Skip to main content
Log in

Method of experimentally identifying the complex mode shape of the self-excited oscillation of a cantilevered pipe conveying fluid

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

A Correction to this article was published on 31 May 2022

This article has been updated

Abstract

The dynamics of a flexible cantilevered pipe conveying fluid have been researched for several decades. It is known that the flexible pipe undergoes self-excited vibration when the flow speed exceeds a critical speed. This instability phenomenon is caused by nonconservative forces. From a mathematical point of view, the system has a characteristic of non-selfadjointness and the linear eigenmodes can be complex and non-orthogonal to each other. As a result, such a mathematical feature of the system is directly related to the instability phenomenon. In this study, we propose a method of experimentally identifying the complex mode from experimentally obtained time histories and decomposing the linear mode into real and imaginary components. In nonlinear analysis, we show that the nonlinear effects of practical systems on the mode in the steady-state self-excited oscillation are small. The real and imaginary components identified using the proposed method for experimental steady-state self-excited oscillations are compared with those obtained in the theoretical analysis, thus validating the proposed identification method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability statement

The manuscript has no associated data.

Change history

References

  1. Amabili, M., Sarkar, A., Païdoussis, M.: Chaotic vibrations of circular cylindrical shells: Galerkin versus reduced-order models via the proper orthogonal decomposition method. J. Sound Vib. 290(3–5), 736–762 (2006)

    Article  Google Scholar 

  2. Ashley, H., Haviland, G.: Bending vibrations of a pipe line containing flowing fluid (1950)

  3. Bajaj, A., Sethna, P.: Flow induced bifurcations to three-dimensional oscillatory motions in continuous tubes. SIAM J. Appl. Math. 44(2), 270–286 (1984)

    Article  MathSciNet  Google Scholar 

  4. Bajaj, A., Sethna, P.T., Lundgren, T.: Hopf bifurcation phenomena in tubes carrying a fluid. SIAM J. Appl. Math. 39(2), 213–230 (1980)

    Article  MathSciNet  Google Scholar 

  5. Benjamin, T.B.: Dynamics of a system of articulated pipes conveying fluid-i. Theory. Proc. R. Soc. Lond. A 261(1307), 457–486 (1962)

    MathSciNet  MATH  Google Scholar 

  6. Bishop, R.E.D., Fawzy, I.: Free and forced oscillation of a vertical tube containing a flowing fluid. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 284(1316), 1–47 (1976)

    Google Scholar 

  7. Bourrières, F.J.: Sur un phénomène d’oscillation auto-entretenue en mécanique des fluides réels. No. no. 147 in Publications scientifiques et techniques du Ministère de l’air : travaux de l’Institut de mécanique dela Faculté des sciences de Paris. Blondel la Rougery : Gauthier-Villars (1939)

  8. Chen, S., Rosenberg, G.: Vibrations and stability of a tube conveying fluid. Tech. rep., Argonne National Lab., Ill (1971)

  9. Dodds, H.L., Runyan, H.L.: Effect of high-velocity fluid flow on the bending vibrations and static divergence of a simply supported pipe, vol. 2870. National Aeronautics and Space Administration (1965)

  10. Ghayesh, M.H., Païdoussis, M.P., Modarres-Sadeghi, Y.: Three-dimensional dynamics of a fluid-conveying cantilevered pipe fitted with an additional spring-support and an end-mass. J. Sound Vib. 330(12), 2869–2899 (2011)

    Article  Google Scholar 

  11. Gregory, R.W., Païdoussis, M.P.: Unstable oscillation of tubular cantilevers conveying fluid i. Theory. Proc. R. Soc. Lond. A 293(1435), 512–527 (1966)

    Article  Google Scholar 

  12. Gregory, R.W., Païdoussis, M.P.: Unstable oscillation of tubular cantilevers conveying fluid ii. Experiments. Proc. R. Soc. Lond. A 293(1435), 528–542 (1966)

    Article  Google Scholar 

  13. Jendrzejczyk, J., Chen, S.: Experiments on tubes conveying fluid. Thin Walled Struct. 3(2), 109–134 (1985)

    Article  Google Scholar 

  14. Jensen, J.S.: Articulated pipes conveying fluid pulsating with high frequency. Nonlinear Dyn. 19(2), 173–193 (1999)

    Article  Google Scholar 

  15. Jin, J., Zou, G.: Bifurcations and chaotic motions in the autonomous system of a restrained pipe conveying fluid. J. Sound Vib. 260(5), 783–805 (2003)

    Article  Google Scholar 

  16. Kirillov, O.N.: Nonconservative stability problems of modern physics. De Gruyter, Berlin (2013)

    Book  Google Scholar 

  17. Lundgren, T., Sethna, P., Bajaj, A.: Stability boundaries for flow induced motions of tubes with an inclined terminal nozzle. J. Sound Vib. 64(4), 553–571 (1979)

    Article  Google Scholar 

  18. Modarres-Sadeghi, Y., Semler, C., Wadham-Gagnon, M., Païdoussis, M.: Dynamics of cantilevered pipes conveying fluid. Part 3: three-dimensional dynamics in the presence of an end-mass. J. Fluids Struct. 23(4), 589–603 (2007)

    Article  Google Scholar 

  19. Nayfeh, A.H.: Introduction to perturbation techniques. John Wiley & Sons, New Jersey (2011)

    MATH  Google Scholar 

  20. Païdoussis, M., Li, G.: Pipes conveying fluid: a model dynamical problem. J. Fluids Struct. 7(2), 137–204 (1993)

    Article  Google Scholar 

  21. Paidoussis, M.P.: Dynamics of flexible slender cylinders in axial flow part 1. Theory. J. Fluid Mech. 26(4), 717–736 (1966)

    Article  Google Scholar 

  22. Paidoussis, M.P.: Fluid-structure interactions: slender structures and axial flow, vol. 1. Academic Press, Cambridge (1998)

    Google Scholar 

  23. Paidoussis, M.P.: Fluid-structure interactions: slender structures and axial flow, vol. 2. Academic press, Cambridge (2003)

    Google Scholar 

  24. Paidoussis, M.P., Issid, N.: Dynamic stability of pipes conveying fluid. J. Sound Vib. 33(3), 267–294 (1974)

    Article  Google Scholar 

  25. Paidoussis, M.P., Moon, F.C.: Nonlinear and chaotic fluidelastic vibrations of a flexible pipe conveying fluid. J. Fluids Struct. 2(6), 567–591 (1988)

    Article  Google Scholar 

  26. Prasad, S.N., Herrmann, G.: The usefulness of adjoint systems in solving nonconservative stability problems of elastic continua. Int. J. Solids Struct. 5(7), 727–735 (1969)

    Article  Google Scholar 

  27. Sarkar, A., Paidoussis, M.: A cantilever conveying fluid: coherent modes versus beam modes. Int. J. Non Linear Mech. 39(3), 467–481 (2004)

    Article  Google Scholar 

  28. Sazesh, S., Shams, S.: Vibration analysis of cantilever pipe conveying fluid under distributed random excitation. J. Fluids Struct. 87, 84–101 (2019)

    Article  Google Scholar 

  29. Seyranian, A.P., Mailybaev, A.A.: Multiparameter stability theory with mechanical applications, vol. 13. World Scientific, Singapore (2003)

    Book  Google Scholar 

  30. Steindl, A., Troger, H.: Nonlinear three-dimensional oscillations of elastically constrained fluid conveying viscoelastic tubes with perfect and broken o (2)-symmetry. Nonlinear Dyn. 7(2), 165–193 (1995)

    Article  MathSciNet  Google Scholar 

  31. Sugiyama, Y., Kawagoe, H., Kishi, T., Nishiyama, S.: Studies on the stability of pipes conveying fluid:(the combined effect of a spring support and a lumped mass). JSME Int. J. Ser. 1 Solid Mech. Strength Mater. 31(1), 20–26 (1988)

    Google Scholar 

  32. Sugiyama, Y., Kumagai, Y., Kishi, T., Kawagoe, H.: Studies on stability of pipes conveying fluid: the effect of a lumped mass and damping (in Japanese). Trans. JPN. Soc. Mech. Eng. Ser. C 51(467), 1506–1514 (1985)

    Article  Google Scholar 

  33. Thomsen, J.J.: Vibrations and stability, order and chaos (1997)

  34. Wang, Y., Wang, L., Ni, Q., Dai, H., Yan, H., Luo, Y.: Non-planar responses of cantilevered pipes conveying fluid with intermediate motion constraints. Nonlinear Dyn. 93(2), 505–524 (2018)

    Article  Google Scholar 

  35. Yamashita, K., Furuya, H., Yabuno, H., Yoshizawa, M.: Nonplanar vibration of a vertical fluid-conveying pipe (effect of horizontal excitation at the upper end). J. Vib. Acoust. 136(4) (2014)

  36. Yamashita, K., Nishiyama, N., Katsura, K., Yabuno, H.: Hopf-hopf interactions in a spring-supported pipe conveying fluid. Mech. Syst. Signal Process. 152, 107390 (2021)

    Article  Google Scholar 

  37. Yamashita, K., Yagyu, T., Yabuno, H.: Nonlinear interactions between unstable oscillatory modes in a cantilevered pipe conveying fluid. Nonlinear Dyn. 98(4), 2927–2938 (2019)

  38. Yoshizawa, M., Suzuki, T., Takayanagi, M., Hashimoto, K.: Nonlinear lateral vibration of a vertical fluid-conveying pipe with end mass (special issue on nonlinear dynamics). JSME Int. J. Ser. C 41(3), 652–661 (1998)

    Article  Google Scholar 

  39. Zhang, Y., Yao, M., Zhang, W., Wen, B.: Dynamical modeling and multi-pulse chaotic dynamics of cantilevered pipe conveying pulsating fluid in parametric resonance. Aerosp. Sci. Technol. 68, 441–453 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Professor Emeritus M. Yoshizawa for useful discussions and Edanz for editing a draft of this manuscript. This work was supported by a grant from the University of Tsukuba jyu-ten-haibun.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eisuke Higuchi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Nonlinear term

The nonlinear term in Eq. (34) is expressed as

$$\begin{aligned} n(\varPhi _{n1})&=\Biggl \{-2i\omega _n^2{\overline{\varPhi }}_{n1}'\int _{0}^{s} \varPhi _{n1}'^2ds -iU_{ncr}\sqrt{\beta }\omega _n \varPhi _{n1}'^2{\overline{\varPhi }}_{n1}' \nonumber \\&-\frac{1}{2}U_{ncr}^2(\varPhi _1'^2{\overline{\varPhi }}_{n1}'' +2\varPhi _{n1}'{\overline{\varPhi }}_{n1}'\varPhi _{n1}'') \nonumber \\&-\frac{1}{2}\omega _n(\varPhi _{n1}'^2{\overline{\varPhi }}_{n1}+2\varPhi _{n1}'\varPhi _{n1} {\overline{\varPhi }}_{n1}')-\frac{9}{2}\varPhi _{n1}''^2{\overline{\varPhi }}_{n1}'' \nonumber \\&-3(\varPhi _{n1}'\varPhi _{n1}''{\overline{\varPhi }}_{n1}'''+\varPhi _{n1}'{\overline{\varPhi }}_{n1}'' \varPhi _{n1}'''+{\overline{\varPhi }}_{n1}'\varPhi _{n1}''\varPhi _{n1}''') \nonumber \\&-\frac{1}{2}(\varPhi _{n1}'^2{\overline{\varPhi }}_{n1}''''+2\varPhi _{n1}' {\overline{\varPhi }}_{n1}'\varPhi _{n1}'''') \nonumber \\&+\frac{1}{2}{\overline{\varPhi }}_{n1}''\int _{s}^{1}\Bigl (\int _{0}^{s} \varPhi _{n1}'^2 ds\Bigr )ds+\omega _n^2{\overline{\varPhi }}_{n1}''\int _{s}^{1}\varPhi _{n1}\varPhi _{n1}' ds \nonumber \\&+\omega _n^2\varPhi _{n1}''\int _{s}^{1}\Bigl (\varPhi _{n1}{\overline{\varPhi }}_{n1} +\varPhi _{n1}{\overline{\varPhi }}_{n1}'\Bigr ) ds \nonumber \\&-\frac{\gamma }{2}\Bigl ({\overline{\varPhi }}_{n1}''\int _{s}^{1}\varPhi _{n1}'^2ds +2\varPhi _{n1}''\int _{s}^{1} \varPhi _{n1}'{\overline{\varPhi }}_{n1}'ds\Bigr ) \nonumber \\&+\frac{\gamma }{2}(1-s)({\overline{\varPhi }}_{n1}''\varPhi _{n1}'^2+2\varPhi _{n1} {\overline{\varPhi }}_{n1}'\varPhi _{n1}'') \nonumber \\&+\frac{1}{2}\Bigl ({\overline{\varPhi }}_{n1}''\varPhi _{n1}''^2(1) +2\varPhi _{n1}''\varPhi _{n1}''(1){\overline{\varPhi }}_{n1}''(1)\Bigr )\Biggr \}|A_n|^2A_n. \nonumber \\ \end{aligned}$$
(A.1)

Non-selfadjointness of the system

We introduce \(\varPsi _{n1}\) as the adjoint function of \(\varPhi _{n1}\), which satisfies

$$\begin{aligned}&\int _{0}^{1} [\varPhi _{n1}''''+\{U_{ncr}^2-\gamma (1-s)\}\varPhi _{n1}''\nonumber \\&\quad +(2i\omega _{n} \sqrt{\beta }U_{ncr}+\gamma )\varPhi _{n1}'-\omega ^2\varPhi _{n1}]{\overline{\varPsi }}_{n1}ds=0. \end{aligned}$$
(B.1)

Considering the boundary conditions of Eq. (33), we note that \(\varPsi _{n1}\) is the solution to the boundary value problem

$$\begin{aligned}&{\overline{\varPsi }}_{n1}''''+\{U_{ncr}^2 - \gamma (1-s)\}{\overline{\varPsi }}_{n1}''\nonumber \\&\quad +(-2i\omega _{n} \sqrt{\beta }U_{ncr}+\gamma ){\overline{\varPsi }}_{n1}'-\omega _{n} ^2{\overline{\varPsi }}_{n1}=0, \end{aligned}$$
(B.2)
$$\begin{aligned}&\left\{ \begin{array}{ll} {\overline{\varPsi }}_{n1}(0)=0 \\ {\overline{\varPsi }}_{n1}'(0)=0 \\ {\overline{\varPsi }}_{n1}^{''}(1)=-U_{ncr}^2{\overline{\varPsi }}_{n1}(1) \\ {\overline{\varPsi }}_{n1}^{'''}(1)=2i\omega _{n} \sqrt{\beta }U_{ncr}{\overline{\varPsi }}_{n1}(1)-U_{ncr}^2{\overline{\varPsi }}_{n1}'(1). \end{array} \right. \end{aligned}$$
(B.3)

According to Eqs. (B.2) and (B3), the differential equation satisfied by \(\varPsi _{n1}\) does not correspond to Eqs. (32) and (33), which \(\varPhi _{n1}\) satisfies. Therefore, \(\varPsi _{n1}\) is not the eigenmode and this system has non-selfadjointness. When we assume the flow velocity to be zero in Eqs. (B.2) and (B.3), these equations correspond to Eqs. (32) and (33). Therefore, the fluid conveying in the pipe makes this system non-selfadjoint.

\(\varPhi _{n1}\) and \(\varPsi _{m1}\) satisfy \(\int _0^1 \varPhi _{n1}{\overline{\varPsi }}_{m1}ds=\delta _{nm}\), where \(\delta _{nm}\) is Kronecker’s delta. Hence, from this property, the adjoint function plays an important role in the analysis of non-selfadjoint system and is used to obtain the eigenvalue [26]. Also, the application of the orthogonality yields the solvability condition related to the amplitude equation in nonlinear non-selfadjoint systems [19]. In this manuscript, we use the adjoint function in order to derive the solvability condition of \(\varPhi _{n3}\)as in Sect. 3. But, the adjoint function is not necessary for obtaining the complex mode shape experimentally as mentioned in Sect. 4.

Identification of flexural rigidity

We need the flexural rigidity EI as a parameter when we calculate the eigenmode theoretically. In this study, we determined the flexural rigidity EI of the pipe so that the natural frequency of free vibration without internal flow for the first mode obtained experimentally is equal to that obtained theoretically. Using this flexural rigidity EI, we find that the frequency of the second mode obtained experimentally is similar to that calculated theoretically as shown in Table 4.

Table 4 Comparison of the frequencies of free vibration of the first and second modes in the experimental results with those in the theoretical results

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Higuchi, E., Yabuno, H. & Yamashita, K. Method of experimentally identifying the complex mode shape of the self-excited oscillation of a cantilevered pipe conveying fluid. Nonlinear Dyn 109, 589–604 (2022). https://doi.org/10.1007/s11071-022-07460-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07460-0

Keywords

Navigation