periodical structure. Appl. Phys. Lett. 100, 103507 (2012). https://doi.org/10.1063/1.3693374

    Article  Google Scholar 

  15. Meaud, J., Che, K.: Tuning elastic wave propagation in multistable architected materials. Int. J. Solids Struct. 122–123, 69–80 (2017). https://doi.org/10.1016/j.ijsolstr.2017.05.042

    Article  Google Scholar 

  16. Bera, K.K., Banerjee, A.: Ultra-wide bandgap in active metamaterial from feedback control. J. Vib. Control (2021). https://doi.org/10.1177/10775463211035890

    Article  Google Scholar 

  17. Frandsen, N.M.M., Jensen, J.S.: Modal interaction and higher harmonic generation in a weakly nonlinear, periodic mass–spring chain. Wave Motion 68, 149–161 (2017). https://doi.org/10.1016/j.wavemoti.2016.09.002

    Article  MathSciNet  MATH  Google Scholar 

  18. Silva, P.B., Leamy, M.J., Geers, M.G.D., Kouznetsova, V.G.: Emergent subharmonic band gaps in nonlinear locally resonant metamaterials induced by autoparametric resonance. Phys. Rev. E 99, 1–14 (2019). https://doi.org/10.1103/PhysRevE.99.063003

    Article  Google Scholar 

  19. Fronk, M.D., Leamy, M.J.: Internally resonant wave energy exchange in weakly nonlinear lattices and metamaterials. Phys. Rev. E 100, 32213 (2019). https://doi.org/10.1103/PhysRevE.100.032213

    Article  Google Scholar 

  20. Bukhari, M., Barry, O.: Simultaneous energy harvesting and vibration control in a nonlinear metastructure: a spectro-spatial analysis. J. Sound Vib. 473, 115215 (2020). https://doi.org/10.1016/j.jsv.2020.115215

    Article  Google Scholar 

  21. Vakakis, A.F., King, M.E.: Nonlinear wave transmission in a monocoupled elastic periodic system. J. Acoust. Soc. Am. 98, 1534–1546 (1995). https://doi.org/10.1121/1.413419

    Article  Google Scholar 

  22. Narisetti, R.K., Leamy, M.J., Ruzzene, M.: A perturbation approach for predicting wave propagation in one-dimensional nonlinear periodic structures. J. Vib. Acoust. Trans. ASME 132, 0310011–03100111 (2010). https://doi.org/10.1115/1.4000775

    Article  Google Scholar 

  23. Manktelow, K., Leamy, M.J., Ruzzene, M.: Multiple scales analysis of wave-wave interactions in a cubically nonlinear monoatomic chain. Nonlinear Dyn. 63, 193–203 (2011). https://doi.org/10.1007/s11071-010-9796-1

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhou, W.J., Li, X.P., Wang, Y.S., Chen, W.Q., Huang, G.L.: Spectro-spatial analysis of wave packet propagation in nonlinear acoustic metamaterials. J. Sound Vib. 413, 250–269 (2018). https://doi.org/10.1016/j.jsv.2017.10.023

    Article  Google Scholar 

  25. Fang, L., Darabi, A., Mojahed, A., Vakakis, A.F., Leamy, M.J.: Broadband non-reciprocity with robust signal integrity in a triangle-shaped nonlinear 1D metamaterial. Nonlinear Dyn. 100, 1–13 (2020). https://doi.org/10.1007/s11071-020-05520-x

    Article  Google Scholar 

  26. Patil, G.U., Matlack, K.H.: Review of exploiting nonlinearity in phononic materials to enable nonlinear wave responses. Acta Mech. (2022). https://doi.org/10.1007/s00707-021-03089-z

    Article  MathSciNet  MATH  Google Scholar 

  27. Ganesh, R., Gonella, S.: From modal mixing to tunable functional switches in nonlinear phononic crystals. Phys. Rev. Lett. 54302, 1–5 (2015). https://doi.org/10.1103/PhysRevLett.114.054302

    Article  Google Scholar 

  28. Shin, D., Cupertino, A., de Jong, M.H.J., Steeneken, P.G., Bessa, M.A., Norte, R.A.: Spiderweb nanomechanical resonators via Bayesian optimization: inspired by nature and guided by machine learning. Adv. Mater. 34, 2106248 (2022). https://doi.org/10.1002/adma.202106248

    Article  Google Scholar 

  29. Eynbeygui, M., Arghavani, J., Akbarzadeh, A.H., Naghdabadi, R.: Anisotropic elastic–plastic behavior of architected pyramidal lattice materials. Acta Mater. 183, 118–136 (2020). https://doi.org/10.1016/j.actamat.2019.10.038

    Article  Google Scholar 

  30. Meaud, J.: Nonlinear wave propagation and dynamic reconfiguration in two-dimensional lattices with bistable elements. J. Sound Vib. (2020). https://doi.org/10.1016/j.jsv.2020.115239

    Article  Google Scholar 

  31. Narisetti, R.K., Ruzzene, M., Leamy, M.J.: A perturbation approach for analyzing dispersion and group velocities in two-dimensional nonlinear periodic lattices. J. Vib. Acoust. Trans. ASME 133, 1–12 (2011). https://doi.org/10.1115/1.4004661

    Article  Google Scholar 

  32. Meaud, J.: Multistable two-dimensional spring-mass lattices with tunable band gaps and wave directionality. J. Sound Vib. 434, 44–62 (2018). https://doi.org/10.1016/j.jsv.2018.07.032

    Article  Google Scholar 

  33. Zaera, R., Vila, J., Fernandez-Saez, J., Ruzzene, M.: Propagation of solitons in a two-dimensional nonlinear square lattice. Int. J. Non Linear Mech. 106, 188–204 (2018). https://doi.org/10.1016/j.ijnonlinmec.2018.08.002

    Article  Google Scholar 

  34. Manktelow, K.L., Leamy, M.J., Ruzzene, M.: Weakly nonlinear wave interactions in multi-degree of freedom periodic structures. Wave Motion 51, 886–904 (2014). https://doi.org/10.1016/j.wavemoti.2014.03.003

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, J., Huang, Y., Chen, W., Zhu, W.: Abnormal wave propagation behaviors in two-dimensional mass–spring structures with nonlocal effect. Math. Mech. Solids 24, 3632–3643 (2019). https://doi.org/10.1177/1081286519853606

    Article  MathSciNet  MATH  Google Scholar 

  36. Li, Z.N., Wang, Y.Z., Wang, Y.S.: Tunable nonreciprocal transmission in nonlinear elastic wave metamaterial by initial stresses. Int. J. Solids Struct. 182–183, 218–235 (2020). https://doi.org/10.1016/j.ijsolstr.2019.08.020

    Article  Google Scholar 

  37. Das, S., Bohra, M., Geetha Rajasekharan, S., Daseswara Rao, Y.V.: Investigations on the band-gap characteristics of one-dimensional flexural periodic structures with varying geometries. JVC/J. Vib. Control (2021). https://doi.org/10.1177/10775463211036818

    Article  Google Scholar 

  38. Gan, C., Wei, Y., Yang, S.: Longitudinal wave propagation in a multi-step rod with variable cross-section. JVC/J. Vib. Control 22, 837–852 (2016). https://doi.org/10.1177/1077546314531806

    Article  MathSciNet  Google Scholar 

  39. Ghavanloo, E., Fazelzadeh, S.A.: Wave propagation in one-dimensional infinite acoustic metamaterials with long-range interactions. Acta Mech. 230, 4453–4461 (2019). https://doi.org/10.1007/s00707-019-02514-8

    Article  MathSciNet  MATH  Google Scholar 

  40. Farzbod, F., Leamy, M.J.: Analysis of Bloch’s method in structures with energy dissipation. J. Vib. Acoust. Trans. ASME 133, 1–8 (2011). https://doi.org/10.1115/1.4003943

    Article  Google Scholar 

  41. Alamri, S., Li, B., Mchugh, G., Garafolo, N., Tan, K.T.: Dissipative diatomic acoustic metamaterials for broadband asymmetric elastic-wave transmission. J. Sound Vib. 451, 120–137 (2019). https://doi.org/10.1016/j.jsv.2019.03.018

    Article  Google Scholar 

  42. Jafari, H., Yazdi, M.H., Fakhrabadi, M.M.S.: Damping effects on wave-propagation characteristics of microtubule-based bio-nano-metamaterials. Int. J. Mech. Sci. 184, 105844 (2020). https://doi.org/10.1016/j.ijmecsci.2020.105844

    Article  Google Scholar 

  43. He, Q.Q.L.Z.C., Li, E.: Dissipative multi-resonator acoustic metamaterials for impact force mitigation and collision energy absorption. Acta Mech. 2935, 2905–2935 (2019). https://doi.org/10.1007/s00707-019-02437-4

    Article  Google Scholar 

  44. Xu, X., Barnhart, M.V., Fang, X., Wen, J., Chen, Y., Huang, G.: A nonlinear dissipative elastic metamaterial for broadband wave mitigation. Int. J. Mech. Sci 164, 105159 (2019). https://doi.org/10.1016/j.ijmecsci.2019.105159

    Article  Google Scholar 

  45. Fronk, M.D., Leamy, M.J.: Higher-order dispersion, stability, and waveform invariance in nonlinear monoatomic and diatomic systems. J. Vib. Acoust. Trans. ASME 139, 1–13 (2017). https://doi.org/10.1115/1.4036501

    Article  Google Scholar 

  46. Sepehri, S., Mashhadi, M.M., Fakhrabadi, M.M.S.: Wave propagation in nonlinear monoatomic chains with linear and quadratic damping. Nonlinear Dyn. (2022). https://doi.org/10.1007/s11071-021-07184-7

    Article  Google Scholar 

  47. Fronk, M.D., Leamy, M.J.: Direction-dependent invariant waveforms and stability in two-dimensional, weakly nonlinear lattices. J Sound Vib. 447, 137–154 (2019). https://doi.org/10.1016/j.jsv.2019.01.022

    Article  Google Scholar 

  48. Ning, S., Chu, D., Jiang, H., Yang, F., Liu, Z., Zhuang, Z.: The role of material and geometric nonlinearities and damping effects in designing mechanically tunable acoustic metamaterials. Int. J. Mech. Sci. 197, 106299 (2021). https://doi.org/10.1016/j.ijmecsci.2021.106299

    Article  Google Scholar 

  49. Zarraga, O., Sarría, I., García-Barruetabeña, J., Cortés, F.: An analysis of the dynamical behaviour of systems with fractional damping for mechanical engineering applications. Symmetry (Basel) 11, 1–15 (2019). https://doi.org/10.3390/SYM11121499

    Article  Google Scholar 

  50. Bagley, R.L., Torvik, P.J.: A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27, 201–210 (1983). https://doi.org/10.1122/1.549724

    Article  MATH  Google Scholar 

  51. Di Paola, M., Pirrotta, A., Valenza, A.: Visco-elastic behavior through fractional calculus: an easier method for best fitting experimental results. Mech. Mater. 43, 799–806 (2011). https://doi.org/10.1016/j.mechmat.2011.08.016

    Article  Google Scholar 

  52. Lv, Q., Yao, Z.: Analysis of the effects of nonlinear viscous damping on vibration isolator. Nonlinear Dyn. 79, 2325–2332 (2015). https://doi.org/10.1007/s11071-014-1814-2

    Article  MathSciNet  Google Scholar 

  53. Rusinek, R., Weremczuk, A., Kecik, K., Warminski, J.: Dynamics of a time delayed Duffing oscillator. Int. J. Non Linear Mech. 65, 98–106 (2014). https://doi.org/10.1016/j.ijnonlinmec.2014.04.012

    Article  Google Scholar 

  54. Fangnon, R., Ainamon, C., Monwanou, A.V., Miwadinou, C.H., Chabi Orou, J.B.: Nonlinear dynamics of the quadratic-damping Helmholtz oscillator. Complexity 2020, 1–17 (2020). https://doi.org/10.1155/2020/8822534

    Article  Google Scholar 

  55. Peng, Z.K., Meng, G., Lang, Z.Q., Zhang, W.M., Chu, F.L.: Study of the effects of cubic nonlinear damping on vibration isolations using Harmonic Balance Method. Int. J. Non Linear Mech. 47, 1073–1080 (2012). https://doi.org/10.1016/j.ijnonlinmec.2011.09.013

    Article  Google Scholar 

  56. Bagley, R.L., Torvik, P.J.: On the fractional calculus model of viscoelastic behavior. J. Rheol. 30, 133–155 (1986). https://doi.org/10.1122/1.549887

    Article  MATH  Google Scholar 

  57. Shokooh, A., Suárez, L.: A comparison of numerical methods applied to a fractional model of damping materials. JVC/J. Vib. Control 5, 331–354 (1999). https://doi.org/10.1177/107754639900500301

    Article  Google Scholar 

  58. Yuan, L., Agrawal, O.P.: A numerical scheme for dynamic systems containing fractional derivatives. J. Vib. Acoust. Trans. ASME 124, 321–324 (2002). https://doi.org/10.1115/1.1448322

    Article  Google Scholar 

  59. Suarez, L.E., Shokooh, A.: An eigenvector expansion method for the solution of motion containing fractional derivatives. J. Appl. Mech. Trans. ASME 64, 629–635 (1997). https://doi.org/10.1115/1.2788939

    Article  MathSciNet  MATH  Google Scholar 

  60. Torvik, P.J., Bagley, R.L.: On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech. Trans. ASME 51, 294–298 (1984). https://doi.org/10.1115/1.3167615

    Article  MATH  Google Scholar 

  61. Wang, J.C.: Realizations of generalized Warburg impedance with RC ladder networks and transmission lines. J. Electrochem. Soc. 134, 1915–1920 (1987). https://doi.org/10.1149/1.2100789

    Article  Google Scholar 

  62. Chen, Y.Q.: Ubiquitous fractional order controls? IFAC Proc. 2, 481–492 (2006). https://doi.org/10.3182/20060719-3-pt-4902.00081

    Article  Google Scholar 

  63. Rossikhin, Y.A., Shitikova, M.V.: New approach for the analysis of damped vibrations of fractional oscillators. Shock Vib. 16, 365–387 (2009). https://doi.org/10.3233/SAV-2009-0475

    Article  Google Scholar 

  64. Padovan, J.O.E., Sawicki, J.T.: Nonlinear vibrations of fractionally damped systems. Nonlinear Dyn. 16, 321–336 (1998). https://doi.org/10.1023/A:1008289024058

    Article  MathSciNet  MATH  Google Scholar 

  65. Cao, J., Ma, C., Xie, H., Jiang, Z.: Nonlinear dynamics of duffing system with fractional order damping. J. Comput. Nonlinear Dyn. 5, 1–6 (2010). https://doi.org/10.1115/1.4002092

    Article  Google Scholar 

  66. Xie, F., Lin, X.: Asymptotic solution of the van der Pol oscillator with small fractional damping. Phys. Scr. T T136, 14033 (2009). https://doi.org/10.1088/0031-8949/2009/T136/014033

    Article  Google Scholar 

  67. Ortiz, A., Yang, J., Coccolo, M., Seoane, J.M., Sanjuán, M.A.F.: Fractional damping enhances chaos in the nonlinear Helmholtz oscillator. Nonlinear Dyn. 102, 2323–2337 (2020). https://doi.org/10.1007/s11071-020-06070-y

    Article  Google Scholar 

  68. Syta, A., Litak, G., Lenci, S., Scheffler, M.: Chaotic vibrations of the Duffing system with fractional damping. Chaos 24, 1–6 (2014). https://doi.org/10.1063/1.4861942

    Article  MathSciNet  MATH  Google Scholar 

  69. Wang, P., Wang, Q., Xu, X., Chen, N.: Fractional critical damping theory and its application in active suspension control. Shock Vib. (2017). https://doi.org/10.1155/2017/2738976

    Article  Google Scholar 

  70. Dastjerdi, A.A., Vinagre, B.M., Chen, Y.Q., HosseinNia, S.H.: Linear fractional order controllers; a survey in the frequency domain. Annu. Rev. Control 47, 51–70 (2019). https://doi.org/10.1016/j.arcontrol.2019.03.008

    Article  MathSciNet  Google Scholar 

  71. Chen, Y.Q., Petráš, I., Xue, D.: Fractional order control—a tutorial. Proc. Am. Control Conf. (2009). https://doi.org/10.1109/ACC.2009.5160719

    Article  Google Scholar 

  72. Feliu-Talegon, D., Feliu-Batlle, V., Tejado, I., Vinagre, B.M., HosseinNia, S.H.: Stable force control and contact transition of a single link flexible robot using a fractional-order controller. ISA Trans. 89, 139–157 (2019). https://doi.org/10.1016/j.isatra.2018.12.031

    Article  Google Scholar 

  73. Karbasizadeh, N., Saikumar, N., HosseinNia, S.H.: Fractional-order single state reset element. Nonlinear Dyn. 104, 413–427 (2021). https://doi.org/10.1007/s11071-020-06138-9

    Article  Google Scholar 

  74. Liu, Y., Yu, D., Zhao, H., Wen, J., Wen, X.: Theoretical study of two-dimensional phononic crystals with viscoelasticity based on fractional derivative models. J. Phys. D Appl. Phys. 41, 65503 (2008). https://doi.org/10.1088/0022-3727/41/6/065503

    Article  Google Scholar 

  75. Cajić, M., Karličić, D., Paunović, S., Adhikari, S.: A fractional calculus approach to metadamping in phononic crystals and acoustic metamaterials. Theor. Appl. Mech. 47, 81–97 (2020). https://doi.org/10.2298/TAM200117003C

    Article  MATH  Google Scholar 

  76. Petráš, I.: Fractional-Order Nonlinear Systems, vol. 1. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-18101-6

    Book  MATH  Google Scholar 

  77. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley (1995). https://doi.org/10.1002/9783527617586

    Book  MATH  Google Scholar 

  78. Yin, J., Ruzzene, M., Wen, J., Yu, D., Cai, L., Yue, L.: Band transition and topological interface modes in 1D elastic phononic crystals. Sci. Rep. (2018). https://doi.org/10.1038/s41598-018-24952-5

    Article  Google Scholar 

  79. Rossikhin, Y.A., Shitikova, M.V., Shcheglova, T.: Forced vibrations of a nonlinear oscillator with weak fractional damping. J. Mech. Mater. Struct. 4, 1619–1636 (2009). https://doi.org/10.2140/jomms.2009.4.1619

    Article  Google Scholar 

  80. Bagley, R.L., Calico, R.A.: Fractional order state equations for the control of viscoelasticallydamped structures. J. Guid. Control Dyn. 14, 304–311 (1991). https://doi.org/10.2514/3.20641

    Article  Google Scholar 

  81. Zaslavsky, G.M., Stanislavsky, A.A., Edelman, M.: Chaotic and pseudochaotic attractors of perturbed fractional oscillator. Chaos (2006). https://doi.org/10.1063/1.2126806

    Article  MathSciNet  MATH  Google Scholar 

  82. Heymans, N., Podlubny, I.: Physical interpretation of initial conditions for fractional differential equations with Riemann–Liouville fractional derivatives. Rheol. Acta 45, 765–771 (2006). https://doi.org/10.1007/s00397-005-0043-5

    Article  Google Scholar 

  83. Naber, M.: Linear fractionally damped oscillator. Int. J. Differ. Equ. (2010). https://doi.org/10.1155/2010/197020

    Article  MathSciNet  MATH  Google Scholar 

  84. Li, C., Qian, D., Chen, Y.: On Riemann–Liouville and Caputo derivatives. Discrete Dyn. Nat. Soc. (2011). https://doi.org/10.1155/2011/562494

    Article  MathSciNet  MATH  Google Scholar 

  85. Rossikhin, Y.A., Shitikova, M.V.: On fallacies in the decision between the Caputo and Riemann–Liouville fractional derivatives for the analysis of the dynamic response of a nonlinear viscoelastic oscillator. Mech. Res. Commun. 45, 22–27 (2012). https://doi.org/10.1016/j.mechrescom.2012.07.001

    Article  Google Scholar 

  86. Xu, Y., Li, Y., Liu, D.: A method to stochastic dynamical systems with strong nonlinearity and fractional damping. Nonlinear Dyn. 83, 2311–2321 (2016). https://doi.org/10.1007/s11071-015-2482-6

    Article  MathSciNet  MATH  Google Scholar 

  87. Rossikhin, Y.A., Shitikova, M.V.: Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results. Appl. Mech. Rev. 63, 1–52 (2010). https://doi.org/10.1115/1.4000563

    Article  Google Scholar 

  88. Caputo, M.: Vibrations of an infinite viscoelastic layer with a dissipative memory. J. Acoust. Soc. Am. 56, 897–904 (1974). https://doi.org/10.1121/1.1903344

    Article  MATH  Google Scholar 

  89. Chen, Y., Kadic, M., Wegener, M.: Roton-like acoustical dispersion relations in 3D metamaterials. Nat. Commun. (2021). https://doi.org/10.1038/s41467-021-23574-2

    Article  Google Scholar 

  90. Martínez, J.A.I., Groß, M.F., Chen, Y., Frenzel, T., Laude, V., Kadic, M., et al.: Experimental observation of roton-like dispersion relations in metamaterials. Sci. Adv. (2021). https://doi.org/10.1126/sciadv.abm2189

    Article  Google Scholar 

  91. Shen, Y., Yang, S., Xing, H., Gao, G.: Primary resonance of Duffing oscillator with fractional-order derivative. Commun. Nonlinear Sci. Numer. Simul. 17, 3092–3100 (2012). https://doi.org/10.1016/j.cnsns.2011.11.024

    Article  MathSciNet  MATH  Google Scholar 

  92. Zhao, C., Zhang, K., Zhao, P., Deng, Z.: Elastic wave propagation in nonlinear two-dimensional acoustic metamaterials. Nonlinear Dyn. (2022). https://doi.org/10.1007/s11071-022-07259-z

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, and other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mir Masoud Seyyed Fakhrabadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: First Brillouin zone (FBZ) and irreducible Brillouin zone (IBZ) of a square lattice

The high symmetry points of \(G, X,\) and \(M\) along the edges of the IBZ are defined in Table

Table 1 The coordinates of high symmetry points for a 2D lattice with square topology in Cartesian and reciprocal coordinates

1.

The wave vectors are then defined on the closed-loop of \(G - X - M - G\) along the edges of the IBZ. Also, FBZ and IBZ of a square lattice are depicted in Fig. 

Fig. 18
figure 18

FBZ (black dots) and IBZ (gray triangle) for a square lattice

18.

Appendix 2: Numerical validation of dispersion curves when \(t \to \infty\)

To validate the analytic dispersion curve at very large times (\(t \to \infty\)) numerically, several simulations similar to Sect. 4 are performed. The analytic dispersion curves are obtained using a very large value of \(T_{1}\) in Eq. (22), reducing the dispersion frequency to \(\Omega \cong \omega_{0} + \varepsilon \mathcal{H}_{2}\). The numerical validation is presented in Fig. 

Fig. 19
figure 19

The numerical validation of the dispersion curve of a weakly nonlinear chain with fractional damping when \(t \to \infty\) for (\(m = 1,\;k = 1,\;\alpha = 0.1,\;\mu = 1,\;\gamma = 0.5,\;\varepsilon = 0.05,\;A = 2,\;h = 0.005,\;t_{l} = 100\)) along with the magnified frequency range of \(\Omega = \left[ {1.85, 2} \right]\)

19. For a better comparative view, the dispersion curve of a linear undamped chain is also illustrated in a red dashed line. It is numerically verified that unlike the PCs with linear damping, the dispersion curve of a fractionally damped nonlinear chain does not converge to the dispersion curve of the linear chain even at very large times. However, due to the weak nature of the nonlinearities of the system, the curves are formed very close to each other. Therefore, the magnified dispersion curves at larger wavenumbers are also plotted separately.

Appendix 3: The \(\Omega - T^{*}\) planes of dispersion curves of 1D and 2D structures

More detailed information about the time-dependent behavior of the dispersion curves in 1D and 2D crystals can be obtained by investigating the corresponding planes of \(\Omega - T^{*}\) of the schematic 3D dispersion curves. They are presented in Fig. 

Fig. 20
figure 20

The \(\Omega - {\mathbf{T}}^{*}\) planes of 3D dispersion curves of a 1D and b 2D nonlinear fractionally damped PCs

20a, b, respectively. The gray lines in Fig. 20a, b denote the maximum frequency of the linear PC without considering the effect of fractional damping. It is observed that the peak point exhibits a time-independent behavior, attaining constant values at different times. On the other hand, the time-dependent evolution of the dispersion curves of the fractionally damped nonlinear chain can be clearly noticed by comparing the frequencies at points \(A\) and \(B\). It is observed that as the time passes, the dispersion curves of the fractionally damped nonlinear PCs are converged to the ones corresponding to the linear undamped chains/lattices.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sepehri, S., Mashhadi, M.M. & Fakhrabadi, M.M.S. Wave propagation in fractionally damped nonlinear phononic crystals. Nonlinear Dyn 110, 1683–1708 (2022). https://doi.org/10.1007/s11071-022-07704-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07704-z

Keywords

Navigation