Skip to main content
Log in

Response behavior of bi-stable point wave energy absorbers under harmonic wave excitations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

To expand the narrow response bandwidth of linear point wave energy absorbers (PWAs), a few research studies have recently proposed incorporating a bi-stable restoring force in the design of the absorber. Such studies have relied on numerical simulations to demonstrate the improved bandwidth of the bi-stable absorbers. In this work, we aim to understand how the shape of the bi-stable restoring force influences the effective bandwidth of the absorber. To this end, we use perturbation methods to obtain an approximate analytical solution of the nonlinear differential equations governing the complex motion of the absorber under harmonic wave excitations. The approximate solution is validated against a numerical solution obtained via direct integration of the equations of motion. Using a local stability analysis of the equations governing the slow modulation of the amplitude and phase of the response, the loci of the different bifurcation points are determined as function of the wave frequency and amplitude. Those bifurcation points are then used to define an effective bandwidth of the absorber. The influence of the shape of the restoring force on the effective bandwidth is also characterized by generating design maps that can be used to predict the kind of response behavior (small amplitude periodic, large amplitude periodic, or aperiodic) for any given combination of wave amplitude and frequency. Such maps are critical toward designing efficient bi-stable PWAs for known wave conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

The data that support the findings of this study will be made available upon reasonable request.

Notes

  1. The mathematical representation of the restoring force can change depending on the type of mechanism used to introduce bi-stability. However, generally for a symmetric bi-stable restoring force, the canonical form \(F=k_1 y +k_3 y^3\) can be used to capture the main features of the dynamics without curtailing the generality of the analysis.

References

  1. AlShami, E., Zhang, R., Wang, X.: Point absorber wave energy harvesters: a review of recent developments. Energies 12(1), 47 (2019)

    Article  Google Scholar 

  2. Falnes, J., Hals, J.: Heaving buoys, point absorbers and arrays. Philosoph. Trans. Royal Soc. A Math. Phys. Eng. Sci. 370(1959), 246–277 (2012)

    Google Scholar 

  3. Drew, B., Plummer, A.R., Sahinkaya, M.N.: A review of wave energy converter technology. Proceed. Instit. Mech. Eng. Part A J. Power Energy 223(8), 887–902 (2009)

    Article  Google Scholar 

  4. Younesian, D., Alam, M.-R.: Multi-stable mechanisms for high-efficiency and broadband ocean wave energy harvesting. Appl. Energy 197, 292–302 (2017)

    Article  Google Scholar 

  5. Schubert, B.W., Robertson, W.S., Cazzolato, B.S., Ghayesh, M.H., Sergiienko, N.Y.: Performance enhancement of submerged wave energy device using bistability. Ocean Eng. 213, 107816 (2020)

    Article  Google Scholar 

  6. Daqaq, M. F., Masana, R., Erturk, A., Dane Quinn, D.: On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion. Appl. Mech. Rev. 66(4)

  7. Xi, R., Zhang, H., Zhao, H., Mondal, R., et al.: High-performance and robust bistable point absorber wave energy converter. Ocean Eng. 229, 108767 (2021)

    Article  Google Scholar 

  8. Xiao, X., Xiao, L., Peng, T.: Comparative study on power capture performance of oscillating-body wave energy converters with three novel power take-off systems. Renew. Energy 103, 94–105 (2017)

    Article  Google Scholar 

  9. Zhang, H., Xi, R., Xu, D., Wang, K., Shi, Q., Zhao, H., Wu, B.: Efficiency enhancement of a point wave energy converter with a magnetic bistable mechanism. Energy 181, 1152–1165 (2019)

    Article  Google Scholar 

  10. Zhang, X.-T., Yang, J.-M., Xiao, L.-F.: An oscillating wave energy converter with nonlinear snap-through power-take-off systems in regular waves. China Ocean Eng. 30(4), 565–580 (2016)

    Article  Google Scholar 

  11. Zhang, X., Tian, X., Xiao, L., Li, X., Chen, L.: Application of an adaptive bistable power capture mechanism to a point absorber wave energy converter. Appl. Energy 228, 450–467 (2018)

    Article  Google Scholar 

  12. Zhang, X., Tian, X., Xiao, L., Li, X., Lu, W.: Mechanism and sensitivity for broadband energy harvesting of an adaptive bistable point absorber wave energy converter. Energy 188, 115984 (2019)

    Article  Google Scholar 

  13. Song, Y., Guo, X., Wang, H., Tian, X., Wei, H., Zhang, X.: Performance analysis of an adaptive bistable point absorber wave energy converter under white noise wave excitation. IEEE Trans. Sustain. Energy

  14. Jin, H., Zhang, H., Xu, D., Liu, C., Xu, S.: Analytical investigation on wave attenuation performance of a floating breakwater with nonlinear stiffness. Ocean Eng. 243, 110160 (2022)

    Article  Google Scholar 

  15. Nayfeh, A.H., Mook, D.T., Marshall, L.R.: Nonlinear coupling of pitch and roll modes in ship motions. J. Hydronaut. 7(4), 145–152 (1973)

    Article  Google Scholar 

  16. Li, W., Tang, Y., Liu, L., Liu, S., Cai, R.: Heave-roll-pitch coupled nonlinear internal resonance response of a spar platform considering wave and vortex exciting loads. J. Ocean Univ. China 16(2), 209–222 (2017)

    Article  Google Scholar 

  17. Harne, R.L., Wang, K.: A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 22(2), 023001 (2013)

    Article  Google Scholar 

  18. Hulme, A.: The wave forces acting on a floating hemisphere undergoing forced periodic oscillations. J. Fluid Mech. 121, 443–463 (1982)

    Article  MathSciNet  Google Scholar 

  19. Ogilvie, T.F., Tuck, E.O.: A rational strip theory of ship motions: part i. University of Michigan, Technical Report (1969)

  20. Haskind, M.: The exciting forces and wetting of ships in waves

  21. Newman, J.N.: The exciting forces on fixed bodies in waves. J. Ship Res. 6(04), 10–17 (1962)

    Article  Google Scholar 

  22. Nayfeh, A.H.: Perturbation Methods. Wiley (2008)

  23. Wang, L.: Modelling and advanced control of fully coupled wave energy converters subject to constraints: the wave-to-wire approach, Ph.D. thesis, Acta Universitatis Upsaliensis (2017)

  24. Meyers, R.A.: Mathematics of Complexity and Dynamical Systems. Springer (2011)

  25. Kovacic, I., Rand, R., Mohamed Sah, S.: Mathieu’s equation and its generalizations: overview of stability charts and their features. Appl. Mech. Rev. 70(2)

  26. Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press (2019)

Download references

Funding

This research was funded by Abu Dhabi Education and Knowledge Council (ADEK) under grant number AARE2019-161: Exploiting Bi-stability to Develop a Novel Broadband Point Wave Energy Absorber.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad A. Khasawneh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Eigensystem realization algorithm

Consider the following single-input single-output discrete-time dynamical system:

$$\begin{aligned} \begin{aligned} \mathbf{x }_{k+1}&=\mathbf{A }\mathbf{x }_k + \mathbf{B }u_k,\\ h_{k}&= \mathbf{C }\mathbf{x }_k + \mathbf{D } u_k, \end{aligned} \end{aligned}$$
(A.1)

and a discrete-time scalar input u:

$$\begin{aligned} u_{k}^{\delta } \equiv u^{\delta } (k \Delta t)= {\left\{ \begin{array}{ll} {1} &{} \text {if } k=0\\ 0 &{} \text {if } k=1,...\infty \end{array}\right. } \end{aligned}$$
(A.2)

According to linear system theory, the discrete-time impulse response data \(h_{k}^{\delta }\) could be expressed as:

$$\begin{aligned} h_{k}^{\delta } \equiv h^{\delta }(k \Delta t)=\mathbf{C } \mathbf{A }^{k} \mathbf{B }, \quad (k=0,1,...., \infty ) \end{aligned}$$
(A.3)

In our analysis, the discrete-time impulse response data are obtained through substituting the radiation damping coefficients \(B(\omega _i)\) into Eq. (3). The next step is to proceed by constructing the generalized Hankel matrix \(\mathbf{H }_{r \times s} (g)\) for \(g=0,1\) which consists of r rows and s columns, generated by stacking time-shifted impulse response data in the following order:

$$\begin{aligned} \mathbf{H }_{r \times s} (g) = \begin{pmatrix} h_{g}^{\delta } &{} h_{g+1}^{\delta } &{} \dots &{} h_{g+s-1}^{\delta } \\ h_{g+1}^{\delta } &{} h_{g+2}^{\delta } &{} \dots &{} h_{g+s}^{\delta } \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ h_{g+r-1}^{\delta } &{} h_{g+r}^{\delta } &{} \dots &{} h_{g+r+s-2}^{\delta } \end{pmatrix} \end{aligned}$$
(A.4)

Using Eq. (A.3), we can express the generalized Hankel matrix in Eq. (A.4) in terms of the realized state-space matrices \(\mathbf{A }_r\), \(\mathbf{B }_r\) and \(\mathbf{C }_r\) as:

$$\begin{aligned}&\mathbf{H }_{r \times s} (g) \nonumber \\&\quad =\begin{pmatrix} \mathbf{C }_r \mathbf{A }_r^{g} \mathbf{B }_r &{} \mathbf{C }_r \mathbf{A }_r^{g+1} \mathbf{B }_r &{} \dots &{} \mathbf{C }_r \mathbf{A }_r^{g+s-1} \mathbf{B }_r \\ \mathbf{C }_r \mathbf{A }_r^{g+1} \mathbf{B }_r &{} \mathbf{C }_r \mathbf{A }_r^{g+2} \mathbf{B }_r &{} \dots &{} \mathbf{C }_r \mathbf{A }_r^{g+s} \mathbf{B }_r \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ \mathbf{C }_r \mathbf{A }_r^{g+r-1} \mathbf{B }_r &{} \mathbf{C }_r \mathbf{A }_r^{g+r} \mathbf{B }_r &{} \dots &{} \mathbf{C }_r \mathbf{A }_r^{g+r+s-2} \mathbf{B }_r \end{pmatrix}\nonumber \\ \end{aligned}$$
(A.5)

which could be reduced as:

$$\begin{aligned} \mathbf{H }_{r \times s} (g) = {\mathcal {O}} \mathbf{A }_r^{g} {\mathcal {C}} \end{aligned}$$
(A.6)

where

$$\begin{aligned} {\mathcal {O}}&=\left( \mathbf{C }_r \quad \mathbf{C }_r \mathbf{A }_r \quad \dots \quad \mathbf{C }_r \mathbf{A }_r^{r-1}\right) ^{T}\\ {\mathcal {C}}&=\left( \mathbf{B }_r \quad \mathbf{A }_r \mathbf{B }_r \quad \dots \quad \mathbf{A }_r^{r-1} \mathbf{B }_r\right) ^{T} \end{aligned}$$

are, respectively, the generalized observability and controllability matrices, with observability and controllability indices of r and s. Upon taking the singular value decomposition (SVD) for the first Hankel matrix \(\mathbf{H }_{r \times s} (0)\), we get the following definition:

$$\begin{aligned} \begin{aligned} \mathbf{H }_{r \times s} (0)&= \mathbf{U } \Sigma \mathbf{V }^{T}\\&= \begin{pmatrix} \tilde{\mathbf{U }} &{} \mathbf{U }_{t}\\ \end{pmatrix} \begin{pmatrix} \tilde{\Sigma } &{} 0\\ 0 &{} \Sigma _{t} \\ \end{pmatrix} \begin{pmatrix} \tilde{\mathbf{V }}^T\\ \tilde{\mathbf{V }}_{t}^T \\ \end{pmatrix} \\&\approx \tilde{\mathbf{U }} \tilde{\Sigma } \tilde{\mathbf{V }}^T \end{aligned} \end{aligned}$$
(A.7)

where

$$\begin{aligned} \tilde{\mathbf{U }}^T \tilde{\mathbf{U }}&=\mathbf{I }\\ \tilde{\mathbf{V }}^T \tilde{\mathbf{V }}&=\mathbf{I }\\ \tilde{\Sigma }&= \begin{pmatrix} \sigma _1 &{} &{} &{} \\ &{} \sigma _2 &{} &{} \\ &{} &{} \ddots &{} \\ &{} &{} &{} \sigma _N\\ \end{pmatrix} \end{aligned}$$

The diagonal matrix \(\tilde{\Sigma }\) which is constructed from the first \(N \times N\) block of \(\Sigma \) contains the dominant singular values \(\sigma _i\) in the following order \((\sigma _1 \ge \sigma _2 \ge \dots \ge \sigma _N \ge 0)\), while \(\Sigma _t\) contains the small truncated singular values. This truncation step is very vital for reducing the order of the realized state-space model; such that the realized dynamics matrix \(A_r\) has size N. Also, vectors in \(\tilde{\mathbf{U }}\) and \(\tilde{\mathbf{V }}^T\) contain the dominant modes associated with the singular values retained in \(\tilde{\Sigma }\). As a result, the product \(\tilde{\mathbf{U }} \tilde{\Sigma } \tilde{\mathbf{V }}^T\) is considered to be a faithful representation of the original Hankel matrix \(\mathbf{H }\) for the smallest size of \(\tilde{\Sigma }\).

It follows from Eq. (A.6) that

$$\begin{aligned} \begin{aligned} \mathbf{H }_{r \times s} (0)&= \tilde{\mathbf{U }} \tilde{\Sigma } \tilde{\mathbf{V }}^T\\&= \left( \tilde{\mathbf{U }} \tilde{\Sigma }^{\frac{1}{2}} \right) \left( \tilde{\Sigma }^{\frac{1}{2}} \tilde{\mathbf{V }}^T \right) = {\mathcal {O}} {\mathcal {C}} \end{aligned} \end{aligned}$$
(A.8)

Using the above balanced decomposition of \(\mathbf{H }_{r \times s} (0)\), we can write:

$$\begin{aligned} {\mathcal {O}} = \tilde{\mathbf{U }} \tilde{\Sigma }^{\frac{1}{2}} \qquad and \qquad {\mathcal {C}} = \tilde{\Sigma }^{\frac{1}{2}} \tilde{\mathbf{V }}^T \end{aligned}$$

Also from Eq. (A.6), we can express the second Hankel matrix \(\mathbf{H }_{r \times s} (1)\) as:

$$\begin{aligned} \begin{aligned} \mathbf{H }_{r \times s} (1)&= {\mathcal {O}} \mathbf{A }_r {\mathcal {C}} \\&= \left( \tilde{\mathbf{U }} \tilde{\Sigma }^{\frac{1}{2}}\right) \mathbf{A }_r \left( \tilde{\Sigma }^{\frac{1}{2}} \tilde{\mathbf{V }}^T\right) \end{aligned} \end{aligned}$$
(A.9)

Using the properties of \(\mathbf{U }\) and \(\mathbf{V }\), we can write:

$$\begin{aligned} \tilde{\Sigma }^{\frac{1}{2}} \mathbf{A }_r \tilde{\Sigma }^{\frac{1}{2}} = \tilde{\mathbf{U }}^T \mathbf{H }_{r \times s} (1) \tilde{\mathbf{V }} \end{aligned}$$
(A.10)

It follows that the matrix \(\mathbf{A }_r\) could be obtained through:

$$\begin{aligned} \mathbf{A }_r=\tilde{\Sigma }^{-\frac{1}{2}} \tilde{\mathbf{U }}^T \mathbf{H }_{r \times s} (1) \tilde{\mathbf{V }} \tilde{\Sigma }^{-\frac{1}{2}} \end{aligned}$$
(A.11)

Let:

$$\begin{aligned} \mathbf{E }^T_1 = \begin{pmatrix} 1 &{} 0 &{} \dots &{} 0 \\ \end{pmatrix} \qquad \mathbf{E }^T_2= \begin{pmatrix} 1 &{} 0 &{} \dots &{} 0 \\ \end{pmatrix} \end{aligned}$$

where \(\mathbf{E }^T_1\) and \(\mathbf{E }^T_2\) are, respectively, \(1 \times r\) and \(1 \times s\) vectors. We use that along with Equation (A.5) to write the following balanced expression for \(h_k^\delta \):

$$\begin{aligned} \begin{aligned} h_k^\delta&= \mathbf{E }^T_1 \mathbf{H }_{r \times s} (g) \mathbf{E }^T_2 \\&= \mathbf{E }^T_1 ({\mathcal {O}} \mathbf{A }_r^{g} {\mathcal {C}}) \mathbf{E }_2 \\&= (\mathbf{E }^T_1 \tilde{\mathbf{U }} \tilde{\Sigma }^{\frac{1}{2}}) (\tilde{\Sigma }^{-\frac{1}{2}} \tilde{\mathbf{U }}^{T} \mathbf{H }_{r \times s} (1) \tilde{\mathbf{V }} \tilde{\Sigma }^{-\frac{1}{2}})^{g} (\tilde{\Sigma }^{\frac{1}{2}} \tilde{\mathbf{V }}^{T} \mathbf{E }_2) \\&\equiv \mathbf{C }_r \mathbf{A }_r^{g} \mathbf{B }_r \end{aligned}\nonumber \\ \end{aligned}$$
(A.12)

We use the decomposed expression above to obtain the reduced input and output matrices \(\mathbf{B }_r\) and \(\mathbf{C }_r\) as:

$$\begin{aligned} \mathbf{B }_r=\tilde{\Sigma }^{\frac{1}{2}} \tilde{\mathbf{V }}^{T} \mathbf{E }_2 \end{aligned}$$
(A.13)
$$\begin{aligned} \mathbf{C }_r=\mathbf{E }^T_1 \tilde{\mathbf{U }} \tilde{\Sigma }^{\frac{1}{2}} \end{aligned}$$
(A.14)

Appendix B: Approximating the convolution integral

To find an approximate analytical representation of the convolution integral, we first use the fact that the output, z(t), of a linear dynamical system can be expressed as a convolution integral between its input u(t), and an impulse response function h(t), in the form

$$\begin{aligned} \mathbf{z }(t)=\int _0^t h(t-\tau ) \mathbf{u }(\tau ) d\tau \approx \mathbf{C }_r \mathbf{x }(t). \end{aligned}$$
(B.1)

Here, \(\mathbf{z}(t) \in {\mathbb {R}}^q\) is the output vector, \(\mathbf{x}(t) \in {\mathbb {R}}^n\) is the state vector and \(\mathbf{C }_r\) is a \(q \times n \) output matrix governed by the following linear state-space equation

$$\begin{aligned} \mathbf{x }'(t)&=\mathbf{A }_r\mathbf{x }(t)+\mathbf{B }_r\mathbf{u }(t). \end{aligned}$$
(B.2)

Using the eigensystem realization algorithm (ERA) detailed in Ref. [26], the convolution integral can be expressed in terms of the realized state-space matrices \(\mathbf{A }_r, \mathbf{B }_r\) and \(\mathbf{C }_r\) as:

$$\begin{aligned} h(t)=\left( M \sqrt{\frac{g}{R}} \right) \mathbf{C }_r e^{\mathbf{A }_rt} \mathbf{B }_r, \end{aligned}$$
(B.3)

where the realized state-space matrices are :

$$\begin{aligned} \mathbf{A }_r= & {} 0.8 \begin{pmatrix} -1 &{} 1 &{} 1\\ -1 &{} 0 &{} 0\\ -1 &{} 0 &{} -2 \end{pmatrix}, \\ \mathbf{B }_r= & {} \begin{pmatrix} -0.48&-0.02&-0.22 \end{pmatrix}^T, \end{aligned}$$

and

$$\begin{aligned} \mathbf{C }_r = \begin{pmatrix} -0.46&0&0.18 \end{pmatrix}. \end{aligned}$$

Note that the numerical values appearing in the realized state-space matrices are general for any spherical buoy of radius, \(\textit{R}\). For more details on the ERA procedure, the interested reader can refer to Appendix A.

The matrix exponential \(e^{\mathbf{A }_rt}\) in Equation (B.3) can be further expressed in the following form

$$\begin{aligned} e^{\mathbf{A }_rt}={\mathcal {L}}^{-1}\left( s\mathbf{I } - \mathbf{A }_r\right) ^{-1}. \end{aligned}$$
(B.4)

Here, \({\mathcal {L}}^{-1}\) is the inverse Laplace transform, and I is the identity matrix. Substituting Equation (B.4) into Eq. (B.3), we obtain the following analytical expression for h(t):

$$\begin{aligned} h(t)=\left( M \sqrt{\frac{g}{R}} \right) e^{-\mu t}\left( \uplambda _1 + \uplambda _2 \cos (\mu t) + \uplambda _3 \sin (\mu t)\right) ,\nonumber \\ \end{aligned}$$
(B.5)

where \(\mu , \uplambda _1, \uplambda _2\), and \(\uplambda _3\) are constants listed in Table 1, and are valid for any spherical buoy of radius, R.

Appendix C: Parametric terms constants

$$\begin{aligned} G_0&=\omega _o^2-\frac{\eta ^2}{\omega _o^2}a_o^2+\frac{3\gamma }{2}a_o^2+\frac{3 \gamma \eta ^2}{4 \omega _o^4}a_o^4 + \frac{\gamma \eta ^2}{24 \omega _o^4}a_o^4 \end{aligned}$$
(C.1)
$$\begin{aligned} G_1&= 2\eta a_o - \frac{5 \gamma \eta }{2 \omega _o^2} a_o^3 \end{aligned}$$
(C.2)
$$\begin{aligned} G_2&= \frac{\eta ^2}{3 \omega _o^2}a_o^2 + \frac{3 \gamma }{2} a_o^2 - \frac{\gamma \eta ^2}{2\omega _o^4}a_o^4 \end{aligned}$$
(C.3)
$$\begin{aligned} G_3&= \frac{\gamma \eta }{2 \omega _o^2} a_o^3 \end{aligned}$$
(C.4)
$$\begin{aligned} G_4&= \frac{\gamma \eta ^2}{24 \omega _o^4} a_o^4 \end{aligned}$$
(C.5)
$$\begin{aligned} K_0&=-\omega _n^2 + 3\gamma \left( \frac{R_1}{2}+\frac{R_3^2}{2}+\frac{R_5^2}{2}\right) \end{aligned}$$
(C.6)
$$\begin{aligned} K_2&=3\gamma \left( \frac{R_1^2}{2}+R_1 R_3+R_3 R_5 \right) \end{aligned}$$
(C.7)
$$\begin{aligned} K_4&=3\gamma \left( R_1 R_3+R_1 R_5 \right) \end{aligned}$$
(C.8)
$$\begin{aligned} K_6&=3\gamma \left( \frac{R_3^2}{2}+R_1 R_5\right) \end{aligned}$$
(C.9)
$$\begin{aligned} K_8&=3\gamma \left( R_3 R_5 \right) \end{aligned}$$
(C.10)
$$\begin{aligned} K_{10}&=3\gamma \left( \frac{R_5^2}{2}\right) \end{aligned}$$
(C.11)

where:

$$\begin{aligned} R_1&= a_o \end{aligned}$$
(C.12)
$$\begin{aligned} R_3&= \frac{\gamma }{32 \Omega ^2} a_o^3 + \frac{3 \gamma ^2}{1024 \Omega ^4} a_o^5 \end{aligned}$$
(C.13)
$$\begin{aligned} R_5&=\frac{\gamma ^2}{1024 \Omega ^4} a_o^5 \end{aligned}$$
(C.14)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khasawneh, M.A., Daqaq, M.F. Response behavior of bi-stable point wave energy absorbers under harmonic wave excitations. Nonlinear Dyn 109, 371–391 (2022). https://doi.org/10.1007/s11071-022-07507-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07507-2

Keywords

Navigation