Skip to main content
Log in

On spatial synchronisation as a manifestation of irregular energy cascades in continuous media under the transition to criticality

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We investigate the effects of spatial synchronisation occurring in stochastic dynamical systems before extreme events. Unlike the existing studies focused on the mutual coherence of two different time series, we consider multivariate data of the same nature with an arbitrary number of observables, which is typical for problems of continuous media. We show that both Fourier- and wavelet-based coherence analysis methods allow accurate prediction of extreme events independently of the specific nonlinear mechanism(s) driving a complex system to a catastrophe. We also discuss the physical foundations underlying the synchronisation of motion of the system’s constituents on the eve of extreme events by relating the different mechanisms of the transition to criticality through synchronisation with irregularities appearing in the spectral energy cascades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 11
Fig 12
Fig 13
Fig 14
Fig 15
Fig 16
Fig 17
Fig 18
Fig 19
Fig 20
Fig 21
Fig 22

Similar content being viewed by others

Data Availability Statement

The data used in this study are openly available in [18, 19].

Notes

  1. As mentioned above, we understand synchronisation in a different, albeit related, sense than that used in the studies on chaotic dynamics, where it is often understood as an adjustment of the behaviour of the oscillators representing a complex system [6]. Yet, we understand chaoticity in the way accepted in fractal analysis of time series, namely as a quantity inverse to complexity of the dynamics of a time series \(x(t)\sim t^{H(t)}\) quantified by a fractal exponent H; in this way a time series with, e.g. \(H = 0.5\), a white noise, is said to be more chaotic (or of degraded fractal complexity [3]) than that with \(H = 1\), a pink noise. This chaoticity should not be confused with that referred to when one is dealing with the stability of dynamical systems in the context of Lyapunov exponents.

  2. In the cited paper the notation \({\widetilde{H}}_{DFA}\) instead of the current paper’s H was used, aimed to distinguish the modified DFA-based exponent from conventional DFA’s \(H_{DFA}\) and Mandelbrot’s H, with which \({\widetilde{H}}_{DFA}\) was compared. In this article, we have omitted the subindex and the tilde as unnecessary.

References

  1. Lyubushin, A.A.: Connection of Seismic Noise Properties in Japan and California with Irregularity of Earth’s Rotation. Pure Appl. Geophys. 177, 4677 (2020)

    Article  Google Scholar 

  2. Mäkikallio, T.H., Huikuri, H.V., Mäkikallio, A., Sourander, L.B., Mitrani, R.D., Castellanos, A., Myerburg, R.J.: Prediction of sudden cardiac death by fractal analysis of heart rate variability in elderly subjects. J. Am. Coll. Cardiol. 37, 1395 (2001)

    Article  Google Scholar 

  3. Goldberger, A.L., Amaral, L.A.N., Hausdorff, J.M., Ivanov, P.C., Peng, C.K., Stanley, H.E.: Fractal dynamics in physiology: Alterations with disease and aging. Proc. Natl. Acad. Sci. U.S.A. 99, 2466 (2002)

    Article  Google Scholar 

  4. Anifrani, J.C., Floc’h, C.L., Sornette, D., Souillard, B.: Universal Log-Periodic Correction to Renormalization Group Scaling for Rupture Stress Prediction From Acoustic Emissions. J. Phys. I France 5, 631 (1995)

    Article  Google Scholar 

  5. Jiang, Z.Q., Xie, W.J., Zhou, W.X., Sornette, D.: Multifractal analysis of financial markets: A review. Rep. Prog. Phys. 82, 125901 (2019)

    Article  MathSciNet  Google Scholar 

  6. Sornette, D.: Critical Phenomena in Natural Sciences. Springer, Berlin, Heidelberg (2006)

    MATH  Google Scholar 

  7. Kantelhardt, J.W.: Fractal and multifractal time series In: Encyclopedia of Complexity and Systems Science, ed. by R.A. Meyers (Springer, New York, 2009)

  8. Lyubushin, A.A.: Multifractal Parameters of Low-Frequency Microseisms. In: de Rubeis, V., Czechowski, Z., Teisseyre, R. (eds.) Synchronization and Triggering: from Fracture to Earthquake Processes, pp. 253–272. Springer, Berlin, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Mandelbrot, B.B.: Fractals and Scaling in Finance: Discontinuity, Concentration, Risk. Springer, New York, USA (1997)

    Book  Google Scholar 

  10. Koscielny-Bunde, E., Kantelhardt, J.W., Braun, P., Bunde, A., Havlin, S.: Long-term persistence and multifractality of river runoff records: detrended fluctuation studies. J. Hydrol. 322, 120 (2006)

    Article  Google Scholar 

  11. Ivanov, P.C., Amaral, L.A.N., Goldberger, A.L., Havlin, S., Rosenblum, M.G., Struzik, Z.R., Stanley, H.E.: Multifractality in human heartbeat dynamics. Nature 399, 461 (1999)

    Article  Google Scholar 

  12. Filatov, D.M., Lyubushin, A.A.: Stochastic dynamical systems always undergo trending mechanisms of transition to criticality. Phys. A: Stat. Mech. Appl. 527, 121309 (2019)

    Article  Google Scholar 

  13. Struzik, Z.R., Hayano, J., Sakata, S., Kwak, S., Yamamoto, Y.: 1/f scaling in heart rate requires antagonistic autonomic control. Phys. Rev. E 70, 050901 (2004)

    Article  Google Scholar 

  14. Filatov, D.M., Lyubushin, A.A.: Precursory analysis of GPS time series for seismic hazard assessment. Pure Appl. Geophys. 177, 509 (2020)

    Article  Google Scholar 

  15. Grinsted, A., Moore, J.C., Jevrejeva, S.: Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlin. Processes Geophys. 11, 561 (2004)

    Article  Google Scholar 

  16. Khandoker, A.H., Karmakar, C., Palaniswami, M.: Analysis of coherence between sleep EEG and ECG signals during and after obstructive sleep apnea events In: Proc. Ann. Int. Conf. IEEE Eng. Med. Biol. Soc. (2008), pp. 3876–3879. PubMed PMID: 19163559

  17. Sceptica Scientific Ltd, Data Science Repository, https://github.com/ScepticaScientific/Data-Science

  18. Blewitt, G., Hammond, W.C., Kreemer, C.: Harnessing the GPS data explosion for interdisciplinary science. EOS 99, (2018). https://doi.org/10.1029/2018EO104623

  19. Incorporated Research Institutions for Seismology (IRIS), Data Management Center Web Services, http://service.iris.edu/fdsnws/dataselect/1

  20. US Geological Survey, Search Earthquake Catalog, https://earthquake.usgs.gov/earthquakes/search

  21. Scholz, C.H.: The Mechanics of Earthquakes and Faulting. Cambridge University Press, New York (2002)

    Book  Google Scholar 

  22. Peng, C.K., Hausdorff, J.M., Mietus, J.E., Havlin, S., Stanley, H.E., Goldberger, A.L.: Fractals. In: Shlesinger, M.F., Zaslavsky, G.M., Frisch, U. (eds.) physiological control: from heart beat to gait in Lévy Flights and Related Topics in Physics, pp. 313–330. Springer, Berlin, Heidelberg (1995)

    MATH  Google Scholar 

  23. Webb, S.C.: Broadband seismology and noise under the ocean. Rev. Geophys. 36, 105 (1998)

    Article  Google Scholar 

  24. Noguchi, S., Maeda, T., Furumura, T.: Ocean-influenced Rayleigh waves from outer-rise earthquakes and their effects on durations of long-period ground motion. Geophys. J. Int. 205, 1099 (2016)

    Article  Google Scholar 

  25. Tonegawa, T., Fukao, Y., Takahashi, T., Obana, K., Kodaira, S., Kaneda, Y.: Ambient seafloor noise excited by earthquakes in the Nankai subduction zone. Nat. Commun. 6, 6132 (2015)

    Article  Google Scholar 

  26. Skiba, Y.N.: Mathematical Problems of the Dynamics of Incompressible Fluid on a Rotating Sphere. Springer, Cham, Switzerland (2017)

  27. Cardy, J., Falkovich, G., Gawedzki, K.: Non-equilibrium Statistical Mechanics and Turbulence. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  28. Falkovich, G.: Cascade and scaling. Scholarpedia 3, (2008). https://doi.org/10.4249/scholarpedia.6088

  29. Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis: Forecasting and Control. Prentice-Hall Inc., USA (1994)

    MATH  Google Scholar 

  30. Bose, E., Hravnak, M., Sereika, S.M.: Vector autoregressive (VAR) models and granger causality in time series analysis in nursing research: dynamic changes among vital signs prior to cardiorespiratory instability events as an example. Nurs. Res. 66, 12 (2017)

    Article  Google Scholar 

  31. Keng, C.Y., Shan, F.P., Shimizu, K., Imoto, T., Lateh, H., Peng, K.S.: Application of vector autoregressive model for rainfall and groundwater level analysis. AIP Conf. Proc. 1870, 060013 (2017)

  32. Lu, F., Zheng, Y., Cleveland, H., Burton, C., Madigan, D.: Bayesian hierarchical vector autoregressive models for patient-level predictive modeling. PLoS ONE 13, e0208082 (2018)

    Article  Google Scholar 

  33. Filatov, D.M.: A method for identification of critical states of open stochastic dynamical systems based on the analysis of acceleration. J. Stat. Phys. 165, 681 (2016)

    Article  MathSciNet  Google Scholar 

  34. Lyubushin, A.A.: Analysis of canonical coherences in the problems of geophysical monitoring. Izv. Phys. Solid Earth 34, 52 (1998)

    Google Scholar 

  35. Mathworks Inc., MATLAB Wavelet Coherence and Cross-Spectrum, https://www.mathworks.com/help/wavelet/ref/wcoherence.html

Download references

Acknowledgements

The author thanks Prof. Yuri N. Skiba (UNAM, Mexico) for useful discussions on the energy cascades in fluids. Comments of the anonymous reviewer #1 are also deeply appreciated—they have allowed to essentially improve the original paper in various aspects.

Funding

The author declares that no funds, grants or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The whole research has been carried out by the author.

Corresponding author

Correspondence to Denis M. Filatov.

Ethics declarations

Conflicts of interests

The author has no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Detrended fluctuation analysis

Under the standard DFA concept, one defines \(F(s) \sim s ^ H\), where F(s) is a certain function of data \(\{x_k\}_{k = 1}^N\) (the ‘data measure’), while \(s\ge 1\) is an arbitrary number called ‘scale’ at which the data are being considered. Specifically, in this research we used the following definitions

$$\begin{aligned} F(s) = \left[ \frac{1}{n}\sum _{k = 1}^{n} \left( R_k^{(s)}\right) ^q\right] ^{1/q},\qquad q\ge 1, \end{aligned}$$
(9)

where

$$\begin{aligned} R_k^{(s)}= & {} \left[ \frac{1}{N/n}\left\| \mathbf {r}_k^{\,(s)}\right\| _p^p\right] ^{1/p}, \qquad p\ge 1, \end{aligned}$$
(10)
$$\begin{aligned} r_{k,m}^{(s)}= & {} \frac{1}{2}\left( \sum _{i = m+\frac{N}{2}}^{m+\frac{N}{2}+s-1}x_i^{(k)} - \sum _{i = m+\frac{N}{2}-s}^{m+\frac{N}{2}-1}x_i^{(k)}\right) , \end{aligned}$$
(11)
$$\begin{aligned} x_i^{(k)}= & {} x_l,\qquad l = (k - 1)\frac{N}{n} + i. \end{aligned}$$
(12)

Here \(n = \frac{N}{2s}\), \(\mathbf {r}_k^{\,(s)} = \left\{ r_{k,m}^{(s)}\right\} \), \(m = 1,\ldots ,\frac{N}{n}+1\). The numbers p and q define specific norms in which the corresponding quantities are to be calculated; these can be chosen arbitrarily, for example, the set \(p\rightarrow +\infty \), \(q = 1\) originates in the Hurst analysis, whereas the set \(p = q = 2\) corresponds to the standard DFA. For details the reader should refer to [33], where (9)-(12) were shown to yield a useful modification of conventional DFA.Footnote 2

Multivariate Fourier- and wavelet-based coherence analyses

For p-variate stationary data \(\{{\mathbf {x}}_k\}_{k = 1}^N = \{(x_k^{(1)}, \ldots , x_k^{(p)})\}_{k = 1}^N\), one defines the partial coherence coefficient between the \((p-1)\)-variate \(\{(x^{(i)}_k)\}\), \(i \ne l\), and the univariate \(\{x^{(l)}_k\}\) time series at a frequency f as the maximum eigenvalue \(\lambda _l(f)\) of the matrix [34]

$$\begin{aligned} c_l(f) = \frac{{\mathbf {S}}_{{\mathbf {x}}x^{(l)}}^*{\mathbf {S}}^{-1}_{{\mathbf {x}}{\mathbf {x}}}{\mathbf {S}}_{{\mathbf {x}}x^{(l)}}}{S_{x^{(l)}x^{(l)}}}. \end{aligned}$$
(13)

Then, the total coherence is defined as

$$\begin{aligned} C(f) = \left( \prod _{l = 1}^p\lambda _l(f)\right) ^\frac{1}{p}. \end{aligned}$$
(14)

In (13), \({\mathbf {S}}_{{\mathbf {x}}{\mathbf {x}}}(f)\) is the \((p-1)\times (p-1)\) matrix of the power cross- (if \(i\ne j\)) or proper (if \(i=j\)) spectra of the scalar time series \(\{x^{(i)}_k\}\) and \(\{x^{(j)}_k\}\), \({\mathbf {S}}_{{\mathbf {x}}x^{(l)}}(f)\) is the \((p-1)\times 1\) matrix of the power cross-spectra of the scalar time series \(\{x^{(i)}_k\}\) and \(\{x^{(l)}_k\}\), \({\mathbf {S}}_{{\mathbf {x}}x^{(l)}}^*(f)\) is its conjugate transposed and \(S_{x^{(l)}x^{(l)}}(f)\) is the power spectrum (just a real number) of the lth variate at the frequency f.

The spectral matrices in (13) can be computed using diverse spectral analysis methods. In particular, if continuous wavelet transform with a wavelet function \(\psi _{a,b}(t):=\frac{1}{\sqrt{a}}\psi \left( \frac{t-b}{a}\right) \) is employed, then the matrix elements \(s_{ij} = s_{ij}(f)\)’s would additionally depend on the parameter of time shift b, i.e. it would be \(s_{ij} = s_{ij}(f,b)\).

From the physical point of view, the elements \(s_{ij}\)’s of the spectral matrices are the cross- or proper energies of the corresponding harmonics, and hence the eigenvalues \(\lambda _l\)’s of the resulting matrices \(c_l\)’s are the energy ratios. Therefore, the total coherence C defined via (14) is the averaged energy ratio (computed as the geometric mean) of all the time series involved, at the frequency f and, if relevant, at the time shift b.

Formulas (13)-(14) are a generalisation of bivariate coherence analysis. Specifically, under \(p = 2\) the matrices in the numerator of (13) are simply scalars, the eigenvalues of \(c_l\)’s trivially coincide with their values, and yet \(c_1 = c_2\), so that eventually it holds \(C = \sqrt{\lambda _1\lambda _2} = c_1\) (cf. [35]).

Note that in both above-defined DFA and CA methods the data are considered to be finite samples, and thus, applying (9)–(12) and (13)–(14), one obtains the values for H and C(f) (or C(fb)) within the corresponding time windows of size N. If one repeats the computations in a moving window, then this will yield the time-dependent quantities H(t) and C(ft) (or C(fbt)).

Computer codes implementing the above-described algorithms are available at the GitHub repository [17].

Derivation of power spectrum estimates under VAR(q) coherence model

For a time series whose power spectrum has a linear dependence of the energy S on the frequency \(\omega \) (a blue noise), the solution of the Yule–Walker equations yields \(a_l\approx \frac{1}{2\sqrt{l}}\). We shall use this approximation for the estimation of the sums in formula (4) at \(\omega = 0\) and \(\omega = \pi \).

We have to consider four different cases.

Case 1—Mechanism 1, \(\omega = 0\). It holds

$$\begin{aligned}&\sum _{l=1}^qa_{21,l}\mathrm {e}^{i\omega l} = \sum _{l=1}^qa_{21,l} \nonumber \\&\quad = \sum _{l=1}^qCa_{22,l} \approx C \int _{1}^{q}\frac{1}{2\sqrt{l}}dl=C(\sqrt{q}-1), \end{aligned}$$
(15)
$$\begin{aligned}&\sum _{l_1=1}^q\sum _{l_2=l_1+1}^qa_{12,l_1}a_{12,l_2}\cos \omega (l_1-l_2)\nonumber \\&\quad \approx C^2\int _{1}^{q}\frac{1}{2\sqrt{l_1}}\nonumber \\&\quad \int _{l_1}^{q}\frac{1}{2\sqrt{l_2}}d l_2 d l_1=\frac{C^2}{4}(2q - 4\sqrt{q} + 2), \end{aligned}$$
(16)
$$\begin{aligned}&\sum _{l=1}^qa_{12,l}^2 \approx C^2\int _{1}^{q}\left( \frac{1}{2\sqrt{l}}\right) ^2dl = \frac{C^2}{4}\ln q. \end{aligned}$$
(17)

Given (15)-(17), for the summands in (4) we find

$$\begin{aligned}&E\frac{E^* + F_1^*\sum _{l=1}^qa_{21,l}}{1-\sum _{l=1}^qa_{22,l}}\sum _{l=1}^qa_{12,l}\nonumber \\&\quad \approx -\frac{|E|^2(1+\sum _{l=1}^qa_{21,l})}{\sum _{l=1}^qa_{22,l}-1}\sum _{l=1}^qa_{21,l}\nonumber \\&\quad \rightarrow -|E|^2C(1 + C(\sqrt{q}-1)), \end{aligned}$$
(18)
$$\begin{aligned}&\quad \frac{E + F_1\sum _{l=1}^qa_{21,l}\mathrm {e}^{-i\omega l}}{1-\sum _{l=1}^qa_{22,l}\mathrm {e}^{-i\omega l}}\frac{E^* + F_1^*\sum _{l=1}^qa_{21,l}\mathrm {e}^{i\omega l}}{1-\sum _{l=1}^qa_{22,l}\mathrm {e}^{i\omega l}}B(\omega )\nonumber \\&\quad \approx \frac{|F|^2(\sum _{l=1}^qa_{21,l})^2+2|E|^2\sum _{l=1}^qa_{21,l}+|E|^2}{(1-\sum _{l=1}^qa_{22,l})^2}\nonumber \\&C^2\left( q-2\sqrt{q}+\nonumber \right. \\&\quad \left. 1+\frac{1}{4}\ln q\right) \rightarrow |F|^2C^4q+|E|^2C^2(2C\sqrt{q}+1). \end{aligned}$$
(19)

Here and below, we used the fact that q can be arbitrarily large, so that we wrote down only the summands at the major exponents of q and ignored those growing slower or even decaying. Substitution of (18)–(19) into (4) subject to \(q\rightarrow \infty \) results in the expression shown in Table 2, row 1, column 1.

Case 2—Mechanism 2, \(\omega = 0\). It holds

$$\begin{aligned}&\sum _{l=1}^qa_{21,l}\mathrm {e}^{i\omega l} = \sum _{l=1}^qa_{21,l} = \sum _{l=1}^qCa_{22,l}\left( 1-\frac{l}{q}\right) \nonumber \\&\approx C \int _{1}^{q}\frac{1}{2\sqrt{l}}\left( 1-\frac{l}{q}\right) dl=C\left( \frac{2}{3}\sqrt{q}-1+\frac{1}{3q}\right) , \end{aligned}$$
(20)
$$\begin{aligned}&\sum _{l_1=1}^q\sum _{l_2=l_1+1}^qa_{12,l_1}a_{12,l_2}\cos \omega (l_1-l_2)\nonumber \\&\quad \approx C^2\int _{1}^{q}\frac{1}{2\sqrt{l_1}}\left( 1-\frac{l_1}{q}\right) \int _{l_1}^{q}\frac{1}{2\sqrt{l_2}}\left( 1-\frac{l_2}{q}\right) d l_2 d l_1\nonumber \\&\quad =\frac{C^2}{4}\left( \frac{7}{9}q - \frac{8}{3}\sqrt{q} + \frac{8}{9\sqrt{q}} + 1 - \frac{5}{6q} + \frac{2}{9q^2}\right) , \end{aligned}$$
(21)
$$\begin{aligned}&\sum _{l=1}^qa_{12,l}^2 \approx C^2\int _{1}^{q}\left( \frac{1}{2\sqrt{l}}\left( 1-\frac{l}{q}\right) \right) ^2dl\nonumber \\&\quad = \frac{C^2}{4}\left( \ln q-\frac{3}{2}+\frac{2}{q}-\frac{1}{2q^2}\right) . \end{aligned}$$
(22)

From here for the summands in (4), we obtain

$$\begin{aligned}&E\frac{E^* + F_1^*\sum _{l=1}^qa_{21,l}}{1-\sum _{l=1}^qa_{22,l}}\sum _{l=1}^qa_{12,l}\nonumber \\&\quad \approx -\frac{|E|^2(1+\sum _{l=1}^qa_{21,l})}{\sum _{l=1}^qa_{22,l}-1}\sum _{l=1}^qa_{21,l}\nonumber \\&\quad \rightarrow -\frac{2C}{3}|E|^2\left( 1 + C\left( \frac{2}{3}\sqrt{q}-1+\frac{1}{3q}\right) \right) , \end{aligned}$$
(23)
$$\begin{aligned}&\frac{E + F_1\sum _{l=1}^qa_{21,l}\mathrm {e}^{-i\omega l}}{1-\sum _{l=1}^qa_{22,l}\mathrm {e}^{-i\omega l}}\frac{E^* + F_1^*\sum _{l=1}^qa_{21,l}\mathrm {e}^{i\omega l}}{1-\sum _{l=1}^qa_{22,l}\mathrm {e}^{i\omega l}}B(\omega )\nonumber \\&\quad \approx \frac{|F|^2(\sum _{l=1}^qa_{21,l})^2+2|E|^2\sum _{l=1}^qa_{21,l}+|E|^2}{(1-\sum _{l=1}^qa_{22,l})^2}\frac{C^2}{4}\nonumber \\&\quad \left( \frac{14}{9}q-\frac{16}{3}\sqrt{q}+\right. \nonumber \\&\quad \left. \frac{16}{9\sqrt{q}}+2-\frac{5}{3q}+\frac{4}{9q^2}+\ln q-\frac{3}{2}+\frac{2}{q}-\frac{1}{2q^2}\right) \nonumber \\&\quad \rightarrow \frac{14}{81}|F|^2C^4q+|E|^2C^2\left( \frac{14}{27}C\sqrt{q}+\frac{7}{18}\right) . \end{aligned}$$
(24)

Substitution of (23)-(24) into (4) subject to \(q\rightarrow \infty \) results in the expression shown in Table 2, row 2, column 1.

Cases 3 and 4—Mechanisms 1 and 2, \(\omega = \pi \). These cases are much simpler than the first two, because we can approximately take that the alternating-sign sums containing the terms \(\mathrm {e}^{\pm i\omega l}\) and \(\cos \omega (l_1-l_2)\) vanish, so that only the summand \(\sum _{l=1}^qa_{12,l}^2\) remains. Hence, for the first mechanism we have

$$\begin{aligned} S(\omega )\approx \frac{|E|^2+0+\frac{E+F0}{1}\frac{E^*+F^*0}{1}\left( 0+\frac{C^2}{4}\ln q\right) }{1},\nonumber \\ \end{aligned}$$
(25)

while for the second one it holds

$$\begin{aligned} S(\omega )\approx \frac{|E|^2+0+\frac{E+F0}{1}\frac{E^*+F^*0}{1}\left( 0+\frac{C^2}{4}\left( \ln q-\frac{3}{2}+\frac{2}{q}-\frac{1}{2q^2}\right) \right) }{1}.\nonumber \\ \end{aligned}$$
(26)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filatov, D.M. On spatial synchronisation as a manifestation of irregular energy cascades in continuous media under the transition to criticality. Nonlinear Dyn 109, 2573–2594 (2022). https://doi.org/10.1007/s11071-022-07580-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07580-7

Keywords

Mathematics Subject Classification

Navigation