Skip to main content
Log in

Nonlinear dynamic responses of rotating pretwisted cylindrical shells

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A rotating pretwisted cylindrical shell model with a presetting angle is established to investigate nonlinear dynamic responses of the aero-engine compressor blade. The centrifugal force and the Coriolis force are considered in the model. The aerodynamic pressure is obtained by the first-order piston theory. The strain–displacement relationship is derived by the Green strain tensor. Based on the first-order shear deformation theory and the isotropic constitutive law, nonlinear partial differential governing equations are derived by using the Hamilton principle. Discarding the Coriolis force effect, Galerkin approach is utilized to reduce nonlinear partial differential governing equations into a two-degree-of-freedom nonlinear system. According to nonlinear ordinary differential equations, numerical simulations are performed to explore nonlinear transient dynamic responses of the system under the effect of the single point excitation and nonlinear steady-state dynamic responses of the system under the effect of the uniform distribution excitation. The effects of the excitation parameter, damping coefficient, rotating speed, presetting angle and pretwist angle on nonlinear dynamic responses of the system are fully discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Carnegie, W.: Vibrations of rotating cantilever blading: theoretical approaches to the frequency problem based on energy methods. J. Mech. Eng. Sci. 1(3), 235–240 (1959)

    Article  MATH  Google Scholar 

  2. Subrahmanyam, K.B., Kulkarni, S.V., Rao, J.S.: Coupled bending–bending vibrations of pre-twisted cantilever blading allowing for shear deflection and rotary inertia by the Reissner method. Int. J. Mech. Sci. 23(9), 517–530 (1981)

    Article  MATH  Google Scholar 

  3. Subrahmanyam, K.B., Kulkarni, S.V., Rao, J.S.: Coupled bending–torsion vibrations of rotating blades of asymmetric aerofoil cross section with allowance for shear deflection and rotary inertia by use of the Reissner method. J. Sound Vib. 75(1), 17–36 (1981)

    Article  MATH  Google Scholar 

  4. Chen, L.W., Chen, C.L.: Vibration and stability of cracked thick rotating blades. Comput. Struct. 28(1), 67–74 (1988)

    Article  Google Scholar 

  5. Song, O., Librescu, L.: Structural modeling and free vibration analysis of rotating composite thin-walled beams. J. Am. Helicopter Soc. 42(4), 358–369 (1997)

    Article  Google Scholar 

  6. Chandiramani, N.K., Librescu, L., Shete, C.D.: On the free-vibration of rotating composite beams using a higher-order shear formulation. Aerosp. Sci. Technol. 6(8), 545–561 (2002)

    Article  MATH  Google Scholar 

  7. Oh, S.Y., Song, O., Librescu, L.: Effects of pretwist and presetting on coupled bending vibrations of rotating thin-walled composite beams. Int. J. Solids Struct. 40(5), 1203–1224 (2003)

    Article  MATH  Google Scholar 

  8. Fazelzadeh, S.A., Malekzadeh, P., Zahedinejad, P., Hosseini, M.: Vibration analysis of functionally graded thin-walled rotating blades under high temperature supersonic flow using the differential quadrature method. J. Sound Vib. 306(1–2), 333–348 (2007)

    Article  Google Scholar 

  9. Saravia, C.M., Machado, S.P., Cortínez, V.H.: Free vibration and dynamic stability of rotating thin-walled composite beams. Eur. J. Mech. A/Solids 30(3), 432–441 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Oh, Y., Yoo, H.H.: Vibration analysis of rotating pretwisted tapered blades made of functionally graded materials. Int. J. Mech. Sci. 119, 68–79 (2016)

    Article  Google Scholar 

  11. Ding, H., Chen, L.Q.: Natural frequencies of nonlinear vibration of axially moving beams. Nonlinear Dyn. 63(1–2), 125–134 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ding, H., Zhu, M.H., Zhang, Z., Zhang, Y.W., Chen, L.Q.: Free vibration of a rotating ring on an elastic foundation. Int. J. Appl. Mech. 9(4), 1750051 (2017)

    Article  Google Scholar 

  13. Wang, F.X., Zhang, W.: Stability analysis of a nonlinear rotating blade with torsional vibrations. J. Sound Vib. 331(26), 5755–5773 (2012)

    Article  Google Scholar 

  14. Yao, M.H., Chen, Y.P., Zhang, W.: Nonlinear vibrations of blade with varying rotating speed. Nonlinear Dyn. 68(4), 487–504 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Yao, M.H., Zhang, W., Chen, Y.P.: Analysis on nonlinear oscillations and resonant responses of a compressor blade. Acta Mech. 225(12), 3483–3510 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sreenivasamurthy, S., Ramamurti, V.: A parametric study of vibration of rotating pre-twisted and tapered low aspect ratio cantilever plates. J. Sound Vib. 76(3), 311–328 (1981)

    Article  Google Scholar 

  17. Ramamurti, V., Kielb, R.: Natural frequencies of twisted rotating plates. J. Sound Vib. 97(3), 429–449 (1984)

    Article  Google Scholar 

  18. Qatu, M.S., Leissa, A.W.: Vibration studies for laminated composite twisted cantilever plates. Int. J. Mech. Sci. 33(11), 927–940 (1991)

    Article  Google Scholar 

  19. Yoo, H.H., Kwak, J.Y., Chung, J.: Vibration analysis of rotating pre-twisted blades with a concentrated mass. J. Sound Vib. 240(5), 891–908 (2001)

    Article  Google Scholar 

  20. Yoo, H.H., Kim, S.K.: Free vibration analysis of rotating cantilever plates. AIAA J. 40(11), 2188–2196 (2002)

    Article  Google Scholar 

  21. Yoo, H.H., Kim, S.K., Inman, D.J.: Modal analysis of rotating composite cantilever plates. J. Sound Vib. 258(2), 233–246 (2002)

    Article  Google Scholar 

  22. Hashemi, S.H., Farhadi, S., Carra, S.: Free vibration analysis of rotating thick plates. J. Sound Vib. 323, 366–384 (2009)

    Article  Google Scholar 

  23. Farhadi, S., Hashemi, S.H.: Aeroelastic behavior of cantilevered rotating rectangular plates. Int. J. Mech. Sci. 53(4), 316–328 (2011)

    Article  Google Scholar 

  24. Sinha, S.K., Turner, K.E.: Natural frequencies of a pre-twisted blade in a centrifugal force field. J. Sound Vib. 330, 2655–2681 (2011)

    Article  Google Scholar 

  25. Sun, J., Kari, L., Arteaga, I.L.: A dynamic rotating blade model at an arbitrary stagger angle based on classical plate theory and the Hamilton’s principle. J. Sound Vib. 332, 1355–1371 (2013)

    Article  Google Scholar 

  26. Rostami, H., Ranji, A.R., Nejad, F.B.: Free in-plane vibration analysis of rotating rectangular orthotropic cantilever plates. Int. J. Mech. Sci. 115–116, 438–456 (2016)

    Article  Google Scholar 

  27. Rao, J.S., Gupta, K.: Free vibrations of rotating small aspect ratio pretwisted blades. Mech. Mach. Theory 22(2), 159–167 (1987)

    Article  Google Scholar 

  28. Tsuiji, T., Sueoka, T.: Vibration analysis of twisted thin cylindrical panels by using the Rayleigh–Ritz method. Jpn. Soc. Mech. Eng. Int. J. 33(3), 501–505 (1990)

    Google Scholar 

  29. Hu, X.X., Tsuiji, T.: Free vibration analysis of curved and twisted cylindrical thin panels. J. Sound Vib. 219(1), 63–88 (1999)

    Article  Google Scholar 

  30. Hu, X.X., Tsuiji, T.: Free vibration analysis of rotating twisted cylindrical thin panels. J. Sound Vib. 222(2), 209–224 (1999)

    Article  Google Scholar 

  31. Hu, X.X., Tsuiji, T.: Vibration analysis of laminated cylindrical thin panels with twist and curvature. Int. J. Solids Struct. 38, 2713–2736 (2001)

    Article  MATH  Google Scholar 

  32. Hu, X.X., Lim, C.W., Sakiyama, T., Li, Z.R., Wang, W.K.: Free vibration of elastic helicoidal shells. Int. J. Mech. Sci. 47(6), 941–960 (2005)

    Article  MATH  Google Scholar 

  33. Sun, J., Arteaga, I.L., Kari, L.: General shell model for a rotating pretwisted blade. J. Sound Vib. 332(22), 5804–5820 (2013)

    Article  Google Scholar 

  34. Ganapathi, M., Varadan, T.K.: Large amplitude vibrations of circular cylindrical shells. J. Sound Vib. 192, 1–14 (1996)

    Article  Google Scholar 

  35. Alijani, F., Amabili, M.: Non-linear vibrations of shells: a literature review from 2003 to 2013. Int. J. Non-Linear Mech. 58, 233–257 (2014)

    Article  Google Scholar 

  36. Amabili, M.: A comparison of shell theories for large-amplitude vibrations of circular cylindrical shells: Lagrangian approach. J. Sound Vib. 264, 1091–1125 (2003)

    Article  Google Scholar 

  37. Amabili, M.: Nonlinear vibrations of circular cylindrical panels. J. Sound Vib. 281(3–5), 509–535 (2005)

    Article  Google Scholar 

  38. Alijani, F., Amabili, M.: Nonlinear vibrations of thick laminated circular cylindrical panels. Compos. Struct. 96, 643–660 (2013)

    Article  Google Scholar 

  39. Alijani, F., Amabili, M., Balasubramanian, P., Carra, S., Ferrari, G., Garziera, R.: Damping for large-amplitude vibrations of plates and curved panels, Part 1: modeling and experiments. Int. J. Non-Linear Mech. 85, 23–40 (2016)

    Article  Google Scholar 

  40. Amabili, M., Alijani, F., Delannoy, J.: Damping for large-amplitude vibrations of plates and curved panels, part 2: identification and comparisons. Int. J. Non-Linear Mech. 85, 226–240 (2016)

    Article  Google Scholar 

  41. Strozzi, M., Pellicano, F.: Nonlinear vibrations of functionally graded cylindrical shells. Thin-Walled Struct. 67, 63–77 (2013)

    Article  Google Scholar 

  42. Hao, Y.X., Niu, Y., Zhang, W., Li, S.B., Yao, M.H., Wang, A.W.: Supersonic flutter analysis of FGM shallow conical panel accounting for thermal effects. Meccanica 53(1–2), 95–109 (2018)

    Article  MathSciNet  Google Scholar 

  43. Washizu, K.: Variational Method in Elasticity and Plasticity, 2nd edn. Pergamon, Oxford (1975)

    MATH  Google Scholar 

  44. Yao, M. H., Ma, L., Zhang, M. M., Zhang, W.: Vibration characteristics analysis of the rotating blade based on an polynomial aerodynamic force. In: Proceedings of the ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2017, Cleveland, USA, August 6–9 (2017)

  45. Bastürk, S., Uyanik, H., Kazanci, Z.: An analytical model for predicting the deflection of laminated basalt composite plates under dynamic loads. Compos. Struct. 116, 273–285 (2014)

    Article  Google Scholar 

  46. Young, D.: Vibration of rectangular plates by the Ritz method. J. Appl. Mech. 17, 448–453 (1950)

    MATH  Google Scholar 

  47. Zheng, Z.C.: Mechanical Vibration, pp. 416–418. China Machine Press, Beijing (1980)

    Google Scholar 

  48. Shen, H.S., Wang, H.: Nonlinear vibration of shear deformable FGM cylindrical panels resting on elastic foundations in thermal environments. Compos. Part B Eng. 60, 167–177 (2014)

    Article  Google Scholar 

  49. Kobayashi, Y., Leissa, A.W.: Large amplitude free vibration of thick shallow shells supported by shear diaphragms. Int. J. Non-Linear Mech. 30, 57–66 (1995)

    Article  MATH  Google Scholar 

  50. Chern, Y.C., Chao, C.C.: Comparison of natural frequencies of laminates by 3-D theory, part II: curved panels. J. Sound Vib. 230(5), 1009–1030 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the National Natural Science Foundation of China (NNSFC) through Grant No. 11372015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghui Yao.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Appendices

Appendix A

Coefficients presented in Eq. (5) are given as follows

$$\begin{aligned} a_{11}= & {} \frac{1}{B}k\cos \theta , \quad a_{12} = \frac{1}{B}k\sin \theta , \nonumber \\ a_{21}= & {} -\frac{1}{B}ke\cos \theta +\frac{k^{3}e^{3}\sin ^{2}\theta \cos \theta }{B^{3}},\nonumber \\ a_{22}= & {} \frac{1}{B}\cos \theta -\frac{k^{2}e^{2}\sin ^{2}\theta \cos \theta }{B^{3}}, \nonumber \\ a_{23}= & {} \frac{1}{B}\sin \theta +\frac{k^{2}e^{2}\sin \theta \cos ^{2}\theta }{B^{3}}. \end{aligned}$$
(A1)

Appendix B

Components of the Green strain tensor in Eq. (10) are listed as follows

$$\begin{aligned} {2}f_{{11}}= & {} {2}\left[ 1+R^{2}k^{2}\sin ^{2}\theta +e_1 ^{2}k^{2}+z(-a_{11} e_1 k\right. \nonumber \\&\left. +\,a_{12} Rk\sin \theta )\right] \frac{\partial u}{\partial x}+2[e_2 Rk-z(a_{11} R\cos \theta \nonumber \\&+\,a_{12} R\sin \theta )]\frac{\partial v}{\partial x}+2za_{12} k^{2}eu\nonumber \\&+\,2[R^{2}k^{2}\sin \theta \cos \theta +e_1 Rk^{2}\sin \theta \nonumber \\&+\,z(-a_{11} Rk\sin \theta +a_{12} Rk\cos \theta )]v\nonumber \\&+\,2\left[ a_{12} Rk\sin \theta -a_{11} e_1 k+z\left( a_{11} ^{2}+a_{12} ^{2}\right) \right] w\nonumber \\&+\,G_{11} ^{2}+G_{12} ^{2}+G_{13} ^{2},\nonumber \\ {2}f_{22}= & {} {2}[Rke_2 +z(a_{21} +a_{22} e_1 k-a_{23} Rk\sin \theta )]\frac{\partial u}{\partial \theta }\nonumber \\&+\,2[R^{2}+z(a_{22} R\cos \theta +a_{23} R\sin \theta )]\frac{\partial v}{\partial \theta }\nonumber \\&+\,2z(a_{22} Rk\sin \theta -a_{23} Rk\cos \theta )u\nonumber \\&+\,2\left[ a_{22} R\cos \theta +a_{23} R\sin \theta \right. \nonumber \\&\left. +\,z\left( a_{21} ^{2}+a_{22} ^{2}+a_{23} ^{2}\right) \right] w+2z(-a_{22} R\sin \theta \nonumber \\&+\,a_{23} R\cos \theta )v+G_{21} ^{2}+G_{22} ^{2}+G_{23} ^{2},\nonumber \\ 2f_{33}= & {} 2\frac{\partial w}{\partial z}+G_{31} ^{2}+G_{32} ^{2}+G_{33}^{2},\nonumber \end{aligned}$$
$$\begin{aligned} {2}f_{12}= & {} [Rke_2 +z(a_{21} +a_{22} e_1 k-a_{23} Rk\sin \theta )]\frac{\partial u}{\partial x}\nonumber \\&+\,[R^{2}+z(a_{22} R\cos \theta +a_{23} R\sin \theta )]\frac{\partial v}{\partial x}\nonumber \\&+\,[B^{2}+e_2 ^{2}k^{2}+z(a_{12} Rk\sin \theta -a_{11} e_1 k)]\frac{\partial u}{\partial \theta }\nonumber \\&+\,[Rke_2 -z(a_{11} R\cos \theta +a_{12} R\sin \theta )]\frac{\partial v}{\partial \theta }\nonumber \\&+\,z(-a_{11} Rk\sin \theta +a_{12} Rk\cos \theta \nonumber \\&\qquad -\,a_{22} Rk^{2}\sin \theta \nonumber \\&-\,a_{23} e_1 k^{2})u+[-Rek\sin \theta +z(a_{22} Rk\sin \theta \nonumber \\&-\,a_{23} Rk\cos \theta +a_{11} R\sin \theta -a_{12} R\cos \theta )]v\nonumber \\&+\,\left[ -\frac{2kR}{B}-2z(a_{11} a_{22} +a_{12} a_{23} )\right] w\nonumber \\&+\,G_{11} G_{21} +G_{12} G_{22} +G_{13} G_{23} ,\nonumber \\ {2}f_{13}= & {} \frac{\partial w}{\partial x}+ \left[ B^{2}+k^{2}e_2 ^{2}+z(a_{12} Rk\sin \theta \right. \nonumber \\&\left. -\,a_{11} e_1 k)\right] \frac{\partial u}{\partial z}+[Rke_2 -z(a_{11} R\cos \theta \nonumber \\&+\,a_{12} R\sin \theta )]\frac{\partial v}{\partial z}+\frac{e_2 k^{2}}{B}u+\frac{Rk}{B}v\nonumber \\&+\,G_{11} G_{31} +G_{12} G_{32} +G_{13} G_{33} ,\nonumber \\ 2f_{23}= & {} \frac{\partial w}{\partial \theta }+ [Rke_2 +z(a_{21} +a_{22} e_1 k\nonumber \\&-\,a_{23} Rk\sin \theta )]\frac{\partial u}{\partial z}+[R^{2}+z(a_{22} R\cos \theta \nonumber \\&+\,a_{23} R\sin \theta )]\frac{\partial v}{\partial z}+\,\frac{Rk}{B}u-\frac{R}{B}v\nonumber \\&+\,G_{21} G_{31} +G_{22} G_{32} +G_{23} G_{33} , \end{aligned}$$
(B1)
$$\begin{aligned} e_1= & {} e-R\cos \theta , \quad e_2 =e\cos \theta -R. \end{aligned}$$
(B2)

Appendix C

Values of \(\frac{\partial \alpha ^{k}}{\partial \beta ^{i}}\) in Eq. (13) are written as follows

$$\begin{aligned} \frac{\partial \alpha ^{1}}{\partial \beta ^{{1}}}= & {} \frac{{1}}{M}\left( \frac{{1}}{B}z+R\right) , \quad \frac{\partial \alpha ^{{1}}}{\partial \beta ^{{2}}}=\frac{{1}}{M}\frac{ke\cos \theta }{B^{2}}z, \nonumber \\ \frac{\partial \alpha ^{{1}}}{\partial \beta ^{{3}}}= & {} 0, \quad \frac{\partial \alpha ^{{2}}}{\partial \beta ^{{1}}}=\frac{k}{M}\left( \frac{1}{B}z-e_2 \right) ,\nonumber \\ \frac{\partial \alpha ^{{2}}}{\partial \beta ^{{2}}}= & {} \frac{B}{M}, \quad \frac{\partial \alpha ^{{2}}}{\partial \beta ^{{3}}}=0, \quad \frac{\partial \alpha ^{{3}}}{\partial \beta ^{{1}}}=0, \nonumber \\ \frac{\partial \alpha ^{{3}}}{\partial \beta ^{{2}}}= & {} 0, \quad \frac{\partial \alpha ^{{3}}}{\partial \beta ^{{3}}}=1, \end{aligned}$$
(C1)
$$\begin{aligned} M= & {} BR\left( 1+z\frac{ee_1 k^{2}+1}{B^{3}R}\right) . \end{aligned}$$
(C2)

Appendix D

Coefficients in Eq. (35) are given as follows

$$\begin{aligned} \Theta= & {} \phi +kx, \quad e_3 =\frac{ee_1 k^{2}+1}{B^{3}R}, \end{aligned}$$
(D1)
$$\begin{aligned} c_1= & {} I_2 e_3 BR[R\sin (\theta -\phi )+e\sin \phi ][\sin (kL+\phi )\nonumber \\&-\sin (kx+\phi )]+I_0 BR\{R_0 (L-x)\nonumber \\&+\frac{1}{2}(L^{2}-x^{2}) +R^{2}\sin (\theta -\phi )[\sin (kL+\phi +\theta )\nonumber \\&-\sin (kx+\phi +\theta )]-eR\sin \theta [\sin (kL+2\phi )\nonumber \\&-\sin (kx+2\phi )]-e\sin \phi [\sin (kL+\phi )\nonumber \\&-\sin (kx+\phi )](e-2R\cos \theta )\},\nonumber \\ c_{2}= & {} I_2 e_3 BR^{{2}}\cos (kx+\phi )\nonumber \\&\quad \times \left[ \cos \left( \frac{\Phi }{2}-\phi \right) -\cos (\theta -\phi )\right] \nonumber \\&+\,I_0 BR^{2}\left[ -\frac{1}{2}R\cos \theta \cos (kx+2\phi -\theta )\right. \nonumber \\&+\,\frac{1}{2}R\theta \sin (kx+\phi -\theta )\nonumber \\&\quad +\,e\cos (\theta -\phi )\cos (kx+\phi )\nonumber \\&+\,\frac{1}{2}R\cos \left( \frac{1}{2}\Phi \right) \cos \left( kx+2\phi -\frac{1}{2}\Phi \right) \nonumber \\&\left. -\,\frac{1}{4}R\Phi \sin (kx)-e\cos \left( \frac{1}{2}\Phi -\phi \right) \cos (kx+\phi )\right] ,\nonumber \\ c_{3}= & {} I_2 e_3 R\cos (kx+\phi )\cos (\theta -\phi )\nonumber \\&+\,I_0 R[R\cos (\theta -\phi )\cos (kx+\phi -\theta )\nonumber \\&-\,e\cos (kx+\phi )\cos (\theta -\phi )-(R_0 +x)ek\sin \theta ],\nonumber \\ c_\mathrm{4}= & {} -\,I_2 e_3 BR\varphi _x [R\sin (\theta -\phi )\nonumber \\&+\,e\sin \phi ][\sin (kL+\phi )-\sin (kx+\phi )]\nonumber \\&-\,I_0 BR\varphi _x \{R_0 (L-x)+\frac{1}{2}(L^{2}-x^{2})\nonumber \\&+\,R^{2}\sin (\theta -\phi )[\sin (kL+\phi +\theta )-\sin (kx\nonumber \\&+\,\phi +\theta )]-eR\sin \theta [\sin (kL+2\phi )\nonumber \\&-\,\sin (kx+2\phi )]-e\sin \phi [\sin (kL+\phi )\nonumber \\&-\,\sin (kx+\phi )](e-2R\cos \theta )\},\nonumber \\ c_{5}= & {} -\,I_2 e_3 BR^{{2}}\varphi _\theta \cos (kx+\phi )\left[ \cos \left( \frac{\Phi }{2}-\phi \right) \right. \nonumber \\&\left. -\,\cos (\theta -\phi )\right] -I_0 BR^{2}\varphi _\theta \nonumber \\&\left[ -\frac{1}{2}R\cos \theta \cos (kx+2\phi -\theta )\right. \nonumber \\&+\,\frac{1}{2}R\theta \sin (kx+\phi -\theta )\nonumber \\&+\,e\cos (\theta -\phi )\cos (kx+\phi )+\frac{1}{2}R\cos \left( \frac{1}{2}\Phi \right) \nonumber \\&\cos \left( kx+2\phi -\frac{1}{2}\Phi \right) -\frac{1}{4}R\Phi \sin (kx)\nonumber \\&\left. -\,e\cos \left( \frac{1}{2}\Phi -\phi \right) \cos (kx+\phi )\right] , \end{aligned}$$
(D2)
$$\begin{aligned} b_{11}= & {} -BR\left( B^{2}+k^{2}e_2^2 \right) , \quad b_{12} =-BR^{2}ke_2 , \\ b_{13}= & {} -\,e_3 BR\left( B^{2}+k^{2}e_2^2 \right) , \quad b_{14} =-\,e_3 BR^{2}ke_2 ,\\ b_{15}= & {} 2\Omega BR^{{2}}\cos (\Theta -\theta ),\\ b_{16}= & {} 2\Omega R[k^{2}e^{2}\sin \theta \cos \Theta \\&-\,k^{2}eR\sin \theta \sin (\Theta -\theta )-\sin (\Theta -\theta )],\\ b_{17}= & {} 2\Omega BR^{{2}}e_3 \cos (\Theta -\theta ),\\ b_{18}= & {} \Omega ^{2}BR[k^{2}R^{2}\cos ^{2}(\Theta -\theta )\\&-\,2ek^{2}R\cos \Theta \cos (\Theta +\theta )+e^{2}k^{2}\cos ^{2}\Theta +1]\\&-\,2\dot{\Omega }ekBR\cos \Theta ,\\ b_{19}= & {} \Omega ^{2}BR^{2}k(e\cos \Theta -R)\cos (\Theta -\theta )\\&+\,\dot{\Omega }BR^{2}\cos (\Theta -\theta ),\\ b_{110}= & {} \Omega ^{2}kR[R\sin (\Theta -\theta )\cos (\Theta -\theta )\\&-\,e\sin (\Theta -\theta )\cos \Theta -e\sin \theta ]\\&+\,\dot{\Omega }R[-ek^{2}R\sin \theta \cos (\Theta -\theta )\\&+\,e^{2}k^{2}\sin \theta \cos \Theta -\sin (\Theta -\theta )],\\ b_{111}= & {} \Omega ^{2}e_3 BR[k^{2}(R\cos (\Theta -\theta )\\&-\,e\cos \Theta )^{2}+1]-2\dot{\Omega }ee_3 kBR\cos \Theta ,\\ b_{112}= & {} \Omega ^{2}e_3 kBR^{2}(e\cos \Theta -R)\cos (\Theta -\theta )\\&+\,\dot{\Omega }e_3 BR^{2}\cos (\Theta -\theta ),\\ b_{113}= & {} \Omega ^{2}\{I_2 [e_3 kR^{2}\sin (\Theta -\theta )\cos (\Theta -\theta )\\&-\,ee_3 kR\sin (\Theta -\theta )\cos \Theta -ee_3 kR\sin \theta ]\\&+\,I_0 [BR(R_0 +x)+\\&+\,kBR^{3}\sin (\Theta -\theta )\cos (\Theta -\theta )\\&+\,e^{2}kBR\sin \Theta \cos \Theta ]\}\\&+\,\dot{\Omega }\{I_2 [-ee_3 k^{2}R^{2}\sin \theta \cos (\Theta -\theta )\\&+\,e^{2}e_3 k^{2}R\sin \theta \cos \Theta -e_3 R\sin (\Theta -\theta )]\\&+\,I_0 [kBR^{2}(R_0 +x)\cos (\Theta -\theta )\\&-\,ekBR(R_0 +x)\cos \Theta \\&-BR^{2}\sin (\Theta -\theta )+eBR\sin \Theta ]\},\\ b_{21}= & {} -\,ke_2 BR^{2}, \quad b_{22} =-BR^{3}, \\ b_{23}= & {} -\,ke_2 e_3 BR^{2}, \quad b_{24} =-\,e_3 BR^{3},\\ b_{25}= & {} -\,2\Omega BR^{{2}}\cos (\Theta -\theta ),\\ b_{26}= & {} 2\Omega ekR^{2}\sin \theta \cos (\Theta -\theta ),\\ b_{27}= & {} -2\Omega BR^{{2}}e_3 \cos (\Theta -\theta ),\\ b_{28}= & {} \Omega ^{2}kBR^{3}[e\cos \Theta -R\cos (\Theta -\theta )]\cos (\Theta -\theta )\\&-\dot{\Omega }BR^{2}\cos (\Theta -\theta ),\\ b_{29}= & {} \Omega ^{2}BR^{3}\cos ^{2}(\Theta -\theta ),\\ b_{210}= & {} -\Omega ^{2}R^{2}\sin (\Theta -\theta )\cos (\Theta -\theta )\\&+\,\dot{\Omega }ekR^{2}\sin \theta \cos (\Theta -\theta ),\\ b_{211}= & {} \Omega ^{2}e_3 kBR^{2}(e\cos \Theta -R\cos (\Theta -\theta ))\cos (\Theta -\theta )\\&-\,\dot{\Omega }e_3 BR^{2}\cos (\Theta -\theta ),\\ b_{212}= & {} \Omega ^{2}e_3 BR^{3}\cos ^{2}(\Theta -\theta ),\\ b_{213}= & {} \Omega ^{2}\{-I_2 e_3 R^{2}\sin (\Theta -\theta )\\&+\,I_0 BR^{2}[e\sin \Theta -R\sin (\Theta -\theta )]\cos (\Theta -\theta )\} \\&+\,\dot{\Omega }[I_2 ee_3 kR^{2}\sin \theta \cos (\Theta -\theta )\\&-\,I_0 BR^{2}(R_0 +x)\cos (\Theta -\theta )],\\ b_{31}= & {} -BR,\\ b_{32}= & {} 2\Omega R[ek^{2}R\sin \theta \cos (\Theta -\theta )\\&-\,e^{2}k^{2}\sin \theta \cos \Theta +\sin (\Theta -\theta )],\\ b_{33}= & {} -2\Omega ekR^{2}\sin \theta \cos (\Theta -\theta ),\\ b_{34}= & {} 2\Omega Re_3 [ek^{2}R\sin \theta \cos (\Theta -\theta )\\&-\,e^{2}k^{2}\sin \theta \cos \Theta +\sin (\Theta -\theta )],\\ b_{35}= & {} -\,2\Omega ee_3 kR^{2}\sin \theta \cos (\Theta -\theta ),\\ b_{{36}}= & {} \Omega ^{2}kR[R\sin (\Theta -\theta )\cos (\Theta -\theta )\\&-\,e\sin (\Theta -\theta )\cos \Theta -e\sin \theta ]\\&+\,\dot{\Omega }R[ek^{2}R\sin \theta \cos (\Theta -\theta )\\&+\,e^{2}k^{2}\sin \theta \cos \Theta +\sin (\Theta -\theta )],\\ b_{37}= & {} -\Omega ^{2}R^{2}\sin (\Theta -\theta )\cos (\Theta -\theta )\\&-\,\dot{\Omega }ekR^{2}\sin \theta \cos (\Theta -\theta )\\ b_{38}= & {} \frac{\Omega ^{2}R}{B}[e^{2}k^{2}\sin ^{2}\theta +\sin ^{2}(\Theta -\theta )],\\ b_{39}= & {} \Omega ^{2}e_3 kR[R\sin (\Theta -\theta )\cos (\Theta -\theta ) \end{aligned}$$
$$\begin{aligned}&-\,e\sin (\Theta -\theta )\cos \Theta -e\sin \theta ]\nonumber \\&+\,\dot{\Omega }e_3 R[ek^{2}R\sin \theta \cos (\Theta -\theta ),\nonumber \\&+\,e^{2}k^{2}\sin \theta \cos \Theta +\sin (\Theta -\theta )],\nonumber \\ b_{310}= & {} -\Omega ^{2}e_3 R^{2}\sin (\Theta -\theta )\cos (\Theta -\theta )\nonumber \\&-\,\dot{\Omega }ee_3 kR^{2}\sin \theta \cos (\Theta -\theta ),\nonumber \\ b_{311}= & {} \Omega ^{2}R\left\{ \frac{I_2 e_3 }{B}[e^{2}k^{2}\sin ^{2}\theta +\sin ^{2}(\Theta -\theta )]\right. \nonumber \\&+\,I_0 [R\sin ^{2}(\Theta -\theta )+e\sin \Theta \sin (\Theta -\theta )\nonumber \\&\left. -\,ek(R_0 +x)\sin \theta ]\right\} \nonumber \\&+\,\dot{\Omega }I_0 R[ekR\sin \theta \sin (\Theta -\theta )\nonumber \\&-\,e^{2}k\sin \theta \sin \Theta +(R_0 +x)\sin (\Theta -\theta )],\nonumber \\ b_{114}= & {} 2\Omega e_3 R[-ek^{2}R\sin \theta \cos (\Theta -\theta )\nonumber \\&+\,k^{2}e^{2}\sin \theta \cos \Theta -\sin (\Theta -\theta )],\nonumber \\ b_{115}= & {} \Omega ^{2}e_3 kR[R\sin (\Theta -\theta )\cos (\Theta -\theta )\nonumber \\&-\,e\sin (\Theta -\theta )\cos \Theta -e\sin \theta ]\nonumber \\&+\,\dot{\Omega }e_3 R[-ek^{2}R\sin \theta \cos (\Theta -\theta ) \nonumber \\&+\,e^{2}k^{2}\sin \theta \cos \Theta -\sin (\Theta -\theta )],\nonumber \\ b_{116}= & {} \Omega ^{2}I_2 R[e_3 kBR^{2}\sin (\Theta -\theta )\cos (\Theta -\theta )\nonumber \\&-\,ee_3 kBR\sin (2\Theta -\theta )-e^{2}e_3 kB\sin \Theta \cos \Theta \nonumber \\&+\,kR\sin (\Theta -\theta )\cos (\Theta -\theta )\nonumber \\&-\,ek\sin (\Theta -\theta )\cos \Theta +e_3 B(R_0 +x)\nonumber \\&-\,ek\sin \theta ]+\dot{\Omega }I_2 R\nonumber \\&[+e_3 kBR(R_0 +x)\cos (\Theta -\theta )\nonumber \\&-\,ek^{2}R\sin \theta \cos (\Theta -\theta )\nonumber \\&-\,e_3 ekB(R_0 +x)\cos \Theta +e^{2}k^{2}\sin \theta \cos \Theta \nonumber \\&-\,e_3 BR\sin (\Theta -\theta )\nonumber \\&+\,e_3 eB\sin \Theta -\sin (\Theta -\theta )],\nonumber \\ b_{214}= & {} 2\Omega e_3 ekR^{2}\sin \theta \cos (\Theta -\theta ),\nonumber \\ b_{215}= & {} -\Omega ^{2}e_3 R^{2}\sin (\Theta -\theta )\cos (\Theta -\theta )\nonumber \\&+\,\dot{\Omega }e_3 ekR^{2}\sin \theta \cos (\Theta -\theta ),\nonumber \\ b_{216}= & {} \Omega ^{2}I_2 R^{2}\cos (\Theta -\theta )[-e_3 BR\sin (\Theta -\theta )\nonumber \\&+\,e_3 eB\sin \Theta -\sin (\Theta -\theta )]\nonumber \\&+\,\dot{\Omega }I_2 R^{2}\cos (\Theta -\theta )\nonumber \\&[-\,e_3 B(R_0 +x)+ek\sin \theta ]. \end{aligned}$$
(D3)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, M., Niu, Y. & Hao, Y. Nonlinear dynamic responses of rotating pretwisted cylindrical shells. Nonlinear Dyn 95, 151–174 (2019). https://doi.org/10.1007/s11071-018-4557-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4557-7

Keywords

Navigation