Skip to main content
Log in

Dynamical analysis of position-controllable loop rogue wave and mixed interaction phenomena for the complex short pulse equation in optical fiber

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the complex short pulse equation, which can govern the propagation of ultra-short pulse packets along optical fibers. From the known Lax pair of this equation, the generalized \((n, N-n)\)-fold Darboux transformation is adopted to construct four types of position-controllable localized wave solutions, including loop rogue wave, loop semi-rational soliton, loop periodic wave and their mixed interaction structures, and graphical illustrations present these novel localized wave structures. It is shown that these localized wave solutions can become a loop shape due to hodograph transformation, which is different from other usual single-valued localized waves. Compared with the known results, the main highlight of this paper is not only to propose several new types of localized waves, but also to demonstrate how their positions can be controlled by particular parameters so that we can theoretically control them where we want them to appear; in particular, we derive some novel wave structures with diverse loop localized wave interaction phenomena. These exotic structures may enrich the understanding of the nature of loop rogue waves, which might help explain some physical phenomena in nonlinear optics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Gupta, V., Mittal, M.: QRS complex detection using STFT, chaos analysis, and PCA in standard and real-time ECG databases. J. Inst. Eng. India Ser. B 100, 489–497 (2018)

    Article  Google Scholar 

  2. Gupta, V., Mittal, M., Mittal, V.: R-peak detection based chaos analysis of ECG signal. Analog. Integr. Cirs. S. 102, 479–490 (2020)

    Article  Google Scholar 

  3. Gupta, V.: A novel method of cardiac arrhythmia detection in electrocardiogram signal. Int. J. Med. Inform. 12, 489–499 (2020)

    Google Scholar 

  4. Gupta, V., Mittal, M., Mittal, V.: R-peak detection using chaos analysis in standard and real time ECG databases. IRBM 40, 341–354 (2019)

    Article  Google Scholar 

  5. Gupta, V., Mittal, M., Mittal, V.: BP signal analysis using emerging techniques and its validation using ECG signal. Sens. Imag. 22, 25 (2021)

    Article  Google Scholar 

  6. Gupta, V., Mittal, M., Mittal, V.: Chaos theory and ARTFA: Emerging tools for interpreting ECG signals to diagnose cardiac arrhythmias. Wireless Pers. Commun. 118, 3615–3646 (2021)

    Article  Google Scholar 

  7. Schäfer, T., Wayne, C.E.: Propagation of ultra-short optical pulses in cubic nonlinear media. Phys. D 196, 90–105 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chung, Y., Jones, C.K.R.T., Schäfer, T., Wayne, C.E.: Ultra-short pulses in linear and nonlinear media. Nonlinearity 18, 1351–1374 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Rabelo, M.L.: On equations which describe pseudospherical surfaces. Stud. Appl. Math. 81, 221–248 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Matsuno, Y.: Multi-soliton and multi-breather solutions of the short pulse model equation. J. Phys. Soc. Jpn. 76, 084003 (2007)

    Article  Google Scholar 

  11. Matsuno, Y.: Periodic solutions of the short pulse model equation. J. Math. Phys. 49, 073508 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sakovich, A., Sakovich, S.: The short pulse equation is integrable. J. Phys. Soc. Jpn. 74, 33–40 (2005)

    Article  MATH  Google Scholar 

  13. Brunelli, J.C.: The short pulse hierarchy. J. Math. Phys. 46, 123507 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feng, B.F., Maruno, K.I., Ohta, Y.: Integrable discretizations of the short pulse equation. J. Phys. A 43, 085203 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Feng, B.F.: An integrable coupled short pulse equation. J. Phys. A 45, 085202 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Tchokouansi, H.T., Kuetche, V.K., Kofane, T.C.: Inverse scattering transform of a new optical short pulse system. J. Math. Phys. 55, 123511 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kurt, L., Schäer, T.: Propagation of ultra-short solitons in stochastic Maxwell’s equations. J. Math. Phys. 55, 011503 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shen, Y., Whitaker, N., Kevrekidis, P.G., Tsitsas, N.L., Frantzeskakis, D.J.: Ultrashort pulses and short-pulse equations in 2+1 dimensions. Phys. Rev. A 86, 023841 (2012)

    Article  Google Scholar 

  19. Saleem, U., Hassan, M.: Darboux transformation and multi-soliton solutions of the short pulse equation. J. Phys. Soc. Jpn. 81, 094008 (2012)

    Article  Google Scholar 

  20. Matsuno, Y.: Multiloop soliton and multibreather solutions of the short pulse model equation. J. Phys. Soc. Jpn. 76, 084003 (2010)

    Article  Google Scholar 

  21. Brunelli, J.C.: The bi-Hamiltonian structure of the short pulse equation. Phys. Lett. A 353, 475–478 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sakovich, S.: On a new avatar of the sine-Gordon equation. Nonlinear. Phenom. Com. 21, 62 (2017)

    MATH  Google Scholar 

  23. Feng, B.F., Maruno, K.I., Ohta, Y.: Self-adaptive moving mesh schemes for short pulse type equations and their Lax pairs. Pac. J. Math. 6, 8 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Matsuno, Y.: A novel multi-component generalization of the short pulse equation and its multisoliton solutions. J. Math. Phys. 52, 90 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhao, D.: Zhaqilao: on two new types of modified short pulse equation. Nonlinear Dyn. 100, 615–627 (2020)

    Article  MATH  Google Scholar 

  26. Gupta, R.K., Kumar, V., Jiwari, R.: Exact and numerical solutions of coupled short pulse equation with time-dependent coefficients. Nonlinear Dyn. 79, 455–464 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gao, B., He, C.F.: Analysis of a coupled short pulse system via symmetry method. Nonlinear Dyn. 90, 2627–2636 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Feng, B.F.: Complex short pulse and coupled complex short pulse equations. Phys. D 297, 62–75 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Feng, B.F., Ling, L., Zhu, Z.: A defocusing complex short pulse equation and its multi-dark soliton solution by Darboux transformation. Phys. Rev. E 93, 052227 (2016)

    Article  MathSciNet  Google Scholar 

  30. Feng, B.F., Ling, L., Zhu, Z.: Multi-soliton, multi-breather and higher order rogue wave solutions to the complex short pulse equation. Phys. D 327, 13–29 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhaqilao: The interaction solitons for the complex short pulse equation. Commun. Nonlinear Sci. Numer. Simulat. 47: 379-393 (2017)

  32. Hanif, Y., Sarfraz, H., Saleem, U.: Dynamics of loop soliton solutions of PT-symmetric nonlocal short pulse equation. Nonlinear Dyn. 100, 1559–1569 (2020)

    Article  Google Scholar 

  33. Chen, K., Liu, S.M., Zhang, D.J.: Covariant hodograph transformations between nonlocal short pulse models and the AKNS (-1) system. Appl. Math. Lett. 88, 230–236 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Prinari, B., Trubatch, A.D., Feng, B.F.: Inverse scattering transform for the complex short-pulse equation by a Riemann-Hilbert approach. Eur. Phys. J. Plus. 135, 717 (2020)

    Article  Google Scholar 

  35. Li, B.Q., Ma, Y.L.: Periodic solutions and solitons to two complex short pulse (CSP) equations in optical fiber. Optik 144, 149–155 (2017)

    Article  Google Scholar 

  36. Feng B.F., Ling L.: Darboux transformation and solitonic solution to the coupled complex short pulse equation. arXiv:2111.00284v1 (2021)

  37. Shen, S.F., Feng, B.F., Ohta, Y.: A modified complex short pulse equation of defocusing type. J. Nonlinear Math. Phys. 24, 195–209 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Clarkson, P.A., Ablowitz, A.: Hodograph transformations of linearizable partial differential equations. SIAM J. Appl. Math. 49, 1188–1209 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kawamoto, S.: An exact transformation from the Harry Dym equation to the modified KdV equation. J. Phys. Soc. Jpn. 54, 2055–2056 (1985)

    Article  Google Scholar 

  40. Fordy, A.P., Gibbons, J.: Some remarkable nonlinear transformations. Phys. Lett. A 75, 325–325 (1980)

    Article  MathSciNet  Google Scholar 

  41. Weiss, J.: On classes of integrable systems and the Painlev property. J. Math. Phys. 25, 13–24 (1984)

    Article  MathSciNet  Google Scholar 

  42. Guo, R., Tian, B., Wang, L.: Soliton solutions for the reduced Maxwell-Bloch system in nonlinear optics via the N-fold Darboux transformation. Nonlinear Dyn. 69, 2009–2020 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  43. Ma, W.X.: A Darboux transformation for the Volterra lattice equation. Anal. Math. Phys. 9, 1711–1718 (2019)

  44. Wang, H.T., Wen, X.Y.: Soliton elastic interactions and dynamical analysis of a reduced integrable nonlinear Schrödinger system on a triangular-lattice ribbon. Nonlinear Dyn. 100, 1571-1587 (2020)

    Article  MATH  Google Scholar 

  45. Yu, F.J., Yu, J., Li, L.: Some discrete soliton solutions and interactions for the coupled Ablowitz-Ladik equations with branched dispersion. Wave Motion 94, 102500 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wen, X.Y., Yan, Z.: Generalized perturbation \((n, M)\)-fold Darboux transformations and multi-rogue-wave structures for the modified self-steepening nonlinear Schrödinger equation. Phys. Rev. E 92, 012917 (2015)

    Article  MathSciNet  Google Scholar 

  47. Wen, X.Y., Yan, Z., Yang, Y.: Dynamics of higher-order rational solitons for the nonlocal nonlinear Schrödinger equation with the self-induced parity-time-symmetric potential. Chaos 26, 063123 (2016)

    Article  MathSciNet  Google Scholar 

  48. Wen, X.Y., Yan, Z.: Higher-order rational solitons and rogue-like wave solutions of the (2+1)-dimensional nonlinear fluid mechanics equations. Commun. Nonlinear. Sci. Numer. Simulat. 43, 311–329 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work has been partially supported by National Natural Science Foundation of China Under Grant No. 12071042 and Beijing Natural Science Foundation Under Grant No. 1202006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Yong Wen.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Z., Wen, XY. Dynamical analysis of position-controllable loop rogue wave and mixed interaction phenomena for the complex short pulse equation in optical fiber. Nonlinear Dyn 108, 2573–2593 (2022). https://doi.org/10.1007/s11071-022-07315-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07315-8

Keywords

Navigation