Skip to main content
Log in

Nonlinear and dual-parameter chaotic vibrations of lumped parameter model in blisk under combined aerodynamic force and varying rotating speed

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the nonlinear and dual-parameter chaotic vibrations are investigated for the blisk structure with the lumped parameter model under combined the aerodynamic force and varying rotating speed. The varying rotating speed and aerodynamic force are, respectively, simplified to the parametric and external excitations. The nonlinear governing equations of motion for the rotating blisk are established by using Hamilton’s principle. The free vibration and mode localization phenomena are studied for the tuning and mistuning blisks. Due to the mistuning, the periodic characteristics of the blisk structure are destroyed and uniform distribution of the energy is broken. It is found that there is a positive correlation between the mistuning variable and mode localization factor to exhibit the large vibration of the blisk in a certain region. The method of multiple scales is applied to derive four-dimensional averaged equations of the blisk under 1:1 internal and principal parametric resonances. The amplitude–frequency response curves of the blisk are studied, which illustrate the influence of different parameters on the bandwidth and vibration amplitudes of the blisk. Lyapunov exponent, bifurcation diagrams, phase portraits, waveforms and Poincare maps are depicted. The dual-parameter Lyapunov exponents and bifurcation diagrams of the blisk reveal the paths leading to the chaos. The influences of different parameters on the bifurcation and chaotic vibrations are analyzed. The numerical results demonstrate that the parametric and external excitations, rotating speed and damping determine the occurrence of the chaotic vibrations and paths leading to the chaotic vibrations in the blisk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data availability statement

All data generated or analyzed during this study are included in this published article.

References

  1. Z. J. Li, W. J. Yang and H. Q. Yuan, Vibration analysis of aeroengine blisk structure based on a prestressed CMS super-element method, Shock and Vibration, 1021402, 2016.

  2. L. T. Liu, Y. X. Hao, W. Zhang and J. Chen, Free vibration analysis of rotating pretwisted functionally graded sandwich blades, International Journal of Aerospace Engineering, 2727452, 2018.

  3. Y. Niu, W. Zhang and X. Y. Guo, Free vibration of rotating pretwisted functionally graded composite cylindrical panel reinforced with graphene platelets, European Journal of Mechanics A-Solids 77, 103798, 2019.

  4. Wang, F.X., Zhang, W.: Stability analysis of a nonlinear rotating blade with torsional vibrations. J. Sound Vib. 331, 5755–5773 (2012)

    Article  Google Scholar 

  5. Hao, Y.X., Niu, Y., Zhang, W., Li, S.B., Yao, M.H., Wang, A.W.: Supersonic flutter analysis of FGM shallow conical panel accounting for thermal effects. Meccanica 53, 95–109 (2018)

    Article  MathSciNet  Google Scholar 

  6. Wu, R.Q., Zhang, W., Yao, M.H.: Nonlinear dynamics near resonances of a rotor-active magnetic bearings system with 16-pole legs and time varying stiffness. Mech. Syst. Signal Process. 100, 113–134 (2018)

    Article  Google Scholar 

  7. Yao, M.H., Niu, Y., Hao, Y.X.: Nonlinear dynamic responses of rotating pretwisted cylindrical shells. Nonlinear Dyn. 95, 151–174 (2019)

    Article  MATH  Google Scholar 

  8. B. L. Hao, An overview of chaos, Recent Advances and Cross-Century Outlooks in Physics: Interplay between Theory and Experiment, p285–294, 2000.

  9. Jing, X.J., Vakakis, A.F.: Exploring nonlinear benefits in engineering. Mech. Syst. Signal Process. 125, 1–3 (2019)

    Article  Google Scholar 

  10. Yao, M.H., Chen, Y.P., Zhang, W.: Nonlinear vibrations of blade with varying rotating speed. Nonlinear Dyn. 68, 487–504 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhang, X.H., Chen, F.Q., Zhang, B.Q., Jing, T.Y.: Local bifurcation analysis of a rotating blade. Appl. Math. Model. 40, 4023–4031 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wang, Y., Li, F.M., Wang, Y.Z., Jing, X.J.: Nonlinear responses and stability analysis of viscoelastic nanoplate resting on elastic matrix under 3:1 internal resonance. Int. J. Mech. Sci. 128, 94–104 (2017)

    Article  Google Scholar 

  13. Li, C.F., She, H.X., Tang, Q.S., Wen, B.C.: The effect of blade vibration on the nonlinear characteristics of rotor-bearing system supported by nonlinear suspension. Nonlinear Dyn. 89, 987–1010 (2017)

    Article  Google Scholar 

  14. M. H. Yao, L. Ma and W. Zhang, Nonlinear dynamics of the high-speed rotating plate, International Journal of Aerospace Engineering 5610915, 2018.

  15. Wang, Y., Jing, X.J.: Nonlinear stiffness and dynamical response characteristics of an asymmetric X-shaped structure. Mech. Syst. Signal Process. 125, 142–169 (2019)

    Article  Google Scholar 

  16. Cao, D.X., Liu, B.Y., Yao, M.H., Zhang, W.: Free vibration analysis of a pre-twisted sandwich blade with thermal barrier coatings layers. Science China-Technological Sciences 60, 1747–1761 (2017)

    Article  Google Scholar 

  17. E. H. Dowell, R. Clark, D. Cox, H. C. Curtiss, J. W. Edwards, K. C. Hall, D. A. Peters, R. Scanlan, E. Simiu, F. Sisto, T. W. Strgance, A modern course in aeroelasticity, Aviation Industry Press, Beijing, p331–348, 2014.

  18. Zhang, H.Y., Yuan, H.Q., Yang, W.J., Zhao, T.Y.: Vibration reduction optimization of the mistuned bladed disk considering the prestress, Proceedings of the Institution of Mechanical Engineers Part G-Journal of. Aerosp. Eng. 233, 226–239 (2019)

    Google Scholar 

  19. B. Bai, H. Li, W. Zhang and Y. C. Cui, Application of extremum response surface method-based improved substructure component modal synthesis in mistuned turbine bladed disk, Journal of Sound and Vibration 472, 115210, 2020.

  20. Ma, H., Tai, X.Y., Han, Q.K., Wu, Z.Y., Wang, D., Wen, B.C.: A revised model for rubbing between rotating blade and elastic casing. J. Sound Vib. 337, 301–320 (2015)

    Article  Google Scholar 

  21. Yang, Z.X., Han, Q.K., Chen, Y.G., Jin, Z.H.: Nonlinear harmonic response characteristics and experimental investigation of cantilever hard-coating plate. Nonlinear Dyn. 89, 27–38 (2017)

    Article  Google Scholar 

  22. Gao, F., Sun, W.: Nonlinear finite element modeling and vibration analysis of the blisk deposited strain-dependent hard coating. Mech. Syst. Signal Process. 121, 124–143 (2019)

    Article  Google Scholar 

  23. J. Nipkau, A. Kühhorn, and B. Beirow, Modal and aeroelastic analysis of a compressor blisk considering mistuning, ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, p1309–1319, 2011.

  24. Mitra, M., Zucca, S., Epureanu, B.I.: Dynamic model order reduction of blisks with nonlinear damping coatings using amplitude dependent mistuning. Int. J. Non-Linear Mech. 111, 49–59 (2019)

    Article  Google Scholar 

  25. Chatterjee, A.: Lumped parameter modelling of turbine blade packets for analysis of modal characteristics and identification of damage induced mistuning. Appl. Math. Model. 40, 2119–2133 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang, W., Lv, S.L., Ni, Y.G.: Parametric aeroelastic modeling based on component modal synthesis and stability analysis for horizontally folding wing with hinge joints. Nonlinear Dyn. 92, 169–179 (2018)

    Article  MATH  Google Scholar 

  27. Ning, H.W., Jing, X.J.: Identification of partially known non-linear stochastic spatio-temporal dynamical systems by using a novel partially linear Kernel method. IET Control Theory Appl. 9, 21–33 (2015)

    Article  MathSciNet  Google Scholar 

  28. Yuan, J., Allegri, G., Scarpa, F., Scarpa, F., Rajasekaran, R., Patsias, S.: Novel parametric reduced order model for aeroengine blade dynamics. Mech. Syst. Signal Process. 62–63, 235–253 (2015)

    Article  Google Scholar 

  29. Tang, W.H., Epureanu, B.I.: Nonlinear dynamics of mistuned bladed disks with ring dampers. Int. J. Non-linear Mech. 97, 30–40 (2017)

    Article  Google Scholar 

  30. Mitra, M., Zucca, S., Epureanu, B.I.: Adaptive microslip projection for reduction of frictional and contact nonlinearities in shrouded blisks. J. Comput. Nonlinear Dyn. 11, 041016 (2016)

    Article  Google Scholar 

  31. Sun, W., Li, R., Jiang, J.X.: Lumped-parametric modeling based on modal test and analysis of vibration characteristics of the hard-coated blisk. J. Vib. Eng. Technol. 7, 347–358 (2019)

    Article  Google Scholar 

  32. Gao, F., Sun, W.: Free vibration analysis of the hard-coating splitter blisk using the energy-based finite element method. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 233, 4577–4589 (2019)

    Article  Google Scholar 

  33. Zhang, W., Niu, Y., Behdinan, K.: Vibration characteristics of rotating pretwisted composite tapered blade with graphene coating layers. Aerosp. Sci. Technol. 98, 105644 (2020)

    Article  Google Scholar 

  34. Zhang, W., Zheng, Y., Liu, T., Guo, X.Y.: Multi-pulse jumping double-parameter chaotic dynamics of eccentric rotating ring truss antenna under combined parametric and external excitations. Nonlinear Dyn. 98, 761–800 (2019)

    Article  Google Scholar 

  35. Salas, M.G., Petrierepar, P., Martensson, H., Bladh, R., Vogt, D.M.: Forced response analysis of a mistuned blisk using noncyclic reduced-order models. J. Propul. Power 34, 565–577 (2018)

    Article  Google Scholar 

  36. Yan, X.F., Gao, J.N., Zhang, Y., Xu, K.P., Sun, W.: Modeling method of coating thickness random mistuning and its effect on the forced response of coated blisks. Aerosp. Sci. Technol. 92, 478–488 (2019)

    Article  Google Scholar 

  37. Han, Y., Mignolet, M.P.: A novel perturbation-based approach for the prediction of the forced response of damped mistuned bladed disks. J. Vib. Acoust. Trans. ASME 137, 041008 (2015)

    Article  Google Scholar 

  38. Willeke, S., Schwerdt, L., Panning-von Scheidt, L., Wallaschek, J.: Intentional response reduction by harmonic mistuning of bladed disks with aerodynamic damping. J. Eng. Gas Turbines Power 140, 121010 (2018)

    Article  Google Scholar 

  39. Gao, F., Sun, W., Jiang, L.: Application of the hard-coating damper on the mistuned blisk for passive vibration reduction. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 233, 1562–1574 (2019)

    Article  Google Scholar 

  40. Chen, Y.G., Wu, H.C., Zhai, J.Y., Chen, H., Zhu, Q.Y., Han, Q.K.: Vibration reduction of the blisk by damping hard coating and its intentional mistuning design. Aerosp. Sci. Technol. 84, 1049–1058 (2019)

    Article  Google Scholar 

  41. Feng, X., Jing, X.J.: Human body inspired vibration isolation: beneficial nonlinear stiffness, nonlinear damping & nonlinear inertia. Mech. Syst. Signal Process. 117, 786–812 (2019)

    Article  Google Scholar 

  42. Laxalde, D., Thouverez, F., Sinou, J.J., Lombard, J.P.: Qualitative analysis of forced response of blisks with friction ring dampers. Eur. J. Mech. A-Solids 26, 676–687 (2007)

    Article  MATH  Google Scholar 

  43. Salas, M.G., Petrie-Repar, P., Kielb, R.E., Key, N.L.: A mistuned forced response analysis of an embedded compressor blisk using a reduced-order model. J. Eng. Gas Turbines Power ASME 141, 032505 (2019)

    Article  Google Scholar 

  44. Beirow, B., Kuhhorn, A., Giersch, T., Nipkau, J.: Forced response analysis of a mistuned compressor blisk. Proceedings of the ASME Turbo Expo: Turbine Technical Conference and Exposition 136, 062507 (2014)

    Google Scholar 

  45. Sarrouy, E., Grolet, A., Thouverez, F.: Global and bifurcation analysis of a structure with cyclic symmetry. Int. J. Non-linear Mech. 46, 727–737 (2011)

    Article  Google Scholar 

  46. Hoskoti, L., Misra, A., Sucheendran, M.M.: Frequency lock-in during vortex induced vibration of a rotating blade. J. Fluids Struct. 80, 145–164 (2018)

    Article  Google Scholar 

  47. Gu, X.J., Hao, Y.X., Zhang, W., Liu, L.T., Chen, J.: Free vibration of rotating cantilever pre-twisted panel with initial exponential function type geometric imperfection. Appl. Math. Model. 68, 327–352 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  48. Najafi, A.: The stability and nonlinear analysis of a rotating bladed disk at the critical speed. Arch. Appl. Mech. 88, 405–418 (2018)

    Article  Google Scholar 

  49. Deng, P.C., Li, L., Li, C.: Study on vibration of mistuned bladed disk with bi-periodic piezoelectric network. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 231, 350–363 (2017)

    Article  Google Scholar 

  50. Jamia, N., Rajendran, P., El-Borgi, S., Friswell, M.I.: Mistuning identification in a bladed disk using wavelet packet transform. Acta Mech. 229, 1275–1295 (2018)

    Article  Google Scholar 

  51. Wang, Y., Jing, X.J., Dai, H.H., Li, F.M.: Subharmonics and ultra-subharmonics of a bio-inspired nonlinear isolation system. Int. J. Mech. Sci. 152, 167–184 (2019)

    Article  Google Scholar 

  52. Lee, S., Castanier, M., Pierre, C.: Assessment of probabilistic methods for mistuned bladed disk vibration. In: 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Texas (2005)

  53. Ma, H., Lu, Z.YWu., Tai, X.Y., Wen, B.C.: Vibration response analysis of a rotational shaft-disk-blade system with blade-tip rubbing. Int. J. Mech. Sci. 107, 110–125 (2016)

    Article  Google Scholar 

  54. She, H.X., Li, C.F., Tang, Q.S., Wen, B.C.: The investigation of the coupled vibration in a flexible-disk blades system considering the influence of shaft bending vibration. Mech. Syst. Signal Process. 111, 545–569 (2018)

    Article  Google Scholar 

  55. Yao, M.H., Zhang, W., Chen, Y.P.: Analysis on nonlinear oscillations and resonant responses of a compressor blade. Acta Mech. 225, 3483–3510 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  56. Zhang, W., Chen, J.E., Cao, D.X., Chen, L.H.: Nonlinear dynamic responses of a truss core sandwich plate. Compos. Struct. 108, 367–386 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of National Natural Science Foundation of China (NNSFC) through Grant Nos. 11832002, 12072201 and 11427801, the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality (PHRIHLB) and the funding received from the University of Toronto Advanced Research Laboratory for Multifunctional Lightweight Structures (ARL-MLS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W. Zhang or Y. F. Zhang.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Ma, L., Zhang, Y.F. et al. Nonlinear and dual-parameter chaotic vibrations of lumped parameter model in blisk under combined aerodynamic force and varying rotating speed. Nonlinear Dyn 108, 1217–1246 (2022). https://doi.org/10.1007/s11071-022-07287-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07287-9

Keywords

Navigation