Skip to main content
Log in

Qualitative analysis of the response regimes and triggering mechanism of bistable NES

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The main focus of this study is the development of an adapted complex variable method with respect to the equilibrium point in bistable nonlinear energy sink (NES), which is mainly investigated in the vicinity of 1:1 resonance. A simplified chaos trigger model is established to describe the distance between the stable phase cycle and the pseudo-separatrix. An analytical expression can predict the excitation threshold for chaos occurrence. The relative positions between the chaos trigger threshold line and the slow invariant manifold structure can interpret the distribution of response regimes under growing harmonic excitation. The degeneration of the response regimes can be demonstrated by the qualitative analysis method, which helps to classify the bistable NES. The experiment confirms the analytical result of intra-well oscillation in the frequency domain. The characteristic response regimes of weak, modest, and strong bistable NES are identified by the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the article.

References

  1. Vakakis, A.F., Gendelman, O.V., Bergman, L.A., McFarland, M.D., Kerschen, G., Lee, Y.S.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems. Springer, Amsterdam (2009)

    MATH  Google Scholar 

  2. Vakakis, A.F., Gendelman, O.V.: Energy pumping in nonlinear mechanical oscillators: partii-resonance capture. J. Appl. Mech. 68(1), 42–48 (2001)

    MathSciNet  MATH  Google Scholar 

  3. Gendelman, O.V., Manevitch, L.I., Vakakis, A., M’Closkey, R.: Energy pumping in nonlinear mechanical oscillators: part I—dynamics of the under-lying Hamiltonian systems. ASME J. Appl. Mech. 68(1), 34–41 (2001)

  4. Starosvetsky, Y., Gendelman, O.V.: Strongly modulated response in forced 2DOF oscillatory system with essential mass and potential asymmetry. Physica D 237(13), 1719–1733 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Starosvetsky, Y., Gendelman, O.: Response regimes of linear oscillator coupled to nonlinear energy sink with harmonic forcing and frequency detuning. J. Sound Vib. 315(3), 746–765 (2008)

    Google Scholar 

  6. Starosvetsky, Y., Gendelman, O.: Attractors of harmonically forced linear oscillator with attached nonlinear energy sink. II: optimization of a nonlinearvibration absorber. Nonlinear Dyn. 51(1–2), 47–57 (2008)

    MATH  Google Scholar 

  7. Vaurigaud, B., Savadkoohi, A.T., Lamarque, C.H.: Targeted energy transfer with parallel nonlinear energy sinks. Part I: design theory and numerical results. Nonlinear Dyn. 66(4), 763–780 (2011)

    MathSciNet  MATH  Google Scholar 

  8. McFarland, D.M., Kerschen, G., Kowtko, J.J., et al.: Experimental investigation of targeted energy transfers in strongly and nonlinearly coupled oscillators. J. Acoust. Soc. Am. 118(2), 791–799 (2005)

    Google Scholar 

  9. Bellet, R., Cochelin, B., Herzog, P., et al.: Experimental study of targeted energy transfer from an acoustic system to a nonlinear membrane absorber. J. Sound Vib. 329(14), 2768–2791 (2020)

    Google Scholar 

  10. AL-Shudeifat, M.A.: Nonlinear energy sinks with piecewise-linear nonlinearities. Int. J. Nonlinear Mech. 14(12), 124501 (2019)

    Google Scholar 

  11. Saeed, A.S., AL-Shudeifat, M.A., Vakakis, A.F.: Rotary-oscillatory nonlinear energy sink of robust performance. Int. J. Nonlinear Mech. 117, 103249 (2019)

    Google Scholar 

  12. Li, T., Gourc, E., Seguy, S., et al.: Dynamics of two vibro-impact nonlinear energy sinks in parallel under periodic and transient excitations. Int. J. Nonlinear Mech. 90, 100–110 (2017)

    Google Scholar 

  13. Qiu, D., Seguy, S., Paredes, M.: Design criteria for optimally tuned vibro-impact nonlinear energy sink. J. Sound Vib. 442, 497–513 (2019)

    Google Scholar 

  14. Qiu, D., Seguy, S., Paredes, M.: Tuned nonlinear energy sink with conical spring: design theory and sensitivity analysis. J. Mech. Des. 140(1), 011404 (2018)

    Google Scholar 

  15. Al-Shudeifat, M.A.: Highly efficient nonlinear energy sink. Nonlinear Dyn. 76(4), 1905–1920 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Al-Shudeifat, M.A., Wierschem, N., Quinn, D.D., et al.: Numerical and experimental investigation of a highly effective single-sided vibro-impact non-linear energy sink for shock mitigation. Int. J. Nonlinear Mech. 52, 96–109 (2013)

    Google Scholar 

  17. Chen, Y.Y., Qian, Z.C., Zhao, W., et al.: A magnetic bi-stable nonlinear energy sink for structural seismic control. J. Sound Vib. 473, 115233 (2020)

    Google Scholar 

  18. Gourc, E., Seguy, S., Michon, G., et al.: Quenching chatter instability in turning process with a vibro-impact nonlinear energy sink. J. Sound Vib. 355, 392–406 (2015)

    Google Scholar 

  19. Manevitch, L.I.: The description of localized normal modes in a chain of nonlinear coupled oscillators using complex variables. Nonlinear Dyn. 25(1), 95–109 (2001)

    MathSciNet  MATH  Google Scholar 

  20. Manevitch, L.I., Sigalov, G., Romeo, F., et al.: Dynamics of a linear oscillator coupled to a bistable light attachment: analytical study. J. Appl. Mech. 81(4), 041011 (2014)

    Google Scholar 

  21. Romeo, F., Sigalov, G., Bergman, L.A., et al.: Dynamics of a linear oscillator coupled to a bistable light attachment: numerical study. J. Comput. Nonlinear Dyn. 10(1), 011007 (2015)

    Google Scholar 

  22. Bitar, D., Savadkoohi, A.T., Lamarque, C.H., et al.: Extended complexification method to study nonlinear passive control. Nonlinear Dyn. 99(2), 1433–1450 (2020)

    MATH  Google Scholar 

  23. Qiu, D., Li, T., Seguy, S., et al.: Efficient targeted energy transfer of bistable nonlinear energy sink: application to optimal design. Nonlinear Dyn. 92(2), 443–461 (2018)

    Google Scholar 

  24. Qiu, D., Paredes, M., Seguy, S.: Variable pitch spring for nonlinear energy sink: application to passive vibration control. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 233, 611–622 (2019)

    Google Scholar 

  25. Wu, Z., Seguy, S., Paredes, M.: Basic constraints for design optimization of cubic and bistable NES. J. Vib. Acoust. 144, 1–51 (2021)

    Google Scholar 

  26. Fang, X., Wen, J., Yin, J., et al.: Highly efficient continuous bistable nonlinear energy sink composed of a cantilever beam with partial constrained layer damping. Nonlinear Dyn. 87(4), 2677–2695 (2017)

    Google Scholar 

  27. Benacchio, S., Malher, A., Boisson, J., et al.: Design of a magnetic vibration absorber with tunable stiffnesses. Nonlinear Dyn. 85(2), 893–911 (2016)

    MathSciNet  Google Scholar 

  28. Pennisi, G., Mann, B.P., Naclerio, N., et al.: Design and experimental study of a nonlinear energy sink coupled to an electromagnetic energy harvester. J. Sound Vib. 437, 340–357 (2018)

    Google Scholar 

  29. Pirrera, A., Avitabile, D., Weaver, P.M.: Bistable plates for morphing structures: a refined analytical approach with high-order polynomials. Int. J. Solids Struct. 47(25–26), 3412–3425 (2010)

    MATH  Google Scholar 

  30. Johnson, D.R., Thota, M., Semperlotti, F., et al.: On achieving high and adaptable damping via a bistable oscillator. Smart Mater. Struct. 22(11), 115027 (2013)

    Google Scholar 

  31. Iurasov, V., Mattei, P.O.: Bistable nonlinear damper based on a buckled beam configuration. Nonlinear Dyn. 99(3), 1801–1822 (2020)

    Google Scholar 

  32. Romeo, F., Manevitch, L.I., Bergman, L.A., et al.: Transient and chaotic low-energy transfers in a system with bistable nonlinearity. Chaos 25(5), 053109 (2015)

    MathSciNet  MATH  Google Scholar 

  33. Farshidianfar, A., Saghafi, A.: Global bifurcation and chaos analysis in nonlinear vibration of spur gear systems. Nonlinear Dyn. 75(4), 783–806 (2014)

    MathSciNet  Google Scholar 

  34. Dekemele, K., Van Torre, P., Loccufier, M.: Performance and tuning of a chaotic bi-stable NES to mitigate transient vibrations. Nonlinear Dyn. 98(3), 1831–1851 (2019)

    Google Scholar 

  35. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica D 16(3), 285–317 (1985)

    MathSciNet  MATH  Google Scholar 

  36. Govorukhin, V.: Calculation Lyapunov exponents for ode. https://nl.mathworks.com/matlabcentral/fileexchange/4628-calculation-lyapunov-exponents-for-ode (2004)

Download references

Acknowledgements

The authors acknowledge the Chinese Scholarship Council under Grant No. 201801810128 for their financial support. The authors declare that they have no conflicts of interest to declare that are relevant to the content of this article.

Funding

The authors acknowledge the Chinese Scholarship Council under Grant No. 201801810128 for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenhang Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The authors declare that all procedures performed in this study were in accordance with the ethical standards of COPE. This manuscript is only submitted to the journal ‘Nonlinear Dynamics’. The authors declare that this study is complete, unsplit and original.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Seguy, S. & Paredes, M. Qualitative analysis of the response regimes and triggering mechanism of bistable NES. Nonlinear Dyn 109, 323–352 (2022). https://doi.org/10.1007/s11071-022-07609-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07609-x

Keywords

Navigation