Skip to main content
Log in

Hopf bifurcation induced by time delay and influence of Allee effect in a diffusive predator–prey system with herd behavior and prey chemotaxis

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We formulate and concern a diffusive delayed predator–prey system with herd behavior and fear effect; an Allee effect term and prey chemotaxis are both considered. We first investigate the stability of the system under the strong Allee effect and weak Allee effect without spatial diffusion or time delay. For the spatiotemporal system, the constant positive steady states and semi-trivial steady states are presented. Then, the dynamic behaviors of the diffusive system are demonstrated in detail, and the conditions of Turing instability caused by prey chemotaxis are explored. In addition, we regard the time delay as a bifurcation parameter to investigate the stability of reaction–diffusion system. The normal form theory and center manifold theorem are applied to derive the properties of Hopf bifurcation of the delayed diffusive system. Finally, series of computer simulations are given to verify the theoretical analysis and show how fear effect affects the stability of system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability statement

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Chen, S.S., Lou, Y., Wei, J.J.: Hopf bifurcation in a delayed reaction-diffusion-advection population model. J. Differ. Equations 264(8), 5333–5359 (2018)

    Article  MathSciNet  Google Scholar 

  2. Billingham, J.: Dynamics of a strongly nonlocal reaction-diffusion population model. Nonlinearity 17(1), 313–346 (2004)

    Article  MathSciNet  Google Scholar 

  3. Wang, M.X.: Stability and Hopf bifurcation for a predator-prey model with prey-stage structure and diffusion. Math. Biosci. 212, 149–160 (2008)

    Article  MathSciNet  Google Scholar 

  4. Du, Y.H., Shi, J.P.: A diffusive predator-prey model with a protection zone. J. Differ. Equations 229, 63–91 (2006)

    Article  MathSciNet  Google Scholar 

  5. Holzer, M., Popovic, N.: Wavetrain solutions of a reaction-diffusion-advection model of mussel-algae interaction. Siam J. Appl. Dyn. Syst. 16(1), 431–478 (2017)

    Article  MathSciNet  Google Scholar 

  6. Sasmal, S.K., Takeuchi, Y.: Modeling the Allee effects induced by cost of predation fear and its carry-over effects. J. Math Anal. Appl. 505, 125485 (2022)

    Article  MathSciNet  Google Scholar 

  7. Jiang, H.P., Tang, X.S.: Hopf bifurcation in a diffusive predator-prey model with herd behavior and prey harvesting. J. Appl. Anal. Comput. 9(2), 671–690 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Li, Y., Wang, M.X.: Hopf bifurcation and global stability of a delayed predator-prey model with prey harvesting. Comput. Math. Appl. 69, 398–410 (2015)

    Article  MathSciNet  Google Scholar 

  9. Song, Y.L., Jiang, H.P., Liu, Q.X., Yuan, Y.: Spatiotemporal dynamics of the diffusive mussel-algae model near Turing-Hopf bifurcation. Siam J. Appl. Dyn. Syst. 16(4), 2030–2062 (2017)

    Article  MathSciNet  Google Scholar 

  10. Yang, R.Z., Wei, J.J.: Stability and bifurcation analysis of a diffusive prey-predator system in Holling type III with a prey refuge. Nonlinear Dyn. 79, 631–646 (2015)

    Article  MathSciNet  Google Scholar 

  11. Zhang, T.H., Xing, Y.P., Zang, H., Han, M.A.: Spatio-temporal dynamics of a reaction-diffusion system for a predator-prey model with hyperbolic mortality. Nonlinear Dyn. 78, 265–277 (2014)

    Article  MathSciNet  Google Scholar 

  12. Yang, J.G., Yuan, S.L., Zhang, T.H.: Complex dynamics of a predator-prey system with herd and schooling behavior: with or without delay and diffusion. Nonlinear Dyn. 104, 1709–1735 (2021)

    Article  Google Scholar 

  13. Kooij R., Zegeling, A.: Co-existence of a period annulus and a limit cycle in a class of predator-prey models with group defense. Int. J. Bifurcat. Chaos 31(10), 2021 2150154 (2021)

  14. Mishra, P., Raw, S.N., Tiwari, B.: On a cannibalistic predator-prey model with prey defense and diffusion. Appl. Math. Model. 90, 165–190 (2021)

    Article  MathSciNet  Google Scholar 

  15. Meng, X.Y., Wang, J.G.: Dynamical analysis of a delayed diffusive predator-prey model with schooling behaviour and Allee effect. J. Biol. Dynam. 14(1), 826–848 (2020)

    Article  MathSciNet  Google Scholar 

  16. Tang, X.S., Song, Y.L.: Stability, Hopf bifurcations and spatial patterns in a delayed diffusive predator-prey model with herd behavior. Appl. Math. Comput. 254, 375–391 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Qi, H.K., Meng, X.Z.: Threshold behavior of a stochastic predator-prey system with prey refuge and fear effect. Appl. Math. Lett. 113, 106846 (2021)

    Article  MathSciNet  Google Scholar 

  18. Cong, P.P., Fan, M., Zou. X.F.: Dynamics of a three-species food chain model with fear effect. Commun Nonlinear Sci. 99, 105809 (2021)

  19. Liu, Q., Jiang, D.Q.: Influence of the fear factor on the dynamics of a stochastic predator-prey model. Appl. Math. Lett. 112, 106756 (2021)

    Article  MathSciNet  Google Scholar 

  20. Liu, Y.Y., Wei. J.J.: Double Hopf bifurcation of a diffusive predator-prey system with strong Allee effect and two delays. Nonlinear Anal-Model. 26, 72-92 (2021)

  21. Shi, J.P., Shivaji, R.: Persistence in reaction diffusion models with weak allee effect. J. Math Biol. 52, 807–829 (2006)

    Article  MathSciNet  Google Scholar 

  22. Wang, J.F., Shi, J.P., Wei, J.J.: Predator-prey system with strong Allee effect in prey. J. Math. Biol. 62, 291–331 (2011)

    Article  MathSciNet  Google Scholar 

  23. Sen, D., Ghorai, S., Sharma, S., Banerjee, M.: Allee effect in prey’s growth reduces the dynamical complexity in prey-predator model with generalist predator. Appl. Math. Model. 91, 768–790 (2021)

    Article  MathSciNet  Google Scholar 

  24. Tao, X.Y., Zhu, L.H.: Study of periodic diffusion and time delay induced spatiotemporal patterns in a predator-prey system. Chaos Solution. Fract. 150, 111101 (2021)

    Article  MathSciNet  Google Scholar 

  25. Ruan, S.G., Wei, J.J.: On the zeros of transcendental functions with applications to stability of delay differential equations with two delays. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 10, 863-874 (2003)

  26. Song, Y.L., Peng, Y.H., Zou, X.F.: Persistence, stability and hopf bifurcation in a diffusive ratio-dependent predator-prey model with delay. Int. J. Bifur. Chaos 24(07), 1450093 (2014)

    Article  MathSciNet  Google Scholar 

  27. Zuo, W.J., Wei, J.J.: Stability and hopf bifurcation in a diffusive predator-prey system with delay effect. Nonlinear Anal. Real World Appl. 12(4), 1998–2011 (2011)

    Article  MathSciNet  Google Scholar 

  28. Li, F., Zhang, S.Q., Meng, X.Z.: Dynamics analysis and numerical simulations of a delayed stochastic epidemic model subject to a general response function. Comput. Appl. Math. 38, 95 (2019)

    Article  MathSciNet  Google Scholar 

  29. Stepan, G.: Great delay in a predator-prey model. Nonlinear Anal. Theor. 10(9), 913–929 (1986)

    Article  MathSciNet  Google Scholar 

  30. Zhong, F.Y., Xu, Z.C., Ge, B.: Hopf bifurcation analysis of a class of abstract delay differential equation. 4(2), 277C29 (2022)

  31. Li, D., He, X.L., Li, X.P., Guo, S.J.: Traveling wavefronts in a two-species chemotaxis model with Lotka-Volterra competitive kinetics. Appl. Math. Lett. 114, 106905 (2021)

    Article  MathSciNet  Google Scholar 

  32. Lin, C.S., Ni, W.M., Takagi, I.: Large amplitude stationary solutions to a chemotaxis system. J. Differ. Equ. 72(1), 1–27 (1988)

    Article  MathSciNet  Google Scholar 

  33. Dai, B.X., Sun, G.X.: Turing-Hopf bifurcation of a delayed diffusive predator-prey system with chemotaxis and fear effect. Appl. Math. Lett. 111, 106644 (2021)

    Article  MathSciNet  Google Scholar 

  34. Lou, Y., Ni, W.M.: Diffusion, self-diffusion cross-diffusion. J. Differ. Equ. 131(1), 79–131 (1996)

    Article  MathSciNet  Google Scholar 

  35. Shi, Y., Wu, J.H., Cao, Q.: Analysis on a diffusive multiple Allee effects predator-prey model induced by fear factors. Nonlinear Anal. Real. 59, 103249 (2021)

    Article  MathSciNet  Google Scholar 

  36. Hassard, B.D., Kazarinoff, N.D., Wan, Y.H.: Theory and applications of Hopf bifurcation. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  37. Faria, T.: Normal forms and hopf bifurcation for partial differential equations with delays. Trans. Am. Math. Soc. 352(5), 2217–2238 (2000)

    Article  MathSciNet  Google Scholar 

  38. Yang, K.: Delay differential equations with applications in population dynamics. Academic Press, Boston (1993)

    MATH  Google Scholar 

  39. Wu, J.: Theory and applications of partial functional differential equations. Springer, New York (1996)

    Book  Google Scholar 

  40. Wiggins, S.: Introduction to applied nonlinear dynamical systems and chaos. Springer-Verlag, New York (2003)

    MATH  Google Scholar 

  41. Cui, R., Shi, J.P., Wu, B.Y.: Strong Allee effect in a diffusive predator-prey system with a protection zone. J. Differ. Equ. 256(1), 108–129 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This study was funded by the SDUST Research Fund (No. 2014TDJH102), the Research Fund for the Taishan Scholar Project of Shandong Province of China, Shandong Provincial Natural Science Foundation of China (No. ZR2019MA003), and the SDUST Innovation Fund for Graduate Students (YC20210217).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinzhu Meng.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proof for Theorem 4.3

Appendix: Proof for Theorem 4.3

Here, we calculate relevant conditions for some properties of Hopf bifurcations for system (4), and we will apply the normal formal theory and center manifold theorem of PDEs which can be studied in detail in ( [36, 37]). In a general way, let \(j\in N_{0}\), \(\tau _{*}=\tau _{n}^{j}\), \(n\in \{0,1,2\cdot \cdot \cdot N_{2}\}\). Now, we present a new coefficient \(\varsigma \in R\), let \(\tau =\varsigma +\tau _{*}\) such that \(\varsigma =0\) becomes the Hopf bifurcation value. Denote \({\tilde{u}}(\cdot , t)=u(\cdot , \tau t)-u_{*}\), \({\tilde{v}}(\cdot , t)=v(\cdot , \tau t)-v_{*}\), \({\tilde{U}}(t)=({\tilde{u}}(\cdot , \tau t), {\tilde{v}}(\cdot , \tau t))\). Based on the above, we know Eq. 23) has two simply purely imaginary roots which can be written as \(\pm i\omega _{*}\).

For simplicity of the notation, then dropping the tildes, rewriting system (4) as:

$$\begin{aligned}&\left\{ \begin{array}{l} \frac{\partial u}{\partial t}=\tau \left[ d_{1}\triangle u+\frac{(u+u_{*})(1-u-u_{*})(u+u_{*}-m)}{1+k(v+v_{*})}\right. \\ \qquad \left. -b\sqrt{(u+u_{*})}(v+v_{*})\right] , \\ \frac{\partial v}{\partial t}=\tau \left[ d_{v}\triangle v+c\sqrt{u(t-\tau )+u_{*}}(v+v_{*})\right. \\ \qquad \left. -d(v+v_{*})\right] ,\\ \end{array} \right. \end{aligned}$$
(34)
$$\begin{aligned}&\frac{\text {d}U(t)}{dt}\nonumber \\&\quad =\tau D_{1}\Delta U(t)+L(\tau )U_{t}+F(U_{t},\varsigma ),\nonumber \\&\psi =(\psi _{1}, \psi _{2})^{T }, \end{aligned}$$
(35)

with

$$\begin{aligned} D_{1}\Delta U(t)= & {} \left( \begin{array}{c} d_{1}\Delta u \\ d_{2}\Delta v\\ \end{array} \right) , L(\tau )\psi \\= & {} \left( \begin{array}{cc} a_{11}\psi _{1}(0) &{} a_{12}\psi _{2}(0) \\ a_{21}\psi _{1}(-1) &{} 0\\ \end{array} \right) , \\ F(\psi ,\varsigma )\\= & {} \tau \left( \begin{array}{c} f^{(1)}(\tau ) \\ f^{(2)}(\tau )\\ \end{array} \right) \\= & {} \tau \left( \begin{array}{c} \Sigma _{i+j\ge 2}\frac{1}{i!j!}f^{(1)}_{ij}\psi _{1}^{i}(0)\psi _{2}^{j}(0) \\ \Sigma _{i+j+p\ge 2}\frac{1}{i!j!p!}f^{(2)}_{ij}\psi _{1}^{i}(0)\psi _{2}^{j}(0)\psi _{1}^{p}(-1)\\ \end{array} \right) , \end{aligned}$$

where

$$\begin{aligned}&f^{(1)}(u,v,w)=\frac{(u+u_{*})(1-u-u_{*})(u+u_{*}-m)}{1+k(v+v_{*})}\nonumber \\&\quad -b\sqrt{u+u_{*}}(v+v_{*}),\nonumber \\&f^{(2)}(u,v,w)=c\sqrt{w+u_{*}}(v+v_{*})-d(v+v_{*}). \end{aligned}$$
(36)

Applying the Riesz representation theorem [38], \(\eta (\theta ,\tau _{*})\) \((\theta \in [-1,0])\) is a \(2\times 2\) matrix function, such that

$$\begin{aligned}&-\tau _{*}D(\frac{n}{l})^{2}\phi (0)\\&\quad +L(\tau _{*})(\phi )=\int _{-1}^{0}\text {d}[\eta (\theta ,\tau _{*})]\phi (\theta )\\&\qquad for \phi \in ([-1,0],R^{2}), \end{aligned}$$

\(\eta (\theta ,\tau _{*})\)

$$\begin{aligned} \eta (\theta ,\tau _{*})=A\delta (\theta )+B\delta (\theta +1), \end{aligned}$$

with

$$\begin{aligned} A= \tau _{*}\left( \begin{array}{cc} a_{11}-d_{1}(\frac{n}{l})^{2} &{} a_{12}\\ 0 &{} -d_{2}(\frac{n}{l})^{2}\\ \end{array} \right) , ~~ B=\tau _{*}\left( \begin{array}{cc} 0&{}0 \\ -a_{21} &{} 0\\ \end{array} \right) . \end{aligned}$$

Denote \(\Upsilon (\theta )\in C^{1}([-1,0],R^{2})\), define

$$\begin{aligned} {\mathcal {C}}(\Upsilon (\theta ))=\left\{ \begin{array}{l} \frac{\text {d}\Upsilon (\theta )}{\text {d}\theta },~~~~~~~~~~~\theta \in [-1,0),\\ \int _{-1}^{0}\text {d}\eta (\theta )\Upsilon (\theta ),\theta =0. \end{array} \right. \end{aligned}$$

And For \(\Psi (\vartheta )\in C^{1}([-1,0],R^{2})\), define

$$\begin{aligned} \mathcal {C^{*}}(\Psi (\vartheta ))=\left\{ \begin{array}{l} \frac{-\text {d}\Psi (\vartheta )}{\text {d}\vartheta },~~~~~~~~~~~~\vartheta \in [0,1),\\ \int _{-1}^{0}\text {d}\eta (\vartheta )\Upsilon (-\vartheta ),\vartheta =0. \end{array} \right. \end{aligned}$$

\(\mathcal {C^{*}}\) is the formal adjoint of \({\mathcal {C}}\) under the bilinear pairing

$$\begin{aligned}&\langle \Psi (\vartheta ),\Upsilon (\theta )\rangle ={\overline{\Psi }}(0),\Upsilon (0)\\&\quad -\int _{-1}^{0}\int _{0}^{\theta }{\overline{\Psi }}(s-\theta )\text {d}\eta (\theta )\Upsilon (s)\text {d}s. \end{aligned}$$

As mentioned above \(\pm i\omega _{*}\) are the eigenvalues of the operator \({\mathcal {C}}\) , thus, it is easy to get the \(\pm i\omega _{*}\) are also the eigenvalues of \(\mathcal {C^{*}}\).

Suppose that \(P(\theta )=(P_{1},P_{2})^\mathrm {T}e^{i\omega _{*}\tau _{*}\theta }=(1,P_{2})^\mathrm {T}e^{i\omega _{*}\tau _{*}\theta }\), \(\theta \in [-1,0]\) is the eigenvector of \({\mathcal {C}}\), \(i\omega _{*}\tau _{*}\) is the root of \({\mathcal {C}}\), and \(Q(\vartheta )=R(Q_{1},Q_{2})^\mathrm {T}e^{i\omega _{*}\tau _{*}\vartheta }=R(1,Q_{2})^\mathrm {T}e^{i\omega _{*}\tau _{*}\vartheta }\) is the eigenvector of \(\mathcal {C^{*}}\), \(-i\omega _{*}\tau _{*}\) is the root of \(\mathcal {C^{*}}\). Refer to [39] for detailed methods and definitions. According to the equation \(\langle P^{*}(\theta ),Q(\vartheta )\rangle =1\), then we obtain

$$\begin{aligned} P_{2}{=}\frac{i\omega -a_{11}+d_{1}\frac{n^{2}}{l^{2}}}{a_{12}}, R=(1+P_{2}{\bar{Q}}_{2}+a_{21}{\bar{Q}}_{2}e^{i\omega \tau }), \end{aligned}$$
$$\begin{aligned} Q_{2}=\frac{-i\omega \tau -a_{11}+d_{1}\frac{n^{2}}{l^{2}}}{a_{21}}e^{-i\omega }. \end{aligned}$$

Thus, we can compute \(f^{(2)}_{100}=0,\) then we have

$$\begin{aligned}&f^{(1)}_{10}=\frac{(1-2u_{*})(u_{*}-m)+u_{*}(1-u_{*})}{1+kv_{*}}\\&-\frac{bv_{*}\sqrt{u_{*}}}{2u_{*}},~f^{(1)}_{02}\\&=\frac{2k^{2}u_{*}(1-u_{*})(u_{*}-m)}{(1+kv_{*})^{3}}, f^{(1)}_{20}=\frac{-6u_{*}+2m+2}{1+kv_{*}}\\&+\frac{bv_{*}u_{*}^{-\frac{3}{2}}}{4},~\\&f^{(1)}_{21}=\frac{k(6u_{*}-2m-2)}{(1+kv_{*})^{2}}\\&+\frac{bu_{*}^{-\frac{3}{2}}}{4},\\&f^{(1)}_{11}=\frac{k(3u_{*}^{2}-2u_{*}m-2{u_{*}}+m)}{(1+kv_{*})^{2}}\\&-\frac{b\sqrt{u_{*}}}{2u_{*}},~f^{(1)}_{22}\\&=\frac{-2k^{2}(6u_{*}-2m-2)}{(1+kv_{*})^{3}}, f^{(2)}_{001}=\frac{cv_{*}\sqrt{u_{*}}}{2u_{*}},~f^{(2)}_{002}\\&=-\frac{cu_{*}^{-\frac{1}{2}}}{4}v_{*},~f^{(2)}_{003}\\&=\frac{3c}{8}u_{*}^{-\frac{5}{2}}, f^{(1)}_{12}=\frac{2k^{2}(3u_{*}-2u_{*}m-2_{u_{*}}+m)}{(1+kv_{*})^{3}},~f^{(2)}_{010}\\&=c\sqrt{u_{*}}-d,~f^{(2)}_{012}=-\frac{cu_{*}^{-\frac{1}{2}}}{4}. \end{aligned}$$

Through the calculation above, we have

$$\begin{aligned} F=(\tau +\varsigma )\left( \begin{array}{cc} \frac{1}{2}f^{(1)}_{20}\psi _{1}^{2}(0)+f^{(1)}_{11}\psi _{1}(0)\psi _{2}(0)+\frac{1}{2}f^{(1)}_{02}\psi _{2}^{2}(0)+\frac{1}{6}f^{(1)}_{30}\psi _{1}^{3}(0)\psi _{2}(0)\\ +\frac{1}{2}f^{(1)}_{21}\psi _{1}^{2}(0)\psi _{2}(0)\\ +\frac{1}{2}f^{(1)}_{12}\psi _{1}(0)\psi _{2}^{2}(0)+\frac{1}{6}\psi _{2}^{3}(0)+\cdot \cdot \cdot \\ +\frac{1}{2}f^{(2)}_{002}\psi _{1}^{2}(-1)+f^{(2)}_{011}\psi _{1}(-1)\psi _{2}(-1)+\\ +\frac{1}{2}f^{(2)}_{020}\psi _{2}^{2}(-1)\\ +\frac{1}{6}f^{(2)}_{003}\psi _{1}^{3}(-1)+\frac{1}{2}f^{(2)}_{012}\psi _{1}^{2}(-1)\psi _{2}(0). \end{array} \right) . \end{aligned}$$

Therefore, we can compute the following quantities \(g_{20}=\tau _{*}{\bar{R}}\left[ f_{20}^{(1)}+2f_{11}^{(1)}P_{2}+f_{02}^{(1)}P_{2}^{2}\right. \) \(\qquad \,\,\left. +\bar{Q_{2}}\left( f_{002}^{(2)}e^{-2i\omega \tau _{*}}+2f_{011}\right) e^{-i\omega \tau _{*}}P_{2}\right] ,\) \(g_{11}=\tau _{*}{\bar{R}}\left[ f_{20}^{(1)}+f_{02}^{(1)}P_{2}{\bar{P}}_{2}+2f_{11}^{(1)}Re\{P_{2}\}+{\bar{Q}}_{2}\right. \) \(\qquad \,\,\left. \left( f_{002}+2f_{011}Re\{P_{2}\}\right) e^{-i\omega \tau _{*}}\right] ,\) \(g_{02}={\bar{g}}_{20},\)

$$\begin{aligned} g_{21}= & {} \frac{\tau _{*}{\bar{R}}}{l\pi }\left\{ \int _{0}^{l\pi }\left[ f_{20}^{(1)}\left( 2w_{11}^{(1)}(0)+w_{20}^{(1)}(0)\right) \right. \right. \\&+\left. \left. f_{02}^{(1)}\left( 2P_{2}w_{11}^{(2)}(0)+{\bar{P}}_{2}w_{20}^{(2)}(0)\right) \right] \cos ^{2}\frac{nx}{l}\mathrm {d}x\right\} \\&\quad +\frac{\tau _{*}{\bar{R}}}{l\pi }\left\{ \int _{0}^{l\pi }\left[ f_{11}^{(1)}\left( 2w_{11}^{(2)}(0)+w_{20}^{(2)}(0)\right) \right. \right. \\&+\left. \left. {\bar{P}}_{2}w_{20}^{(1)}(0)+2P_{2}w_{11}^{(1)}(0)\right] \cos ^{2}\frac{nx}{l}\mathrm {d}x\right\} \\&\quad +\frac{\tau _{*}{\bar{R}}}{l\pi }\left\{ \left[ f_{30}^{(1)}+f_{03}^{(1)}P_{2}{\bar{P}}_{2}+f_{12}^{(1)}\left( P_{2}^{2}+2|P_{2}|^{2}\right) \right. \right. \\&+\left. \left. f_{21}^{(1)}(2P_{2}+2{\bar{P}}_{2})\right] \int _{0}^{l\pi }\cos ^{4}\frac{nx}{l}\mathrm {d}x\right\} \\&\quad +\frac{1}{l\pi }\left\{ \left[ f_{003}^{(2)}e^{-i\omega \tau }+f_{012}^{(2)}\left( 2P_{2}\right. \right. \right. \\&\left. \left. \left. +{\bar{P}}e^{-2i\omega \tau }\right) \right] \int _{0}^{l\pi }\cos ^{4}\frac{nx}{l}\mathrm {d}x\right\} \\&\quad +\frac{1}{l\pi }\int _{0}^{l\pi }\left[ f_{011}^{(2)}\left( 2w_{11}(-1)^{(2)}e^{-i\omega \tau _{*}}+w_{20}^{2}(0)e^{i\omega \tau _{*}}\right. \right. \\&+\left. \left. {\bar{P}}_{2}w_{20}^{(1)}(-1)+2P_{2}w_{11}^{(1)}(-1)\right) \right. \\&\quad \left. +f_{002}^{(2)}\left( 2w_{11}^{(1)}(-1)e^{-i\omega _{*}\tau _{*}}+w_{20}^{(1)}(-1)e^{i\omega _{*}\tau _{*}}\right) \right. \\&+\left. 2f_{011}^{(2)}w_{11}^{(1)}(-1)\right] \int _{0}^{l\pi }\cos ^{2}\frac{nx}{l}\mathrm {d}x, \end{aligned}$$

where \(n=0,1,2,\cdot \cdot \cdot ,\) then we have

$$\begin{aligned} w_{20}(\theta ){=}\left( \frac{ig_{20}}{\omega _{*}\tau _{*}}P(\theta )+\frac{ig_{02}}{3\omega _{*}\tau _{*}}{\overline{P}}(\theta )\right) \cdot f_{n}{+}E_{1}e^{2i\omega _{*}\tau _{*}\theta }, \end{aligned}$$
$$\begin{aligned} w_{11}(\theta )=\left( -\frac{ig_{11}}{\omega _{*}\tau _{*}}P(\theta )+\frac{i{\overline{g}}_{11}}{\omega _{*}\tau _{*}}{\overline{P}}(\theta )\right) \cdot f_{n}+E_{2}, \end{aligned}$$

the definition of \(f_{n}\) has the same meaning as in reference [39].

According to the [39], we get

$$\begin{aligned} E_{1}= \left( \begin{array}{cc} 2i\omega _{*}+d_{1}(\frac{n}{l})^{2}-a_{11} &{} -a_{12} \\ -a_{21}e^{-2i\omega _{*}\tau _{*}} &{} 2i\omega _{*}+d_{2}(\frac{n}{l})^{2} \end{array} \right) ^{-1}\\ \times \left( \begin{array}{cc} f^{(1)}_{20}+2f^{(1)}_{11}P_{2}+f^{(1)}_{02}P^{2}_{2}\\ 2f^{(2)}_{011}P_{2}e^{-i\omega _{*}\tau _{*}} \end{array} \right) \cos ^{2}\frac{n}{l}x,\\ E_{2}=\left( \begin{array}{cc} d_{1}(\frac{n}{l})^{2}-a_{11} &{} -a_{12} \\ -a_{21} &{} d_{2}(\frac{n}{l})^{2} \end{array} \right) ^{-1}\times H, \end{aligned}$$

where

$$\begin{aligned} H=\left( \begin{array}{cc} f^{(1)}_{20}+f^{(1)}_{11}(P_{2}+{\overline{P}}_{2})+f^{(1)}_{02}P_{2}{\overline{P}}_{2}\\ f^{(2)}_{011}(P_{2}e^{-i\omega _{*}\tau _{*}}+{\overline{P}}_{2}e^{-i\omega _{*}\tau _{*}}) \end{array} \right) \cos ^{2}\frac{n}{l}x. \end{aligned}$$

Furthermore, we can determine \(g_{21}\) by determining the \(w_{20}\) and \(w_{11}\).

Based on the above analysis, we have [40]

$$\begin{aligned} \left\{ \begin{array}{l} c_{1}(\tau _{*})=\frac{i\left( g_{11}g_{20}-2\mid g_{11}\mid ^{2}-\frac{\mid g_{02}\mid ^{2}}{3}\right) }{2\omega \tau _{*}}+\frac{g_{21}}{2}, \\ \mu _{2}=-\frac{\texttt {Re}\{c_{1}(\tau _{*})\}}{\texttt {Re}(\lambda ^{'}(\tau _{*}))},\\ \gamma _{2}=2\texttt {Re}\{c_{1}(\tau _{*})\},\\ T_{2}=-\frac{\texttt {Im}\{c_{1}(\tau _{*})\}+\mu _{2}{} \texttt {Im}\{\lambda ^{'}(\tau _{*})\}}{\omega \tau _{*}}. \end{array} \right. \end{aligned}$$

From the above calculation, correlational properties of the Hopf bifurcation according to the sign of \(\mu _{2}\), \(\gamma _{2}\), \(T_{2}\) and \(c_{1}(\tau _{*})\) can be obtained.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, T., Meng, X., Hayat, T. et al. Hopf bifurcation induced by time delay and influence of Allee effect in a diffusive predator–prey system with herd behavior and prey chemotaxis. Nonlinear Dyn 108, 4581–4598 (2022). https://doi.org/10.1007/s11071-022-07401-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07401-x

Keywords

Navigation