Skip to main content
Log in

Internal resonance and energy transfer of a cable-stayed beam with a tuned mass damper

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This study considers a novel nonlinear system, namely a cable-stayed beam with a tuned mass damper (cable-beam-TMD model), allowing the description of energy transfer among the beam, cable and TMD. In this system, the vibration of the TMD is involved and one-to-one-to-one internal resonance among the modes of the beam, cable and TMD is investigated when external primary resonance of the beam occurs. Galerkin’s method is utilized to discretize the equations of motion of the beam and cable. In this way, a set of ordinary differential equations are derived, which are solved by the method of multiple time scales. Then the steady-state solutions of the system are obtained by using Newton–Raphson method and continued by pseudo-arclength algorithm. The response curves, time histories and phase portraits are provided to explore the effect of the TMD on the nonlinear behaviors of the model. Meanwhile, a partially coupled system, namely a cable-beam-TMD model ignoring the vibration of the TMD, is also studied. The nonlinear characteristics of the two cases are compared with each other. The results reveal the occurrence of energy transfer among the beam, cable and TMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Ouni, M.H.E., Kahla, N.B., Preumont, A.: Numerical and experimental dynamic analysis and control of a cable stayed bridge under parametric excitation. Eng. Struct. 45, 244–256 (2012)

    Article  Google Scholar 

  2. Xu, L., Hui, Y., Yang, Q.S., Chen, Z.Q., Law, S.S.: Modeling and modal analysis of suspension bridge based on continual formula method. Mech. Syst. Sig. Process. 162, 107855 (2022)

    Article  Google Scholar 

  3. Su, X.Y., Kang, H.J., Guo, T.D.: A novel modeling method for in-plane eigenproblem estimation of the cable-stayed bridges. Appl. Math. Model. 87, 245–268 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Guo, T.D., Kang, H.J., Wang, L.H., Liu, Q.J., Zhao, Y.Y.: Modal resonant dynamics of cables with a flexible support: a modulated diffraction problem. Mech. Syst. Sig. Process. 106, 229–248 (2018)

    Article  Google Scholar 

  5. Han, F., Deng, Z.C., Dan, D.H.: A novel method for dynamic analysis of complex multi-segment cable systems. Mech. Syst. Sig. Process. 142, 106780 (2020)

    Article  Google Scholar 

  6. Zhao, Y.B., Wang, Z.Q., Zhang, X.Y., Chen, L.C.: Effects of temperature variation on vibration of a cable-stayed beam. Int. J. Struct. Stab. Dyn. 17, 1750123 (2017)

    Article  MathSciNet  Google Scholar 

  7. Irvine, H.M.: Cable Structures. Dover Publications, New York (1992)

    Google Scholar 

  8. Hagedorn, P., Schafer, B.: On non-linear free vibrations of an elastic cable. Int. J. Nonlinear Mech. 15(4–5), 333–340 (1980)

    Article  MATH  Google Scholar 

  9. Luongo, A., Rega, G., Vestroni, F.: Planar non-linear free vibrations of an elastic cable. Int. J. Nonlinear Mech. 19(1), 39–52 (1984)

    Article  MATH  Google Scholar 

  10. Rega, G., Benedettini, F.: Planar non-linear oscillations of elastic cables under subharmonic resonance conditions. J. Sound Vib. 132(3), 367–381 (1989)

    Article  MATH  Google Scholar 

  11. Lee, C., Perkins, N.C.: Three-dimensional oscillations of suspended cables involving simultaneous internal resonances. Nonlinear Dyn. 8(1), 45–63 (1995)

    Article  MathSciNet  Google Scholar 

  12. Srinil, N., Rega, G., Chucheepsakul, S.: Large amplitude three-dimensional free vibrations of inclined sagged elastic cables. Nonlinear Dyn. 33(2), 129–154 (2003)

    Article  MATH  Google Scholar 

  13. Zhao, Y.Y., Wang, L.H., Chen, D.L., Jiang, L.Z.: Non-linear dynamic analysis of the two-dimensional simplified model of an elastic cable. J. Sound Vib. 255(1), 43–59 (2002)

    Article  Google Scholar 

  14. Lenci, S., Ruzziconi, L.: Nonlinear phenomena in the single-mode dynamics of a cable-supported beam. Int. J. Bifurcat. Chaos 19(3), 923–945 (2009)

    Article  MathSciNet  Google Scholar 

  15. Peng, J., Xiang, M.J., Wang, L.H., Xie, X.Z., Sun, H.X., Yu, J.D.: Nonlinear primary resonance in vibration control of cable-stayed beam with time delay feedback. Mech. Syst. Sig. Process. 137, 106488 (2020)

    Article  Google Scholar 

  16. Fujino, Y., Warnitchai, P., Pacheco, B.: An experimental and analytical study of auto-parametric resonance in a 3DOF model of cable-stayed-beam. Nonlinear Dyn. 4(2), 111–138 (1993)

    Article  Google Scholar 

  17. Gattulli, V., Lepidi, M.: Localization and veering in the dynamics of cable-stayed bridges. Comput. Struct. 85(21–22), 1661–1678 (2007)

    Article  Google Scholar 

  18. Gattulli, V., Lepidi, M.: Nonlinear interactions in the planar dynamics of cable-stayed beam. Int. J. Solids Struct. 40(18), 4729–4748 (2003)

    Article  MATH  Google Scholar 

  19. Gattulli, V., Morandini, M., Paolone, A.: A parametric analytical model for non-linear dynamics in cable-stayed beam. Earthq. Eng. Struct. Dyn. 31, 1281–1300 (2002)

    Article  Google Scholar 

  20. Gao, D.L., Chen, W.L., Zhang, R.T., Huang, Y.W., Li, H.: Multi-modal vortex- and rain-wind-induced vibrations of an inclined flexible cable. Mech. Syst. Sig. Process. 118, 245–258 (2019)

    Article  Google Scholar 

  21. Krenk, S.: Vibrations of a taut cable with an external damper. J. Appl. Mech. 67(4), 772–776 (2000)

    Article  MATH  Google Scholar 

  22. Krenk, S., Nielsen, S.R.K.: Vibrations of a shallow cable with a viscous damper. Proc. R. Soc. Lond. A. 458, 339–357 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Main, J.A., Jones, N.P.: Free vibrations of taut cable with attached damper. I: linear viscous damper. J. Eng. Mech. ASCE. 128(10), 1062–1071 (2002)

    Article  Google Scholar 

  24. Main, J.A., Jones, N.P.: Free vibrations of taut cable with attached damper. II: nonlinear damper. J. Eng. Mech. ASCE. 128(10), 1072–1081 (2002)

    Article  Google Scholar 

  25. Yu, Z., Xu, Y.L.: Non-linear vibration of cable–damper systems. Part I: formulation. J. Sound Vib. 225(3), 447–463 (1999)

    Article  Google Scholar 

  26. Xu, Y.L., Yu, Z.: Non-linear vibration of cable–damper systems. Part II: application and verification. J. Sound Vib. 225(3), 465–481 (1999)

    Article  Google Scholar 

  27. Wu, W.J., Cai, C.S.: Theoretical exploration of a taut cable and a TMD system. Eng. Struct. 29(6), 962–972 (2007)

    Article  Google Scholar 

  28. Cai, C.S., Wu, W.J., Shi, X.M.: Cable vibration reduction with a hung-on TMD system. Part I: theoretical study. J. Vib. Control. 12(7), 801–814 (2006)

    Article  MATH  Google Scholar 

  29. Wu, W.J., Cai, C.S.: Cable vibration reduction with a hung-on TMD system. Part II: parametric study. J. Vib. Control. 12(8), 881–899 (2006)

    Article  MATH  Google Scholar 

  30. Su, X.Y., Kang, H.J., Guo, T.D.: Modelling and energy transfer in the coupled nonlinear response of a 1:1 internally resonant cable system with a tuned mass damper. Mech. Syst. Sig. Process. 162, 108058 (2022)

    Article  Google Scholar 

  31. Luo, S., Yan, Q.S., Liu, H.J.: Design of mitigation damper with support flexibility for stay cable under bridge deck excitation. Appl. Mech. Mater. 238, 714–718 (2012)

    Article  Google Scholar 

  32. Liang, D., Sun, L.M., Cheng, W.: Effect of girder vibration on performance of cable damper for cable-stayed bridge. Eng. Mech. 25(5), 110–116 (2008). (In Chinese)

    Google Scholar 

  33. Hui, Y., Law, S.S., Zhu, W.D., Wang, Q.: Internal resonance of structure with hysteretic base-isolation and its application for seismic mitigation. Eng. Struct. 229, 111643 (2021)

    Article  Google Scholar 

  34. Luongo, A., Zulli, D.: Mathematical Models of Beams and Cables. Wiley, New York (2013)

    Book  MATH  Google Scholar 

  35. Casciati, F., Ubertini, F.: Nonlinear vibration of shallow cables with semiactive tuned mass damper. Nonlinear Dyn. 53(1–2), 89–106 (2007)

    MATH  Google Scholar 

  36. Pacheco, B.M., Fujino, Y., Sulekh, A.: Estimation curve for modal damping in stay cables with viscous damper. J. Struct. Eng. 119(6), 1961–1979 (1993)

    Article  Google Scholar 

  37. Zhou, P., Li, H.: Modeling and control performance of a negative stiffness damper for suppressing stay cable vibrations. Struct. Control Health Monit. 23(4), 764–782 (2016)

    Article  MathSciNet  Google Scholar 

  38. Johnson, E.A., Baker, G.A., Spencer, B.F., Fujino, Y.: Semiactive Damping of Stay Cables. J Eng Mech. ASCE. 133(1), 1–11 (2007)

    Article  Google Scholar 

  39. Wang, L.H., Peng, J., Zhang, X.Y., Qiao, W.Z., He, K.: Nonlinear resonant response of the cable-stayed beam with one-to-one internal resonance in veering and crossover regions. Nonlinear Dyn. 103, 115–135 (2021)

    Article  Google Scholar 

  40. Lacarbonara, W., Rega, G., Nayfeh, A.H.: Resonant non-linear normal modes. Part I: analytical treatment for structural one-dimensional systems. Int. J. Nonlinear Mech. 38(6), 851–872 (2003)

    Article  MATH  Google Scholar 

  41. Seydel, R.: Practical Bifurcation and Stability Analysis. Springer, New York (2009)

    MATH  Google Scholar 

  42. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics. Wiley, New York (1995)

    Book  MATH  Google Scholar 

  43. Den Hartog, J.P.: Mechanical Vibrations, 4th edn. McGraw-Hill, New York (1956)

    MATH  Google Scholar 

  44. Su, X.Y., Kang, H.J., Chen, J.F., Guo, T.D., Sun, C.S., Zhao, Y.Y.: Experimental study on in-plane nonlinear vibrations of the cable-stayed bridge. Nonlinear Dyn. 98, 1247–1266 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the support of the National Natural Science Foundation of China (11972151 and 11872176).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houjun Kang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The expressions of the Galerkin integral coefficients in Eq. (20) are given as follows

$$ b_{11} = \omega_{b}^{2} = \frac{1}{{\int_{0}^{1} {\phi_{b}^{2} (s)} {\text{d}}s}}\left[ {\frac{{\int_{0}^{1} {\phi_{b} (s)\phi_{b}^{\prime \prime \prime \prime } (s)} {\text{d}}s}}{{\beta_{b}^{4} }} + \gamma_{c} \psi_{c} \phi_{b}^{2} (s_{1} )\sin \theta \cos \theta \int_{0}^{1} {y^{\prime }_{c} (x){\text{d}}x} + \gamma_{c} \psi_{c} \phi_{b}^{2} (s_{1} )\sin^{2} \theta } \right]; $$
$$ b_{12} = - \frac{{\gamma_{c}^{2} \psi_{c} \phi_{b}^{3} {(}s_{1} {\text{)cos}}^{2} \theta \sin \theta }}{{2\int_{0}^{1} {\phi_{b}^{2} {(}s{)}} {\text{d}}s}}; $$
$$ b_{13} = - \frac{{\eta_{b} }}{{\int_{0}^{1} {\phi_{b}^{2} {(}s{)}} {\text{d}}s}}\frac{{\int_{0}^{1} {\phi^{\prime}_{b} {(}s{)}\phi^{\prime}_{b} {(}s{)}} {\text{d}}s\int_{0}^{1} {\phi_{b} {(}s{)}\phi^{\prime\prime}_{b} {(}s{)}} {\text{d}}s}}{{2\beta_{b}^{4} }}; $$
$$ b_{14} = - \frac{{\psi_{c} \phi_{b} {(}s_{1} {\text{)sin}}\theta \int_{0}^{1} {y^{\prime}_{c} } {(}x{)}\phi^{\prime}_{c} {(}x{\text{)d}}x}}{{\int_{0}^{1} {\phi_{b}^{2} {(}s{)}} {\text{d}}s}}; $$
$$ b_{15} = \frac{{\gamma_{c} \psi_{c} \phi_{b}^{2} {(}s_{1} {\text{)sin}}\theta \cos \theta \int_{0}^{1} {\phi^{\prime}_{c} {(}x{)}} {\text{d}}x}}{{\int_{0}^{1} {\phi_{b}^{2} {(}s{)}} {\text{d}}s}}; $$
$$ b_{16} = - \frac{{\psi_{c} \phi_{b} {(}s_{1} {\text{)sin}}\theta \int_{0}^{1} {\phi^{\prime}_{c} {(}x{)}\phi^{\prime}_{c} {(}x{)}} {\text{d}}x}}{{2\int_{0}^{1} {\phi_{b}^{2} {(}s{)}} {\text{d}}s}}; $$
$$ F = \int_{0}^{1} {F_{1} (s)\phi_{b} {(}s{)}} {\text{d}}s; $$

\(b_{17} = \frac{ - F}{{\int_{0}^{1} {\phi_{b}^{2} {(}s{)}} {\text{d}}s}}.\)

The expressions of the Galerkin integral coefficients in Eq. (21) are given as follows

$$ b_{21} = \omega_{c}^{2} = \frac{1}{{\int_{0}^{1} {\phi_{c}^{2} {(}x{)}} {\text{d}}x}}\left[ {K_{d} \phi_{c}^{2} {(}l_{1} {)} - \frac{{\lambda_{c} \int_{0}^{1} {y^{\prime}_{c} (x)\phi^{\prime}_{c} (x){\text{d}}x} \int_{0}^{1} {y^{\prime\prime}_{c} (x)\phi_{c} (x){\text{d}}x} }}{{\beta_{c}^{2} }} - \int_{0}^{1} {\frac{{\phi_{c} (x)\phi^{\prime\prime}_{c} (x)}}{{\beta_{c}^{2} }}} {\text{d}}x} \right]; $$
$$ b_{22} = \frac{1}{{\int_{0}^{1} {\phi_{c}^{2} {(}x{)}} {\text{d}}x}}\left[ {\mu_{c} \int_{0}^{1} {\phi_{c}^{2} {(}x{)}} {\text{d}}x + C_{d} \phi_{c}^{2} {(}l_{1} {)}} \right]; $$
$$ b_{23} = \frac{1}{{\int_{0}^{1} {\phi_{c}^{2} {(}x{)}} {\text{d}}x}}\left[ { - \gamma_{c} \mu_{c} \phi_{b} (s_{1} )\cos \theta \int_{0}^{1} {x\phi_{c} (x){\text{d}}x} - C_{d} l_{1} \gamma_{c} \phi_{b} (s_{1} )\phi_{c} (l_{1} )\cos \theta } \right] $$
$$ b_{24} = - \frac{{\gamma_{c} \phi_{b} (s_{1} )\cos \theta \int_{0}^{1} {x\phi_{c} (x){\text{d}}x} }}{{\int_{0}^{1} {\phi_{c}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ b_{25} = \frac{1}{{\int_{0}^{1} {\phi_{c}^{2} {(}x{)}} {\text{d}}x}}\left[ {\frac{{\lambda_{c} \gamma_{c} \phi_{b} (s_{1} )\cos \theta \int_{0}^{1} {y^{\prime}_{c} (x){\text{d}}x} \int_{0}^{1} {y^{\prime\prime}_{c} (x)\phi_{c} (x){\text{d}}x} }}{{\beta_{c}^{2} }} + \frac{{\lambda_{c} \gamma_{c} \phi_{b} (s_{1} )\sin \theta \int_{0}^{1} {y^{\prime\prime}_{c} (x)\phi_{c} (x){\text{d}}x} }}{{\beta_{c}^{2} }} - K_{d} l_{1} \gamma_{c} \phi_{b} (s_{1} )\phi_{c} {(}l_{1} {\text{)cos}}\theta } \right]; $$
$$ b_{26} = - \frac{1}{{\int_{0}^{1} {\phi_{c}^{2} (x)} {\text{d}}x}}\frac{{\lambda_{c} \gamma_{c}^{2} \phi_{b}^{2} (s_{1} )\cos^{2} \theta \int_{0}^{1} {y^{\prime\prime}_{c} (x)\phi_{c} (x){\text{d}}x} }}{{2\beta_{c}^{2} }}; $$
$$ b_{{27}} = \frac{1}{{\int_{0}^{1} {\phi _{c}^{2} (x)} {\text{d}}x}}\left[ {\frac{{\lambda _{c} \gamma _{c} \phi _{b} (s_{1} )\cos \theta \int_{0}^{1} {\phi _{c}^{\prime } (x){\text{d}}x} \int_{0}^{1} {y_{c}^{{\prime \prime }} (x)\phi _{c} (x){\text{d}}x} }}{{\beta _{c}^{2} }} + \frac{{\lambda _{c} \gamma _{c} \phi _{b} (s_{1} )\cos \theta \int_{0}^{1} {y_{c}^{\prime } (x){\text{d}}x\int_{0}^{1} {\phi _{c} (x)\phi _{c}^{{\prime \prime }} (x){\text{d}}x} } }}{{\beta _{c}^{2} }}} \right.\left. {\quad + \frac{{\lambda _{c} \gamma _{c} \phi _{b} (s_{1} )\sin \theta \int_{0}^{1} {\phi _{c} (x)\phi _{c}^{{\prime \prime }} (x){\text{d}}x} }}{{\beta _{c}^{2} }}} \right]; $$
$$ b_{28} = \frac{1}{{\int_{0}^{1} {\phi_{c}^{2} {(}x{)}} {\text{d}}x}}\left[ { - \frac{{\lambda_{c} \int_{0}^{1} {\phi^{\prime}_{c} (x)\phi^{\prime}_{c} (x){\text{d}}x} \int_{0}^{1} {y^{\prime\prime}_{c} (x)\phi_{c} (x){\text{d}}x} }}{{2\beta_{c}^{2} }} - \frac{{\lambda_{c} \int_{0}^{1} {y^{\prime}_{c} (x)\phi^{\prime}_{c} (x){\text{d}}x} \int_{0}^{1} {\phi^{\prime\prime}_{c} (x)\phi_{c} (x){\text{d}}x} }}{{\beta_{c}^{2} }}} \right]; $$
$$ b_{29} = - \frac{1}{{\int_{0}^{1} {\phi_{c}^{2} {(}x{)}} {\text{d}}x}}\frac{{\lambda_{c} \gamma_{c}^{2} \phi_{b}^{2} (s_{1} )\cos^{2} \theta \int_{0}^{1} {\phi_{c} (x)\phi^{\prime\prime}_{c} (x){\text{d}}x} }}{{2\beta_{c}^{2} }}; $$
$$ b_{210} = \frac{1}{{\int_{0}^{1} {\phi_{c}^{2} {(}x{)}} {\text{d}}x}}\frac{{\lambda_{c} \gamma_{c} \phi_{b} (s_{1} )\cos \theta \int_{0}^{1} {\phi^{\prime}_{c} (x){\text{d}}x\int_{0}^{1} {\phi_{c} (x)\phi^{\prime\prime}_{c} (x){\text{d}}x} } }}{{\beta_{c}^{2} }}; $$
$$ b_{211} = - \frac{1}{{\int_{0}^{1} {\phi_{c}^{2} {(}x{)}} {\text{d}}x}}\frac{{\lambda_{c} \int_{0}^{1} {\phi^{\prime}_{c} (x)\phi^{\prime}_{c} (x){\text{d}}x\int_{0}^{1} {\phi_{c} (x)\phi^{\prime\prime}_{c} (x){\text{d}}x} } }}{{2\beta_{c}^{2} }}; $$
$$ b_{212} = - \frac{{K_{d} \phi_{c} (l_{1} )}}{{\int_{0}^{1} {\phi_{c}^{2} {(}x{)}} {\text{d}}x}}; $$
$$ b_{213} = - \frac{{C_{d} \phi_{c} (l_{1} )}}{{\int_{0}^{1} {\phi_{c}^{2} {(}x{)}} {\text{d}}x}}; $$

The expressions of the Galerkin integral coefficients in Eq. (22) are given as follows

$$ b_{31} = 2\xi_{d} \omega_{d} ; $$
$$ b_{32} = l_{1} \gamma_{c} \omega_{d}^{2} \phi_{b} (s_{1} )\cos \theta ; $$
$$ b_{33} = - \omega_{d}^{2} \phi_{c} (l_{1} ); $$
$$ b_{34} = 2l_{1} \gamma_{c} \xi_{d} \omega_{d} \phi_{b} (s_{1} )\cos \theta ; $$
$$ b_{35} = - 2\xi_{d} \omega_{d} \phi_{c} (l_{1} ); $$

Appendix B

The expressions of the coefficients in Eq. (47) are defined as follows

$$ \Gamma_{{{11}}} { = }\frac{{b_{14} b_{25} }}{{4\omega_{b} \omega_{c} }}; $$
$$ \Gamma_{{{12}}} { = } - \frac{{b_{14} \sigma_{2} }}{{2\omega_{b} }}; $$
$$ \Gamma_{{{13}}} { = }\frac{{b_{14} b_{212} }}{{4\omega_{b} \omega_{c} }}; $$
$$ \Gamma_{{{14}}} { = } - 3b_{13} + \frac{{10b_{12}^{2} }}{{3\omega_{b}^{2} }} + \frac{{2b_{15} b_{26} }}{{\omega_{c}^{2} }} - \frac{{b_{15} b_{26} }}{{4\omega_{b}^{2} - \omega_{c}^{2} }}; $$
$$ \Gamma_{{{15}}} { = }\frac{{2b_{12} b_{15} }}{{\omega_{b}^{2} }} - \frac{{b_{15} b_{27} }}{{\omega_{b} (\omega_{b} - 2\omega_{c} )}} + \frac{{4b_{16} b_{26} }}{{\omega_{c}^{2} }} + \frac{{2b_{12} b_{15} }}{{(2\omega_{b} - \omega_{c} )\omega_{c} }} - \frac{{2b_{12} b_{15} }}{{\omega_{c} (2\omega_{b} + \omega_{c} )}} - \frac{{b_{15} b_{27} }}{{\omega_{b} (\omega_{b} + 2\omega_{c} )}}; $$
$$ \Gamma_{{{16}}} { = } - \frac{{2b_{16} b_{27} }}{{\omega_{b} (\omega_{b} - 2\omega_{c} )}} - \frac{{b_{15} b_{28} }}{{3\omega_{c}^{2} }} + \frac{{b_{15}^{2} }}{{(2\omega_{b} - \omega_{c} )\omega_{c} }} - \frac{{2b_{12} b_{16} }}{{ - \omega_{b}^{2} + 4\omega_{c}^{2} }}; $$
$$ \Gamma_{{{17}}} { = } - \frac{{b_{12} b_{15} }}{{3\omega_{b}^{2} }} - \frac{{b_{15} b_{27} }}{{\omega_{b} (\omega_{b} - 2\omega_{c} )}} + \frac{{2b_{12} b_{15} }}{{(2\omega_{b} - \omega_{c} )\omega_{c} }} - \frac{{2b_{16} b_{26} }}{{4\omega_{b}^{2} - \omega_{c}^{2} }}; $$
$$ \Gamma_{{{18}}} { = }\frac{{4b_{12} b_{16} }}{{\omega_{b}^{2} }} - \frac{{2b_{16} b_{27} }}{{\omega_{b} (\omega_{b} - 2\omega_{c} )}} + \frac{{2b_{15} b_{28} }}{{\omega_{c}^{2} }} + \frac{{b_{15}^{2} }}{{(2\omega_{b} - \omega_{c} )\omega_{c} }} - \frac{{b_{15}^{2} }}{{\omega_{c} (2\omega_{b} + \omega_{c} )}} - \frac{{2b_{16} b_{27} }}{{\omega_{b} (\omega_{b} + 2\omega_{c} )}}; $$
$$ \Gamma_{{{19}}} { = }\frac{{2b_{15} b_{16} }}{{\omega_{b}^{2} }} + \frac{{10b_{16} b_{28} }}{{3\omega_{c}^{2} }} - \frac{{b_{15} b_{16} }}{{ - \omega_{b}^{2} + 4\omega_{c}^{2} }}; $$

The expressions of the coefficients in Eq. (48) are defined as follows

$$ \Gamma_{{{21}}} { = }b_{24} \omega_{b}^{2} + \frac{{b_{25} \sigma_{2} }}{{2\omega_{c} }} + \frac{{b_{212} b_{32} }}{{4\omega_{c} \omega_{d} }}; $$
$$ \Gamma_{{{22}}} { = }\frac{{b_{14} b_{25} }}{{4\omega_{b} \omega_{c} }} + \frac{{b_{212} b_{33} }}{{4\omega_{c} \omega_{d} }}; $$
$$ \Gamma_{{{23}}} { = }\frac{{b_{212} \sigma_{3} }}{{2\omega_{c} }}; $$
$$ \Gamma_{{{24}}} { = }\frac{{10b_{12} b_{26} }}{{3\omega_{b}^{2} }} + \frac{{2b_{26} b_{27} }}{{\omega_{c}^{2} }} - \frac{{b_{26} b_{27} }}{{4\omega_{b}^{2} - \omega_{c}^{2} }}; $$
$$ \Gamma_{{{25}}} { = } - 2b_{29} + \frac{{2b_{12} b_{27} }}{{\omega_{b}^{2} }} - \frac{{b_{27}^{2} }}{{\omega_{b} (\omega_{b} - 2\omega_{c} )}} + \frac{{4b_{26} b_{28} }}{{\omega_{c}^{2} }} + \frac{{2b_{15} b_{26} }}{{(2\omega_{b} - \omega_{c} )\omega_{c} }} - \frac{{2b_{15} b_{26} }}{{\omega_{c} (2\omega_{b} + \omega_{c} )}} - \frac{{b_{27}^{2} }}{{\omega_{b} (\omega_{b} + 2\omega_{c} )}}; $$
$$ \Gamma_{{{26}}} { = } - b_{210} - \frac{{2b_{27} b_{28} }}{{\omega_{b} (\omega_{b} - 2\omega_{c} )}} - \frac{{b_{27} b_{28} }}{{3\omega_{c}^{2} }} + \frac{{b_{15} b_{27} }}{{(2\omega_{b} - \omega_{c} )\omega_{c} }} - \frac{{2b_{16} b_{26} }}{{ - \omega_{b}^{2} + 4\omega_{c}^{2} }}; $$
$$ \Gamma_{{{27}}} { = } - b_{29} - \frac{{b_{12} b_{27} }}{{3\omega_{b}^{2} }} - \frac{{b_{27}^{2} }}{{\omega_{b} (\omega_{b} - 2\omega_{c} )}} + \frac{{2b_{15} b_{26} }}{{(2\omega_{b} - \omega_{c} )\omega_{c} }} - \frac{{2b_{26} b_{28} }}{{4\omega_{b}^{2} - \omega_{c}^{2} }}; $$
$$ \Gamma_{{{28}}} { = } - 2b_{210} + \frac{{4b_{16} b_{26} }}{{\omega_{b}^{2} }} - \frac{{2b_{27} b_{28} }}{{\omega_{b} (\omega_{b} - 2\omega_{c} )}} + \frac{{2b_{27} b_{28} }}{{\omega_{c}^{2} }} + \frac{{b_{15} b_{27} }}{{(2\omega_{b} - \omega_{c} )\omega_{c} }} - \frac{{b_{15} b_{27} }}{{\omega_{c} (2\omega_{b} + \omega_{c} )}} - \frac{{2b_{27} b_{28} }}{{\omega_{b} (\omega_{b} + 2\omega_{c} )}}; $$
$$ \Gamma_{{{29}}} { = } - 3b_{211} + \frac{{2b_{16} b_{27} }}{{\omega_{b}^{2} }} + \frac{{10b_{28}^{2} }}{{3\omega_{c}^{2} }} - \frac{{b_{16} b_{27} }}{{ - \omega_{b}^{2} + 4\omega_{c}^{2} }}; $$

The expressions of the coefficients in Eq. (49) are defined as follows

$$ \Gamma_{{{31}}} { = }\frac{{b_{32} \sigma_{2} }}{{2\omega_{d} }} - \frac{{b_{32} \sigma_{3} }}{{2\omega_{d} }} + \frac{{b_{25} b_{33} }}{{4\omega_{c} \omega_{d} }}; $$
$$ \Gamma_{{{32}}} { = } - \frac{{b_{33} \sigma_{3} }}{{2\omega_{d} }} + \frac{{b_{14} b_{32} }}{{4\omega_{b} \omega_{d} }}; $$
$$ \Gamma_{{{33}}} { = }\frac{{b_{212} b_{33} }}{{4\omega_{c} \omega_{d} }}. $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, X., Kang, H., Guo, T. et al. Internal resonance and energy transfer of a cable-stayed beam with a tuned mass damper. Nonlinear Dyn 110, 131–152 (2022). https://doi.org/10.1007/s11071-022-07644-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07644-8

Keywords

Navigation