Skip to main content
Log in

Codimension-one and codimension-two bifurcations in a new discrete chaotic map based on gene regulatory network model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the stability and bifurcations of a new discrete chaotic map based on gene regulatory network are studied. Firstly, the existence and stability conditions of the fixed points are given. Secondly, the conditions for existence of three cases of codimension-one bifurcations (fold bifurcation, flip bifurcation and Neimark–Sacker bifurcation) are derived by using the center manifold theorem and bifurcation theory. Then, the conditions for the occurrence of codimension-two bifurcation (fold–flip bifurcation, 1:2, 1:3 and 1:4 strong resonance) are investigated by using several variable substitutions and introduction of new parameters. Meanwhile, these bifurcation curves are returned to the original variables and parameters to express for easy verification. The corresponding numerical simulations and numerical continuation results not only show the validity of the proposed results, but also exhibit the interesting and complex dynamical behaviors. Finally, some initial conditions and two-parameter spaces analysis are given numerically. The local attraction basins and two-parameter space plots display interesting dynamical behaviors of the discrete system operating with different integral step size and other parameters changing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Not applicable.

Data availability

The code that supports the findings of this study is available from the corresponding author upon reasonable request.

References

  1. Emilsson, V., Thorleifsson, G., Zhang, B., et al.: Genetics of gene expression and its effect on disease. Nature 452, 423–428 (2008)

    Google Scholar 

  2. Li, Z., Li, P., Krishnan, A., Liu, J.D.: Large-scale dynamic gene regulatory network inference combining differential equation models with local dynamic Bayesian network analysis. Bioinformatics 27, 2686–2691 (2011)

    Google Scholar 

  3. Csermely, P., Korcsmáros, T., Kiss, H.J., et al.: Structure and dynamics of molecular networks: a novel paradigm of drug discovery: a comprehensive review. Pharmacol. Therapeut. 138, 333–408 (2013)

    Google Scholar 

  4. Brown, C.: Targeted therapy: an elusive cancer target. Nature 537, S106–S108 (2016)

    Google Scholar 

  5. Adolphe, C., Xue, A.L., Fard, A.T., et al.: Genetic and functional interaction network analysis reveals global enrichment of regulatory T cell genes influencing basal cell carcinoma susceptibility. Genome Med. 13, 19 (2021)

    Google Scholar 

  6. Sorg, R.A., Gallay, C., Van Maele, L., et al.: Synthetic gene-regulatory networks in the opportunistic human pathogen Streptococcus pneumoniae. Proc. Natl. Acad. Sci. U.S.A. 117, 27608–27619 (2020)

    Google Scholar 

  7. Gabrysova, L., Alvarez-martinez, M., Luisier, R., et al.: c-Maf controls immune responses by regulating disease-specific gene networks and repressing IL-2 in CD4\(^+\) T cells. Nat. Immunol. 19, 497–507 (2018)

    Google Scholar 

  8. Gérard, C., Tys, J., Lemaigre, F.P.: Gene regulatory networks in differentiation and direct reprogramming of hepatic cells. Semin. Cell Dev. Biol. 66, 43–50 (2017)

    Google Scholar 

  9. Ferrazzi, F., Bellazzi, R., Engel, F.B.: Gene network analysis: from heart development to cardiac therapy. Thromb. Haemost. 113, 522–531 (2015)

    Google Scholar 

  10. Narula, J., Williams, C.J., Tiwari, A., et al.: Mathematical model of a gene regulatory network reconciles effects of genetic perturbations on hematopoietic stem cell emergence. Dev. Biol. 379, 258–269 (2013)

    Google Scholar 

  11. Zhu, Q.H., Shen, J.W., Han, F., Lu, W.L.: Bifurcation analysis and probabilistic energy landscapes of two-component genetic network. IEEE Access 8, 150696–150708 (2020)

    Google Scholar 

  12. Liu, M., Meng, F.W., Hu, D.P.: Impacts of multiple time delays on a gene regulatory network mediated by small noncoding RNA. Int. J. Bifur. Chaos 30, 2050069 (2020)

    MathSciNet  MATH  Google Scholar 

  13. Massé, E., Arguin, W.: Ironing out the problem: new mechanisms of iron homeostasis. Trends Biochem. Sci. 30, 462–468 (2005)

    Google Scholar 

  14. Friedman, N., Vardi, S., Ronen, M., et al.: Precise temporal modulation in the response of the SOS DNA repair network in individual bacteria. PLoS Biol. 3, 1261–1268 (2005)

    Google Scholar 

  15. Oppenheim, A.B., Kobiler, O., Stavans, J., et al.: Switches in bacteriophage lambda development. Annu. Rev. Genet. 39, 409–429 (2005)

    Google Scholar 

  16. Shimojo, H., Ohtsuka, T., Kageyama, R.: Oscillations in notch signaling regulate maintenance of neural progenitors. Neuron 58, 52–64 (2008)

    Google Scholar 

  17. Xiao, M., Zheng, W.X., Jiang, G.P.: Bifurcation and oscillatory dynamics of delayed cyclic gene networks including small RNAs. IEEE T. Cybern. 49, 883–896 (2018)

    Google Scholar 

  18. Lai, Q., Zhao, X.W., Huang, J.N., Pham, V.T., Rajagopal, K.: Monostability, bistability, periodicity and chaos in gene regulatory network. Eur. Phys. J. Spec. Top. 227, 719–730 (2018)

    Google Scholar 

  19. Lu, Q., Xiao, M., Cheng, Z.S., Song, Y.R., Huang, C.D., Cao, J.D.: Stability and bifurcation analysis of a fractional-order single-gene regulatory model with delays under a novel \(PD^{\alpha }\) control law. Int. J. Biomath. 13, 2050016 (2020)

    MathSciNet  MATH  Google Scholar 

  20. Hao, L.J., Yang, Z.Q., Shen, D.H., Xing, M.M.: From reversible to irreversible bistable switches via bifurcations in a gene regulatory network. Phys. Biol. 17, 046001 (2020)

    Google Scholar 

  21. Yu, T.T., Zhang, X., Zhang, G.D., Niu, B.: Hopf bifurcation analysis for genetic regulatory networks with two delays. Neurocomputing 164, 190–200 (2015)

    Google Scholar 

  22. Hu, D.P., Cao, H.J.: Bifurcation and chaos in a discrete-time predator-prey system of Holling and Leslie type. Commun. Nonlinear Sci. Numer. Simul. 22, 702–715 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Eskandari, Z., Alidousti, J.: Stability and codimension \(2\) bifurcations of a discrete time SIR model. J. Franklin I. 357, 10937–10959 (2020)

    MathSciNet  MATH  Google Scholar 

  24. Hu, D.P., Cao, H.J.: Stability and synchronization of coupled Rulkov map-based neurons with chemical synapses. Commun. Nonlinear Sci. Numer. Simul. 35, 105–122 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Ivanov, I., Dougherty, E.R.: Modeling genetic regulatory networks: continuous or discrete? J. Biol. Syst. 14, 219–229 (2006)

    MATH  Google Scholar 

  26. Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. Springer, New York (1989)

    MATH  Google Scholar 

  27. Yue, D.D., Guan, Z.H., Chen, J., Ling, G., Wu, Y.H.: Bifurcations and chaos of a discrete-time model in genetic regulatory networks. Nonlinear Dyn. 87, 567–586 (2017)

    MATH  Google Scholar 

  28. Kielhöofer, H.: Bifurcation Theory: An Introduction with Applications to Partial Differential equations, 2nd edn. Springer, New York (2012)

    Google Scholar 

  29. Wang, Z., Liu, Z.H., Yuan, R.: Stability and bifurcation in a gene regulatory network model with delay. Z. Angew. Math. Mech. 92, 290–303 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Chen, L.N.: A model of periodic oscillation for genetic regulatory systems. IEEE Trans. Circuits Syst. 49, 1429–1436 (2002)

    MathSciNet  MATH  Google Scholar 

  31. Chaplain, M., Ptashnyk, M., Sturrock, M.: Hopf bifurcation in a gene regulatory network model: Molecular movement causes oscillations. Math. Mod. Meth. Appl. S. 25, 1179–1215 (2015)

    MathSciNet  MATH  Google Scholar 

  32. Tao, B.B., Xiao, M., Sun, Q.S., Cao, J.D.: Hopf bifurcation analysis of a delayed fractional-order genetic regulatory network model. Neurocomputing 275, 677–686 (2018)

    Google Scholar 

  33. Wu, F.X.: Stability and bifurcation of ring-structured genetic regulatory networks with time delays. IEEE T. Circuits-I 59, 1312–1320 (2012)

    MathSciNet  MATH  Google Scholar 

  34. Marwan, M., Ahmad, S.: Bifurcation analysis for energy transport system and its optimal control using parameter self-tuning law. Soft. Comput. 24, 17221–17231 (2020)

    MATH  Google Scholar 

  35. Abdelaziz, M.A.M., Ismail, A.I., Abdultahh, F.A., Mohd, M.H.: Codimension one and two bifurcations of a discrete-time fractional-order SEIR measles epidemic model with constant vaccination. Chaos Solitons Fract. 140, 110104 (2020)

    MathSciNet  MATH  Google Scholar 

  36. Huang, J.C., Liu, S.H., Ruan, S.G., Xiao, D.M.: Bifurcations in a discrete predator-prey model with nonmonotonic functional response. J. Math. Anal. Appl. 464, 201–230 (2018)

    MathSciNet  MATH  Google Scholar 

  37. Liu, X.J., Liu, Y.: Codimension-two bifurcation analysis on a discrete Gierer-Meinhardt system. Int. J. Bifur. Chaos 30, 2050251 (2020)

    MathSciNet  MATH  Google Scholar 

  38. Smolen, P., Baxter, D.A., Byrne, J.H.: Frequency selectivity, multistability, and oscillations emerge from models of genetic regulatory systems. Am. J. Physiol. 274, C531–C542 (1998)

    Google Scholar 

  39. Chen, S.S., Wei, J.J.: Global attractivity in a model of genetic regulatory system with delay. Appl. Math. Comput. 232, 411–415 (2014)

    MathSciNet  MATH  Google Scholar 

  40. Wan, A., Zou, X.F.: Hopf bifurcation analysis for a model of genetic regulatory system with delay. J. Math. Anal. Appl. 356, 464–476 (2009)

    MathSciNet  MATH  Google Scholar 

  41. Strogatz, S.H.: Nonlinear Dynamics and Chaos with Student Solutions Manual: With Applications to Physics, Biology, Chemistry, and Engineering, CRC press (2018)

  42. Yu, Y., Cao, H.J.: Integral step size makes a difference to bifurcations of a discrete-time. Hindmarsh-Rose Model 25, 1550029 (2015)

    MATH  Google Scholar 

  43. Govaerts, W., Khoshsiar, R., Kuznetsov, Y.A., Meijer, H.G.E.: Numerical methods for two parameter local bifurcation analysis of maps. SIAM J. Sci. Comput. 29, 2644–2667 (2007)

    MathSciNet  MATH  Google Scholar 

  44. Kuznetsov, Y.A., Meijer, H.G.E.: Numerical normal forms for codim-2 bifurcations of fixed points with at most two critical eigenvalues. SIAM J. Sci. Comput. 26, 1932–1954 (2005)

    MathSciNet  MATH  Google Scholar 

  45. Kuznetsov, Yu.A., Meijer, H.G.E.: Numerical Bifurcation Analysis of Maps: From Theory to Software. Cambridge University Press (2019)

  46. Kuznetsov, Y.A., Meijer, H.G.E., Veen, L.: The fold-flip bifurcation. Int. J. Bifur. Chaos 14, 2253–2282 (2004)

    MathSciNet  MATH  Google Scholar 

  47. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, 3rd edn. Springer, New York (2004)

    MATH  Google Scholar 

  48. Bao, B.C., Chen, C.J., Bao, H., Zhang, X., Xu, Q., Chen, M.: Dynamical effects of neuron activation gradient on Hopfield neural network: numerical analyses and hardware experiments. Int. J. Bifur. Chaos 29, 1930010 (2019)

    MathSciNet  MATH  Google Scholar 

  49. Rao, X.B., Chu, Y.D., Chang, Y.X., Zhang, J.G., Tian, Y.P.: Dynamics of a cracked rotor system with oil-film force in parameter space. Nonlinear Dyn. 88, 2347–2357 (2017)

    Google Scholar 

  50. Wang, F.J., Cao, H.J.: Model locking and quaiperiodicity in a discrete-time Chialvo neuron model. Commun. Nonlinear Sci. Numer. Simul. 56, 481–489 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by NSF of Shandong Province (ZR2021MA016, ZR2018BF018), China Postdoctoral Science Foundation (2019M652349) and the Youth Creative Team Sci-Tech Program of Shandong Universities (2019KJI007).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to the writing of this paper. The authors read and approved the final manuscript.

Corresponding author

Correspondence to Dongpo Hu.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: \(a_{ij}\) and \(F_i(X_1,L_2,Y_1)\) in (3.4); \(e_i\) in (3.9); \(b_i\) in (3.10)

$$\begin{aligned}&a_{11} = 1 + \delta (k_1A - l_1),~~ a_{13} = -\delta k_1B,~~ a_{31} = \delta k_2A,\\&a_{32} = -\delta y^*,~~ a_{33} = 1 - \delta (k_2B + l_2^*),\\&F_1(X_1,L_2,Y_1) = f_{200}X_1^2 + f_{101}X_1Y_1 \\&\qquad + f_{002}Y_1^2 +\mathcal {O}\left( \Vert (X_1,L_2,Y_1)\Vert ^3\right) ,\\&F_2(X_1,L_2,Y_1) = g_{200}X_1^2 + g_{101}X_1Y_1 + g_{011}L_2Y_1 + g_{002}Y_1^2 \\&\qquad + \mathcal {O}\left( \Vert (X_1,L_2,Y_1)\Vert ^3\right) ,\\&f_{200} \!=\! \frac{k_1pq\left( -3q^2x^{*2}\! -\! 3qx^{*2}y^* \!+\! pq^2 \!+\! 2pqy^* \!+\! py^{*2}\right) }{\left( qx^{*2} + pq + py^*\right) ^3}\delta ,\\&f_{101} = \frac{2k_1pqx^*\left( -qx^{*2} + pq + py^*\right) }{\left( qx^{*2} + pq + py^*\right) ^3}\delta ,\\&f_{002} = \frac{k_1qp^2x^{*2}}{\left( qx^{*2} + pq + py^*\right) ^3}\delta ,\\&g_{200} = \frac{k_2pq\left( -3q^2x^{*2}\! -\! 3qx^{*2}y^* \!+\! pq^2 \!+\! 2pqy^* \!+\! py^{*2}\right) }{\left( qx^{*2} + pq + py^*\right) ^3}\delta ,\\&g_{101} = \frac{2k_2pqx^*\left( -qx^{*2} \!+\! pq \!+\! py^*\right) }{\left( qx^{*2} + pq + py^*\right) ^3}\delta ,~~ g_{011} = -\delta ,\\&g_{002} = \frac{k_2qp^2x^{*2}}{\left( qx^{*2} + pq + py^*\right) ^3}\delta .\\&e_1 = a_{13}^2g_{200} + a_{13}(-a_{11} + 1)g_{101} + (a_{11} - 1)^2g_{002},\\&e_2 = -a_{13}a_{32}(a_{11}k_1 + a_{13}k_2 - k_1)g_{101} \\&\quad - a_{13}k_2(\lambda _{12} - 1)(a_{11} - 1)g_{011} \\&\quad + 2a_{32}(a_{11} - 1)(a_{11}k_1 + a_{13}k_2 - k_1)g_{002},\\&e_3 = -a_{13}k_2(\lambda _{12} - 1)g_{011} + a_{32}(a_{11}k_1 + a_{13}k_2 - k_1)g_{002}.\\&b_1 = -\frac{(k_1 a_{11} + k_2 a_{13} - k_1\lambda _{12})e_1}{k_2 a_{13}(\lambda _{12} - 1)},\\&b_2 = \frac{-k_1 a_{32}(\lambda _{12} - 1)[(2a_{11}-2)g_{002} - a_{13}g_{101}] + e_2}{k_2a_{13}a_{32}(\lambda _{12} - 1)},\\&b_3 = -\frac{-k_1 a_{32}g_{002}(\lambda _{12} - 1) + e_3}{k_2a_{13}a_{32}(\lambda _{12} - 1)},\\ \end{aligned}$$
$$\begin{aligned}&b_4 = -\frac{(k_1 a_{11} + k_2 a_{13} - k_1\lambda _{12})[2a_{13}^2g_{200} - a_{13}(2a_{11} - \lambda _{12} - 1)g_{101} + 2(a_{11} - 1)(a_{11} - \lambda _{12})g_{002}]}{k_2 a_{13}(\lambda _{12} - 1)},\\&b_5 = \frac{-k_2 a_{13}(\lambda _{12} - 1)(a_{11} \!-\! \lambda _{12})g_{011}\! -\! a_{13}a_{32}(k_1 a_{11} \!+\! k_2 a_{13} \!-\! k_1\lambda _{12})g_{101} \!+\! 2a_{32}(a_{11}\! - \!\lambda _{12})(k_1 a_{11} \!+\! k_2 a_{13} \!-\! k_1\lambda _{12})g_{002}}{k_2a_{32}a_{13}(\lambda _{12} - 1)}.\\ \end{aligned}$$

Appendix B: \(b_{ij}\) and \(G_i(X_2,\delta _2,Y_2)\) in (3.12); \(c_{i}\) in (3.16)

$$\begin{aligned}&b_{11} = 1 + \delta ^*_2(k_1A - l_1),~~ b_{13} = -\delta ^*_2 k_1B,\\&b_{31} = \delta ^*_2 k_2A,~~b_{33} = 1 - \delta ^*_2(k_2B + l_2),\\&G_1(X_2,\delta _2,Y_2) = {m}_{200}X_2^2 + {m}_{110}X_2\delta _2 + {m}_{101}X_2Y_2 \\&\qquad + {m}_{011}\delta _2Y_2 + {m}_{002}Y_2^2+ \mathcal {O}\left( \Vert (X_2,\delta _2,Y_2)\Vert ^3\right) ,\\&G_2(X_2,\delta _2,Y_2) = {n}_{200}X_2^2 + {n}_{110}X_2\delta _2 + {n}_{101}X_2Y_2 \\&\qquad + {n}_{011}\delta _2Y_2 + {n}_{002}Y_2^2+ \mathcal {O}\left( \Vert (X_2,\delta _2,Y_2)\Vert ^3\right) ,\\&m_{200} = \frac{k_1pq\left( -3q^2x^{*2} \!- \!3qx^{*2}y^* \!+\! pq^2 \!+\! 2pqy^* \!+\! py^{*2}\right) }{\left( qx^{*2} + pq + py^*\right) ^3}\delta ^*_2,\\&m_{110} = k_1A - l_1, \end{aligned}$$
$$\begin{aligned}&m_{101} = \frac{-2x^*k_1pq\left( -qx^{*2} + pq + py^*\right) }{\left( qx^{*2} + pq + py^*\right) ^3}\delta ^*_2,\\&m_{011} = -k_1B,~~ m_{002} = \frac{k_1qp^2x^{*2}}{\left( qx^{*2} + pq + py^*\right) ^3}\delta ^*_2,\\&n_{200} = \frac{k_2pq\left( -3q^2x^{*2} \!-\! 3qx^{*2}y^* \!+\! pq^2 \!+\! 2pqy^* \!+\! py^{*2}\right) }{\left( qx^{*2} + pq + py^*\right) ^3}\delta ^*_2,\\&n_{110} = k_2A,\\&n_{101} = \frac{2x^*k_2pq\left( -qx^{*2} + pq + py^*\right) }{\left( qx^{*2} + pq + py^*\right) ^3}\delta ^*_2,\\&n_{011} = -k_2B - l_2,~~ n_{002} = \frac{k_2qp^2x^{*2}}{\left( qx^{*2} + pq + py^*\right) ^3}\delta ^*_2. \end{aligned}$$
$$\begin{aligned}&c_1 = -\frac{\left( k_1 b_{11} + k_2 b_{13} + k_1\right) \left[ b_{13}^2n_{200} - b_{13}(b_{11} + 1)n_{101} + (b_{11} + 1)(b_{11}-\lambda _{22})n_{002}\right] }{b_{13}\left( \lambda _{22}^2 - 1\right) k_2},~~\\&c_2 = \frac{b_{13}^2n_{110}+(m_{110}-n_{011})b_{11}-\lambda _{22}(m_{110}-n_{011})b_{13} -m_{011}(b_{11}+1)(b_{11}-\lambda _{22} )}{b_{13}\left( \lambda _{22}^2 - 1\right) },\\&c_4 = -\frac{\left( k_1 b_{11} + k_2 b_{13} + k_1\right) \left[ 2b_{13}^2n_{200} - b_{13}(2b_{11} + 1-\lambda _{22})n_{101} + 2(b_{11} + 1)(b_{11}-\lambda _2)n_{002}\right] }{b_{13}\left( \lambda _{22}^2 - 1\right) k_2},~~\\&c_5 = - \frac{-b_{13}^2n_{110}\!-\!(m_{110}-n_{011})(b_{11}\!-\!\lambda _2)b_{13}\!-\!m_{011}(b_{11}\!-\!\lambda _{22})^2}{b_{13}\left( \lambda _{22}^2 - 1\right) },\\&c_3 = 0,~~ c_6 = 0.\\ \end{aligned}$$

Appendix C: \(c_{ij}\) and \(P_1(X_3,Y_3)\) in (3.18); E and all partial derivatives of \(G_1\) and \(G_2\) in (3.20)

$$\begin{aligned}&c_{11} = 1 + \delta (k_1A - l_1),~~ c_{12} = -\delta k_1B,~~ c_{21} = \delta k_2A,\\&c_{22} = 1-\delta (k_2B + l_2),\\&P_1(X_3,Y_3) = p_{20}X_3^2 + p_{11}X_3Y_3 + p_{02}Y_3^2 + \mathcal {O}(3),\\&p_{20} \!=\! \frac{k_1pq(-\!3q^2x^{*2} \!-\! 3qx^{*2}y^* \!+\! pq^2 \!+\! 2pqy^*\! +\! py^{*2})}{\left( qx^{*2} + pq + py^*\right) ^3}\delta ,\\ \end{aligned}$$
$$\begin{aligned}&p_{11} = -\frac{2k_1x^*pq(-qx^{*2} + pq + py^*)}{\left( qx^{*2} + pq + py^*\right) ^3}\delta ,~\\&p_{02} = \frac{k_1qp^2x^{*2}}{\left( qx^{*2} + pq + py^*\right) ^3}\delta .\\&E = \alpha ^2 - 3\alpha ^3 + 2\alpha ^4 - \beta ^2 + \alpha \beta ^2 - 2\beta ^4,\\&F = -\beta (\beta ^2 + 5\alpha ^2 - 2\alpha - 4\alpha ^3 - 4\alpha \beta ^2),\\ G_{1\widehat{X}_3\widehat{X}_3}&= \frac{2}{c_{12}}\left[ c_{12}^2f_{20}+c_{12}(\alpha -c_{11})f_{11}\right. \\&\left. +(\alpha -c_{11})^2f_{02}\right] ,\\ G_{1\widehat{Y}_3\widehat{Y}_3}&= \frac{2\beta ^2f_{02}}{c_{12}},\\ G_{1\widehat{X}_3\widehat{Y}_3}&= -\frac{\beta }{c_{12}}\left[ c_{12}f_{11} + 2(\alpha -c_{11})f_{02}\right] ,\\ G_{1\widehat{X}_3\widehat{X}_3\widehat{X}_3}&= \frac{6}{c_{12}}\left[ c_{12}^3f_{30}+c_{12}^2(\alpha -c_{11})f_{21} \right. \\&\qquad \left. + c_{12}(\alpha -c_{11})^2f_{12}+(\alpha -c_{11})^3f_{03}\right] ,\\ G_{1\widehat{X}_3\widehat{X}_3\widehat{Y}_3}&= -\frac{2\beta }{c_{12}}\left[ c_{12}^2f_{21}+2c_{12}(\alpha -c_{11})f_{12}\right. \\&\qquad \left. +3(\alpha -c_{11})^2f_{03}\right] ,\\&G_{1\widehat{X}_3\widehat{Y}_3\widehat{Y}_3}=\frac{2\beta ^2}{c_{12}}[c_{12}f_{12}+3(\alpha -c_{11})f_{03}],\\&G_{1\widehat{Y}_3\widehat{Y}_3\widehat{Y}_3}=-\frac{6\beta ^3f_{03}}{c_{12}}. \end{aligned}$$

Appendix D: \(f_{ij}\) in (4.3); \(\tilde{f}_{ij}\) in (4.5); \(m_{ij}\) and \(n_{ij}\) in (4.7); \(U_2\), \(V_2\), \(W_1\), \(R_1\), \(W_2\), \(R_2\), \(V_3\) in (4.10)

$$\begin{aligned}&f_{20}= \frac{pq\left( -3q^2x^{*2}-3qx^{*2}y^*+pq^2+2pqy^*+py^{*2}\right) }{(qx^{*2}+pq+py^*)^3},\\&f_{11}= -\frac{2x^*pq\left( -qx^{*2}+pq+py^*\right) }{\left( qx^{*2}+pq+py^*\right) ^3},~~\\&f_{02}=\frac{qp^2x^{*2}}{\left( qx^{*2}+pq+py^*\right) ^3}, \end{aligned}$$
$$\begin{aligned}&f_{30}=-\frac{4xq^2p\left( -q^2x^{*2}-qx^{*2}y^*+pq^2+2pqy^*+py^{*2}\right) }{\left( qx^{*2}+pq+py^*\right) ^4},\\&f_{21}=-\frac{pq\left( 3q^2x^{*4}-8pq^2x^{*2}-8pqx^{*2}y^*+p^2q^2+2p^2qy^*+p^2y^{*2}\right) }{\left( qx^{*2}+pq+py^*\right) ^4}, \end{aligned}$$
$$\begin{aligned}&f_{12}=\frac{2p^2*x^*q\left( -2qx^{*2}+pq+py^*\right) }{\left( qx^{*2}+pq+py^*\right) ^4},\\&f_{03}=-\frac{p^3x^{*2}q}{\left( qx^{*2}+pq+py^*\right) ^4}.\\&\tilde{f}_{20} = d_{12}^2f_{20} + d_{11}d_{12}f_{11} + d_{11}^2f_{02}, \\&\tilde{f}_{11} = -2d_{12}^2\delta _4^*f_{20} - 2d_{12}\left( d_{11}\delta _4^* + 1\right) f_{11} \\&\qquad \quad - 2d_{11}\left( d_{11}\delta _4^* + 2\right) f_{02},\\&\tilde{ f}_{02} = d_{12}^2\delta _4^{*2}f_{20} + d_{12}\delta _4^*\left( d_{11}\delta _4^* + 2\right) f_{11}\\&\qquad \quad + \left( d_{11}\delta _4^* + 2\right) ^2f_{02},\\&\tilde{f}_{30} = d_{12}^3f_{30} + d_{11}d_{12}^2f_{21} + d_{11}^2d_{12}f_{12} + d_{11}^3f_{03},\\&\tilde{f}_{21} = -3d_{12}^3\delta _4^*f_{30} - \left( 3d_{11}\delta _4^* + 2\right) d_{12}^2f_{21}\\&\qquad \quad - d_{12}d_{11}\left( 3d_{11}\delta _4^* + 4\right) f_{12} - 3d_{11}^2\left( d_{11}\delta _4^* + 2\right) f_{03},~\\&\tilde{f}_{12} = 3d_{12}^3\delta _4^{*2}f_{30} + d_{12}^2\delta _4^*\left( 3d_{11}\delta _4^* + 4\right) f_{21}\\&\qquad \quad + d_{12}\left( d_{11}\delta _4^* + 2\right) \left( 3d_{11}\delta _4^* + 2\right) f_{12} \\&\qquad \quad + 3d_{11}\left( d_{11}\delta _4^* + 2\right) ^2f_{03},~~\\&\tilde{f}_{03} = -d_{12}^3\delta _4^{*3}f_{30} - d_{12}^2\delta _4^{*2}\left( d_{11}\delta _4^* + 2\right) f_{21} \\&\qquad \quad -\delta _4^*d_{12}\left( d_{11}\delta _4^* + 2\right) ^2f_{12} - \left( d_{11}\delta _4^* + 2\right) ^3f_{03}.\\&m_{20} = \left( P_1-\frac{P P_2}{Q} \right) \tilde{f}_{20},\\&m_{11} = \left( 2P_1-\frac{2P^2 P_2}{Q} \right) \tilde{f}_{20}+ \left( P_1 Q-P P_2 \right) \tilde{f}_{11},~~\\&m_{02} = \left( P_1 P^2-\frac{P^3 P_2}{Q} \right) \tilde{f}_{20}+\left( P_1 P Q-P^2 P_2 \right) \tilde{f}_{11}\\&\qquad \quad + \left( P_1 Q^2-P Q P_2 \right) \tilde{f}_{02},\\&m_{30} = \left( P_1-\frac{P P_2}{Q} \right) \tilde{f}_{30},~\\&m_{21} = \left( 3P_1-\frac{3P^2 P_2}{Q} \right) \tilde{f}_{30}+ \left( P_1 Q-P P_2 \right) \tilde{f}_{21},~~\\&m_{12} = \left( 3P_1 P^2-\frac{3P^3 P_2}{Q} \right) \tilde{f}_{30}\\&\qquad \quad +\left( 2P_1 P Q-2P^2 P_2 \right) \tilde{f}_{21}\\&\qquad \quad + \left( P_1 Q^2-P Q P_2 \right) \tilde{f}_{12},~\\&m_{03} = (P_1 P^3-\frac{P^4 P_2}{Q})\tilde{f}_{30}+(-P^3P_2+P^2 P_1 Q)\tilde{f}_{21}\\&\qquad \quad +(-P^2 P_2 Q+P P_1 Q^2)\tilde{f}_{12}\\&\quad \qquad +(P_1 Q^3 - P P_2 Q^2)\tilde{f}_{03},\\&n_{20} = \frac{ P_2}{Q}\tilde{f}_{20},~~ n_{11} = \frac{2P P_2}{Q}\tilde{f}_{20}+P_2 \tilde{f}_{11},\\&n_{02} =\frac{P^2 P_2}{Q}\tilde{f}_{20}+P P_2\tilde{f}_{11}+P_2 Q\tilde{f}_{02},\\&n_{30} = \frac{ P_2}{Q}\tilde{f}_{30},~~ n_{21} = \frac{3P P_2}{Q}\tilde{f}_{30}+P_2\tilde{f}_{21},\\&n_{12} = \frac{3P^2P_2}{Q} \tilde{f}_{30}+2P P_2\tilde{f}_{21}+P_2 Q\tilde{f}_{12},\\&n_{03} = \frac{P^3 P_2}{Q}\tilde{f}_{30}+P^2 P_2\tilde{f}_{21}+PQ P_2\tilde{f}_{12}+P_2 Q^2\tilde{f}_{03},\\&P = \delta _4[(d_{11}-d_{22})\delta _4^*+2],~~ Q = -2+\delta _4(d_{11}-d_{22}).\\&U_2 = -\frac{\delta _4^*x^*\left[ \left( k_1A-l_{1,4}^*\right) \delta _4^*+2\right] }{2k_1B},\\&V_2 = \frac{\left( k_1A - l_{1,4}^*\right) \delta _4^*x^*}{4k_1B},~\\&W_1 = -\frac{3q\delta _4^*p}{2\left[ \left( q + y^*\right) p + qx^{*2}\right] ^3d_{12}}\\&\qquad \quad \left\{ -2d_{11}d_{12}x^*\left( d_{11}\delta _4^*+\frac{4}{3}\right) \right. \\&\qquad \quad \left[ \left( \frac{1}{2}k_2x^*+k_1(q+y^*)\right) p - qk_1x^{*2}\right] \\&\quad \qquad +\left[ \left( q + y^*\right) \left( 2k_2x^*+k_1(q+y^*)\right) p \right. \\&\quad \qquad \left. - 3\left( \frac{2}{3}k_2 x^* + k_1\left( q+y^*\right) \right) q x^{*2}\right] \\&\quad \qquad \times \left( d_{11}\delta _4^* + \frac{2}{3}\right) d_{12}^2+ pk_1 x^{*2}d_{11}^2 \left( d_{11} \delta _4^*+2\right) \\&\qquad \quad \left. \delta _4^*k_2d_{12}^3\left[ \left( q + y^*\right) p - 3qx^{*2}\right] \times \left( q+y^*\right) \right\} ,\\&R_1 = -\frac{3q\delta _4^*p}{\left[ \left( q + y^*\right) p + qx^{*2}\right] ^3d_{12}}\\&\quad \times \left\{ \delta _4^*d_{12}^2\left( d_{11}\delta _4^* + \frac{4}{3}\right) \left[ -2qx^{*3}k_2 -3qk_1\left( q+y^*\right) x^{*2} \right. \right. \\&\quad \left. + 2pk_2\left( q +y^*\right) x^*+ pk_1\left( q+y^*\right) ^2\right] \\&\quad -2x^*d_{12}\left( d_{11}\delta _4^* + 2\right) \left( d_{11}\delta _4^*+\frac{2}{3}\right) \\&\quad \left( -qk_1x^{*2} + \frac{1}{2}pk_2x^* + pk_1\left( q+y^*\right) \right) \\&\quad -\delta _4^{*2}k_2d_{12}^3\left[ \left( q+y^*\right) p - 3qx^{*2}\right] \left( q+y^*\right) {\left( y^*\right) ^2}\\&\quad \left. + p k_1 x^{*2} d_{11}\left( d_{11} \delta _4^*+2\right) ^2 \right\} , \end{aligned}$$
$$\begin{aligned}&W_2 = -\frac{q\delta _4^*p}{2\left[ \left( q + y^*\right) p + qx^{*2}\right] ^3d_{12}}\\&\quad \times \left\{ -\delta _4^{*}k_2d_{12}^3\left[ \left( q + y^*\right) p - 3qx^{*2}\right] \left( q+y^*\right) \right. \\&\quad + pk_1 x^{*2} d_{11}^2\left( d_{11}\delta _4^*+ 2\right) + d_{12}^2 \left[ \left( q + y^*\right) (k_1\left( d_{11} \delta _4^* - 2\right) q\right. \\&\quad \left. +\left( 2d_{11}\delta _4^*k_2 + 4k_2\right) x^* + k_1y^*\left( d_{11}\delta _4^*-2\right) \right) \\&\quad \times p - 3qx^{*2}\left( k_1(d_{11} \delta _4^*-2)q +\frac{2}{3}k_2\left( d_{11} \delta _4^*+2\right) x^*\right. \\&\quad \left. \left. +k_1y^*\left( d_{11}\delta _4^*-2\right) \right) \right] \\&\quad -2d_{11}x^*d_{12} \left[ \left( qk_1d_{11} \delta _4^* + \left( \frac{1}{2}d_{11} \delta _4^*k_2 + 2k_2\right) x^* \right. \right. \\&\quad \left. \left. \left. +k_1y^*d_{11} \delta _4^*\right) p - qk_1d_{11} \delta _4^*x^{*2}\right] \right\} ,\\&R_2 = \frac{q\delta _4^*p}{\left[ \left( q + y^*\right) p + qx^{*2}\right] ^3d_{12}}\\&\quad \times \left\{ -\delta _4^{*2}k_2d_{12}^3\left[ \left( q + y^*\right) p - 3qx^{*2}\right] ^3\left( q+y^*\right) \right. \\&\quad + pk_1 x^{*2}d_{11}\left( d_{11} \delta _4^*+2\right) ^2-2x^*d_{12}\left( d_{11}\delta _4^*+2\right) \\&\quad \times \left[ d_{11}\delta _4^*\left( \left( \frac{1}{2}k_2x^*+k_1\left( q+y^*\right) \right) p-qk_1x^{*2}\right) \right. \\&\quad \left. +\left( -k_2x^* +2k_1\left( q+y^*\right) \right) p-2qk_1x^{*2} {\frac{1}{2}}\right] \\&\quad +\delta _4^*d_{12}^2\left[ \left( d_{11}\delta _4^*\left( \left( q+y^*\right) \left( 2k_2x^* +k_1\left( q+y^*\right) \right) p \right. \right. \right. \\&\quad \left. -3qx^{*2}\left( \frac{2}{3}k_2x^*+k_1\left( q+y^*\right) \right) \right) \\&\quad \left. \left. +4k_1\left( \left( q+y^*\right) p-3qx^{*2}\right) \left( q+y^*\right) \right] {\left( y^*\right) ^2} {(\frac{1}{2})^2\left[ \delta ^{*2}\right] ^2}\right\} ,\\&V_{3} = k_1A-k_2B-l_{1,3}^*-l_2.\\ \end{aligned}$$

Appendix E: \(\widehat{f}_{ij}\) in (4.14); \(\xi _{ij}\) and \(\zeta _{ij}\) in (4.16); \(C(\theta )\) and \(D(\theta )\) in (4.17); \(C_1(\theta )\) and \(D_1(\theta )\) in (4.21)

$$\begin{aligned} \widehat{f}_{20}&= \left( d_{11}^2f_{02}+d_{11}d_{12}f_{11}+d_{12}^2f_{20}\right) \delta ^2\\&\quad + \left( 4d_{11}f_{02}+2d_{12}f_{11}\right) \delta + 4f_{02},\\ \widehat{f}_{11}&= \left( -2d_{11}f_{02}-d_{12}f_{11}\right) \delta - 4f_{02},\\ \widehat{f}_{30}&= \left( -d_{11}^3f_{03}-d_{11}^2d_{12}f_{12}-d_{11}d_{12}^2f_{21}-d_{12}^3f_{30}\right) \delta ^3\\&\quad + \left( -6d_{11}^2f_{03}-4d_{11}d_{12}f_{12}-2d_{12}^2f_{21}\right) \delta ^2\\&\quad + \left( -12d_{11}f_{03}-4d_{12}f_{12}\right) \delta - 8f_{03},\\ \widehat{f}_{21}&= \left( 3d_{11}^2f_{03}+2d_{11}d_{12}f_{12}+d_{12}^2f_{21}\right) \delta ^2\\&\quad + \left( 12d_{11}f_{03}+4d_{12}f_{12}\right) \delta + 12f_{03},\\ \widehat{f}_{12}&= \left( -3d_{11}f_{03}-d_{12}f_{12}\right) \delta - 6f_{03},\\&\quad \widehat{f}_{03} = f_{03},~~ \widehat{f}_{02}=f_{02}.\\ \xi _{20}&=\frac{1}{4}\widehat{f}_{20}(2P_1+P_2),~~ \xi _{11}=\frac{1}{4}(2P_1+P_2)\widehat{f}_{11}\\&\quad +\frac{1}{2}\widehat{f}_{20}(P_1+P_2),~~\\ \xi _{02}&=\frac{1}{8}\left( 2\widehat{f}_{02}+2\widehat{f}_{11}+ \widehat{f}_{20}\right) P_2\\&\quad +\frac{1}{2}\left( \frac{1}{2}\widehat{f}_{11} +\widehat{f}_{02}\right) P_1,\\ \xi _{30}&=\left( \frac{1}{4}\widehat{f}_{02}\widehat{f}_{11}+\frac{1}{4} \widehat{f}_{02}\widehat{f}_{20} +\frac{1}{12}\widehat{f}_{11}^2\right. \\&\quad \left. +\frac{1}{6}\widehat{f}_{11}\widehat{f}_{20}+\frac{1}{24}\widehat{f}_{20}^2\right) P_2^2\\&\quad +\left( \frac{1}{2}\widehat{f}_{11}\widehat{f}_{20}-\frac{1}{6}\widehat{f}_{20}^2\right) P_1^2 \\&\quad +\left( \frac{1}{2}\widehat{f}_{02}\widehat{f}_{20}+\frac{1}{4}\widehat{f}_{11}^2+\frac{1}{3}\widehat{f}_{11}\widehat{f}_{20} +\frac{1}{12}\widehat{f}_{20}^2\right) P_1P_2\\&\quad +\frac{1}{6}P_2\widehat{f}_{12}+\left( \frac{1}{3}\widehat{f}_{21}-\frac{1}{2}\widehat{f}_{30}\right) P_1,\\ \xi _{21}&=\left( \widehat{f}_{02}\widehat{f}_{11}+\frac{7}{4}\widehat{f}_{02}\widehat{f}_{20}+\frac{7}{8}\widehat{f}_{11}^2+\frac{9}{8}\widehat{f}_{11}\widehat{f}_{20}\right. \\&\quad \left. +\frac{1}{8}\widehat{f}_{20}^2\right) P_1P_2 +\left( \frac{1}{2}\widehat{f}_{03}+\frac{1}{2}\widehat{f}_{12}\right) P_2 \\&\quad +\left( \frac{1}{2}\widehat{f}_{12}+\frac{1}{2}\widehat{f}_{21}-\widehat{f}_{30}\right) P_1\\&\quad +\left( \frac{1}{2}\widehat{f}_{02}\widehat{f}_{20} +\frac{1}{4}\widehat{f}_{11}^2+\frac{5}{4} \widehat{f}_{11}\widehat{f}_{20}\frac{1}{2}\widehat{f}_{20}^2\right) P_1^2 \\&\quad +\left( \frac{1}{2}\widehat{f}_{02}^2+\frac{9}{8}\widehat{f}_{02}\widehat{f}_{11} +\frac{3}{4}\widehat{f}_{02}\widehat{f}_{20}+\frac{3}{8}\widehat{f}_{11}^2\right. \\&\quad \left. +\frac{9}{16}\widehat{f}_{11}\widehat{f}_{20}+\frac{1}{8}\widehat{f}_{20}^2\right) P_2^2,\\ \xi _{12}&=\left( \frac{11}{12}\widehat{f}_{11}\widehat{f}_{20}+\frac{5}{4}\widehat{f}_{02}\widehat{f}_{20}+\frac{7}{4}\widehat{f}_{02}\widehat{f}_{11}\right. \\&\quad \left. +\frac{1}{24}\widehat{f}_{20}^2+\widehat{f}_{02}^2 +\frac{7}{8}\widehat{f}_{11}^2\right) P_1P_2\\&\quad +\left( \frac{1}{2}\widehat{f}_{03}+\frac{1}{3}\widehat{f}_{12}\right) P_2 \\&\quad +\left( \frac{1}{2}\widehat{f}_{12}+\frac{1}{6}\widehat{f}_{21}-\frac{1}{2}\widehat{f}_{30}+\widehat{f}_{03}\right) P_1\\&\quad +\left( -\frac{1}{3}\widehat{f}_{20}^2+\frac{1}{2}\widehat{f}_{11}^2 +\frac{1}{2}\widehat{f}_{02}\widehat{f}_{20}+\frac{1}{2}\widehat{f}_{02}\widehat{f}_{11} +\frac{3}{4}\widehat{f}_{11}\widehat{f}_{20}\right) P_1^2 \\&\quad +\left( \frac{1}{12}\widehat{f}_{20}^2+\frac{7}{24}\widehat{f}_{11}^2+\frac{1}{2}\widehat{f}_{02}^2+\frac{19}{48}\widehat{f}_{11}\widehat{f}_{20}\right. \\&\quad \left. +\frac{7}{8}\widehat{f}_{02}\widehat{f}_{11} +\frac{1}{2}\widehat{f}_{02}\widehat{f}_{20}\right) P_2^2,\\ \zeta _{20}&=\frac{1}{2}P_2\widehat{f}_{20},~~ \zeta _{11}=\frac{1}{2}P_2\left( \widehat{f}_{11}+\widehat{f}_{20}\right) ,\\ \zeta _{02}&= \frac{1}{4}P_2\left( 2\widehat{f}_{02} + \widehat{f}_{11}\right) ,~~\\ \zeta _{30}&= -\left[ \left( P_1+\frac{1}{2}P_2\right) \widehat{f}_{20}^2+\frac{1}{2}\widehat{f}_{11}P_2\widehat{f}_{20}+\widehat{f}_{30}\right] P_1,\\&\quad \zeta _{03}(\theta )=\xi _{03}(\theta )=0,\\ \end{aligned}$$
$$\begin{aligned} \zeta _{21}&=\frac{1}{2}\left[ \widehat{f}_{20}^2+\left( 6\widehat{f}_{02}+4\widehat{f}_{11}\right) \widehat{f}_{20}+6\widehat{f}_{02}\widehat{f}_{11}+2\widehat{f}_{11}^2\right] P_2^2\\&\quad +\frac{1}{8}\left[ -6P_1\widehat{f}_{20}^2+\left( 4\widehat{f}_{02}-\frac{1}{2}\widehat{f}_{11}\right) P_1\widehat{f}_{20} \right. \\&\quad \left. +2P_1\widehat{f}_{11}^2+4\widehat{f}_{12}\right] P_2 -\frac{3}{2}P_1\left( P_1\widehat{f}_{20}^2+\widehat{f}_{30}\right) ,\\ \zeta _{12}&=\left( \frac{1}{2}\widehat{f}_{11}+\frac{1}{4}\widehat{f}_{20}+\widehat{f}_{02}\right) \left( \widehat{f}_{11}+\frac{1}{2}\widehat{f}_{20}+\widehat{f}_{02}\right) P_2^2\\&\quad +\frac{1}{8}\left[ 4P_1\widehat{f}_{11}^2+\left( 4P_1\widehat{f}_{02}+4\widehat{f}_{20}\right) \widehat{f}_{11} \right. \\&\quad \left. +4P_1\widehat{f}_{02}\widehat{f}_{20}+8\widehat{f}_{03}+4\widehat{f}_{12}\right] P_2-\left( \widehat{f}_{20}\widehat{f}_{20}+\frac{1}{2}\widehat{f}_{30}\right) P_1.\\ C(\theta )&=\left[ \left( \frac{1}{4}\widehat{f}_{02}\widehat{f}_{11} + \frac{1}{4}\widehat{f}_{20}\widehat{f}_{02} + \frac{1}{12}\widehat{f}_{11}^2 + \frac{1}{6}\widehat{f}_{20}\widehat{f}_{11}\right. \right. \\&\quad \left. +\frac{1}{24}\widehat{f}_{20}^2\right) P_2^2 +\left( \frac{1}{3}\widehat{f}_{21} - \frac{1}{2}\widehat{f}_{30}\right) P_1 \\&\quad + \left( \frac{1}{2}\widehat{f}_{20}\widehat{f}_{11} -\frac{1}{6}\widehat{f}_{20}^2\right) P_1^2+\frac{1}{6}P_2\widehat{f}_{12}\\&\quad + \left( \frac{1}{2}\widehat{f}_{20}\widehat{f}_{02} + \frac{1}{4}\widehat{f}_{11}^2 +\frac{1}{3}\widehat{f}_{20}\widehat{f}_{11}+\frac{1}{12}\widehat{f}_{20}^2\right) \\&\quad \left. \times P_1P_2 {\frac{1}{4}\widehat{f}_{02}\widehat{f}_{11}} \right] \theta _1 \\&\quad + \left[ \left( -\frac{1}{2}\widehat{f}_{20}\widehat{f}_{11} -\frac{1}{2}\widehat{f}_{20}^2\right) P_1P_2-P_1\widehat{f}_{30}-P_1^2\widehat{f}_{20}^2\right] \theta _2\\&\quad +P_1P_2\widehat{f}_{20}^2 +P_2\widehat{f}_{30}+\left( \frac{1}{2}\widehat{f}_{20}\widehat{f}_{11} + \frac{1}{2}\widehat{f}_{20}^2\right) P_2^2 ,\\ \end{aligned}$$
$$\begin{aligned} D(\theta )&=\left[ \left( \frac{1}{2}\widehat{f}_{03} + \frac{1}{2}\widehat{f}_{12}\right) P_2 + \left( \widehat{f}_{02}\widehat{f}_{11} + \frac{7}{4}\widehat{f}_{20}\widehat{f}_{02}\right. \right. \\&\quad \left. + \frac{7}{8}\widehat{f}_{11}^2 +\frac{9}{8}\widehat{f}_{20}\widehat{f}_{11} + \frac{1}{8}\widehat{f}_{20}^2\right) P_1P_2 \\&\quad +\left( \frac{1}{2}\widehat{f}_{12} +\frac{1}{2}\widehat{f}_{21}-\widehat{f}_{30}\right) P_1 +\left( \frac{1}{2}\widehat{f}_{02}^2+\frac{9}{8}\widehat{f}_{02}\widehat{f}_{11}\right. \\&\quad \left. +\frac{3}{4}\widehat{f}_{20}\widehat{f}_{02} +\frac{3}{8}\widehat{f}_{11}^2 +\frac{9}{16}\widehat{f}_{20}\widehat{f}_{11}+\frac{1}{8}\widehat{f}_{20}^2\right) P_2^2\\&\quad \left. +\left( \frac{1}{2}\widehat{f}_{20}\widehat{f}_{02}+\frac{1}{4}\widehat{f}_{11}^2 +\frac{5}{4}\widehat{f}_{20}\widehat{f}_{11} -\frac{1}{2}\widehat{f}_{20}^2\right) P_1^2\right] \theta _1\\&\quad +\left[ \frac{1}{2}P_2\widehat{f}_{12} +\left( \frac{1}{2}\widehat{f}_{20}\widehat{f}_{02}+\frac{1}{4}\widehat{f}_{11}^2 -\frac{1}{4}\widehat{f}_{20}\widehat{f}_{11} -\frac{3}{4}\widehat{f}_{20}^2\right) P_1P_2\right. \\&\quad +\left( \frac{3}{4}\widehat{f}_{02}\widehat{f}_{11} {+}\frac{3}{4}\widehat{f}_{20}\widehat{f}_{02} +\frac{1}{4}\widehat{f}_{11}^2+\frac{1}{2}\widehat{f}_{20}\widehat{f}_{11}{+}\frac{1}{8}\widehat{f}_{20}^2\right) P_2^2\\&\left. \quad -\frac{3}{2}P_1\widehat{f}_{30} -\frac{3}{2}P_1^2\widehat{f}_{20}^2\right] \theta _2\\&\quad +\left( 2\widehat{f}_{20}\widehat{f}_{11}+\frac{3}{2}\widehat{f}_{20}^2\right) P_2P_1\\&\quad +\left[ \left( \frac{1}{2}\widehat{f}_{11}+\frac{1}{2}\widehat{f}_{20}\right) \widehat{f}_{11}+\widehat{f}_{20}\widehat{f}_{02} +\frac{1}{4}\widehat{f}_{20}\widehat{f}_{11}\right] P_2^2 \\&\quad +3P_1^2\widehat{f}_{20}^2+3P_1\widehat{f}_{30}.\\ C_1(\theta )&=4\left( \left( P_1+\frac{1}{2}P_2\right) \widehat{f}_{20}^2+\frac{1}{2}P_2\widehat{f}_{11}\widehat{f}_{20}+\widehat{f}_{30}\right) P_2\\&\quad +\left[ \left( -\frac{5}{3}\widehat{f}_{11}^2-\frac{4}{3}\widehat{f}_{20}^2{+}\widehat{f}_{02}\widehat{f}_{11} {-}3\widehat{f}_{02}\widehat{f}_{20}{-}\frac{31}{6}\widehat{f}_{11}\widehat{f}_{20}\right) P_2^2 \right. \\&\quad +\left( -\frac{38}{3}\widehat{f}_{20}^2+2\widehat{f}_{11}\widehat{f}_{20}\right) P_1^2+\left( \frac{4}{3}\widehat{f}_{21}-14\widehat{f}_{30}\right) P_1 \\&\quad +\left( \frac{2}{3}\widehat{f}_{12}-4\widehat{f}_{21} -\frac{5}{3}\widehat{f}_{30}\right) P_2\\&\quad \left. +\left( 2\widehat{f}_{02}\widehat{f}_{20}-\frac{32}{3}\widehat{f}_{11}\widehat{f}_{20} +\widehat{f}_{11}^2 -\frac{34}{3}\widehat{f}_{20}^2\right) P_1P_2\right] \theta _1 \\&\quad +\left[ -4\left( \left( P_1+\frac{1}{2}P_2\right) \times \widehat{f}_{20}^2+\frac{1}{2}P_2\widehat{f}_{11}\widehat{f}_{20} +\widehat{f}_{30}\right) \right. \\&\quad \times \left. \left( P_1-\frac{1}{2}P_2\right) \right] \theta _2,\\ D_1(\theta )&=\left( -\frac{11}{2}\widehat{f}_{11}\widehat{f}_{20}-2\widehat{f}_{02}\widehat{f}_{20}-\widehat{f}_{11}^2-5\widehat{f}_{20}^2\right) P_2^2\\&\quad -6P_1^2\widehat{f}_{20}^2 +\left( -2\widehat{f}_{21}-6\widehat{f}_{30}\right) P_2 \\&\quad -6P_1\widehat{f}_{30} +\left( -6\widehat{f}_{11}\widehat{f}_{20}-11\widehat{f}_{20}^2\right) P_1P_2\\&\quad +\left[ \left( -\frac{15}{4}\widehat{f}_{02}\widehat{f}_{11}-\frac{4}{3}\widehat{f}_{02}\widehat{f}_{20} +\frac{5}{6}\widehat{f}_{11}\widehat{f}_{20} \right. \right. \\&\quad \left. -\widehat{f}_{02}^2-\frac{5}{12}\widehat{f}_{11}^2+\frac{49}{24}\widehat{f}_{20}^2\right) P_2^2\\&\quad + \left( -\widehat{f}_{02}\widehat{f}_{20}-\frac{11}{2}\widehat{f}_{11}\widehat{f}_{20} -\frac{1}{2}\widehat{f}_{11}^2 + 7\widehat{f}_{20}^2\right) P_1^2 \\&\quad +\left( -\widehat{f}_{12}-3\widehat{f}_{21}+10\widehat{f}_{30}\right) P_1\\&\quad +\left( \frac{5}{3}\widehat{f}_{21}+\frac{7}{4}\widehat{f}_{30} -\widehat{f}_{03}-2\widehat{f}_{12}\right) P_2\\&\quad +\left( \frac{3}{4}\widehat{f}_{11}\widehat{f}_{20}-2\widehat{f}_{02}\widehat{f}_{11}\right. \\&\quad \left. \left. -\frac{13}{2}\widehat{f}_{02}\widehat{f}_{20} -\frac{13}{4}\widehat{f}_{11}^2 +\frac{31}{6}\widehat{f}_{20}^2\right) P_1P_2\right] \theta _1\\&+\left[ \left( -\frac{3}{2}\widehat{f}_{02}\widehat{f}_{11} -\frac{1}{2}\widehat{f}_{02}\widehat{f}_{20} +\frac{1}{2}\widehat{f}_{11}\widehat{f}_{20}+\widehat{f}_{20}^2\right) P_2^2 \right. \\&\quad +12 P_1^2 \widehat{f}_{20}^2+12 P_1 \widehat{f}_{30} +\left( \widehat{f}_{21}+\frac{1}{2}\widehat{f}_{30}-\widehat{f}_{12}\right) P_2 \\&\quad \left. +\left( -\widehat{f}_{02} \widehat{f}_{20}+\frac{13}{2}\widehat{f}_{11} \widehat{f}_{20}-\frac{1}{2} \widehat{f}_{11}^2+\frac{15}{2} \widehat{f}_{20}^2\right) P_1 P_2\right] \theta _2.\\ \end{aligned}$$

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Meng, F. & Hu, D. Codimension-one and codimension-two bifurcations in a new discrete chaotic map based on gene regulatory network model. Nonlinear Dyn 110, 1831–1865 (2022). https://doi.org/10.1007/s11071-022-07694-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07694-y

Keywords

Navigation